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Abstract—In this paper, we address M-QAM blind equaliza-
tion based on information theoretic criteria. We propose two new
cost functions that force the probability density functions (pdf)
at the equalizer output to match the known constellation pdf.
They involve kernel pdf approximation. The kernel bandwidth
of a Parzen estimator is updated during iterations to improve
the convergence speed and to decrease the residual error of the
algorithms. Unlike related existing techniques, the new algorithms
measure the distance error between observed and assumed
pdfs for the real and imaginary parts of the equalizer output
separately. We show performance and complexity gain against
the CMA, the most popular blind equalization technique, and
classical pdf fitting approaches.

I. INTRODUCTION

In transmissions, multipath propagation introduces inter-
symbols interference (ISI) that can make it difficult to recover
transmitted data. Thus, an equalizer can be used to reduce
the ISI. Blind equalization has been an intensive research area
for several decades. It aims at developping effective and low
complexity algorithms that avoid bandwidth waste resulting
from training data. There exist many blind algorithms. The
Godard algorithm [1] and the Constant Modulus Algorithm
(CMA) [2] which is a particular case of Godard algorithm,
are probably the most popular blind equalization techniques.
However, they require a long data sequence to converge and
show relatively high residual error. To overcome these limita-
tions, several approaches have been proposed in the literature.
For instance, we can mention The Multi-Modulus Algorithm
(MMA) that performs blind equalization and carrier phase
recovery simultaneously [3]. The minℓ1-MMA and MGauss-
MMA algorithms [4] outperform the MMA by combining
the multi-modulus criterion with an alphabet-matching penalty
term.

In the last decade, new techniques for blind equalization,
based on information theoretic criteria and pdf estimation
of transmitted data, have been proposed. These criteria are
optimized adaptively, in general by means of stochastic gradi-
ent techniques. Among these techniques, the Kullback-Leibler
Divergence (KLD) between the pdf at the equalizer output
and the known constellation pdf has been proposed in [5].
The Euclidean distance has also been proposed in [6]. It uses
Parzen window with Gaussian kernels for pdf estimation. In
[7], a technique based on fitting the pdf of the equalizer output
at some relevant points that are determined by the modulus
of the constellation symbols was proposed. It is known as
sampled-pdf fitting. The authors of [7] also proposed in [8] the
stochastic blind equalization approach that uses the quadratic

distance (SQD) between the pdf at the equalizer output and
the known constellation pdf as a cost function. Many digital
transmission systems with a high number of states use QAM
modulations. As the multi-modulus approaches are well suited
for such modulations, we propose to use these techniques
to equalize QAM constellations. Therefore, in this paper, we
propose a new family of blind algorithms based on the SQD
fitting, that we call Multi-Modulus SQD-ℓp (MSQD-ℓp). Un-
like the method in [8], MSQD-ℓp measures the distance error
between observed and assumed pdfs for real and imaginary
parts of the equalizer output separately. The advantage of pro-
ceeding this way is that involved distributions show less modes,
leading thus to reduced complexity, while preserving phase
recovery as for multi-modulus methods. These techniques are
designed for multilevel modulations, work at the symbol rate
and admit a simple stochastic gradient-based implementation.
For pdf estimation, we use the Parzen window with Gaussian
kernels. The proposed methods outperform CMA and classical
pdf fitting approaches, in terms of convergence speed, residual
error and complexity.

This paper is organized as follows. In section II, we
present the blind equalization problem and the SQD pdf fitting
method. In section III, we propose the new cost functions and
their corresponding stochastic gradient expressions. Simulation
results and computational complexity are presented in section
IV. Conclusions of our work are given in section V.

II. SIGNAL AND EQUALIZER MODEL

A. Signal model

The baseband model of a transmission system with an
adaptive blind channel equalizer is shown in Fig.1, where
s(n), n ∈ Z is the transmitted symbol at time n, that
is assumed to be drawn from a QAM constellation. h =
[h0, h1, ..., hLh−1]

T is the multipath channel finite impulse
response (FIR) with order Lh, while (.)T denotes the transpose
operator. b(n), n ∈ Z is an additive white Gaussian noise.
x(n), n ∈ Z is the equalizer input. w = [w0, w1, ..., wLw−1]

T

is the equalizer impulse response, with length Lw. y(n) is the
equalized signal at time n. x(n) and y(n) can be modeled as

x(n) =

Lh−1∑

i=0

his(n− i) + b(n) (1)

and

y(n) =

Lw−1∑

i=0

wix(n− i) = w
T
x(n) (2)



where x(n) = [x(n), x(n− 1), ..., x(n− Lw + 1)]T . The

Transmitter Channel h +

b(n)

Equalizer w
s(n) x(n) y(n)

Fig. 1. Baseband model of a transmission system with an adaptive blind
channel equalizer.

weights of the equalizer will be adapted by using a gradient
stochastic algorithm in the form

w(n+ 1) = w(n)− µ∇wJ(w) (3)

where µ is the step size and J(w) is the cost function to be
minimized.

B. SQD pdf fitting using Parzen Estimator [8]

Equalization techniques based on pdf matching intend to
minimize some distance between the data distribution at the
equalizer output and some target distribution. Transmitted sym-
bols have a discrete distribution. But, since they are affected
by additive Gaussian noise at the receiver side, it can be
assumed that after removing channel multipath effects, the
equalizer output should consist of a Gaussian mixture, with
Gaussian modes centered at the constellation points. Therefore,
a target distribution of this form can be chosen. Then, the
SQD algorithm [8] aims at minimizing the quadratic distance
between the pdf of the equalizer output and the pdf of the
noisy constellation. Its cost function is given by

J(w) =

∫ ∞

−∞
(fY p(z)− fSP (z))

2
dz (4)

where, Y p = {|y(n)|p} and Sp = {|sk|p} are the sets of the
moduli to the power p of equalized symbols and constellation
symbols and fZ(z) denotes the pdf of Z at z. Thus, J(w)
is intended to match pth moment distributions between the
equalizer output and the noisy constellation.
By using the Parzen window method with a window involving
the L previous symbols, the estimates of the current pdfs are

f̂Y p(z) =
1

L

L−1∑

k=0

Kσ0(z − |y(n− k)|p)

f̂Sp(z) =
1

Ns

Ns∑

k=1

Kσ0
(z − |sk|p) (5)

where Ns is the number of complex symbols in the constella-
tion and Kσ0

is a Gaussian kernel with standard deviation σ0,
also known as the kernel bandwidth:

Kσ0
(x) =

1√
2πσ0

e
− x2

2σ2
0 . (6)

According to [8], for p = 2 and L = 1, the expression of
J(w) is given by

J(w) =
1

N2
s

Ns∑

k=1

Ns∑

l=1

Kσ(|s(l)|2 − |s(k)|2)

− 2

Ns

Ns∑

k=1

Kσ(|y(n)|2 − |s(k)|2). (7)

where, σ =
√
2σ0. Then, the gradient of the cost function with

respect to the equalizer weights is given by

∇wJ(w) = − 1

Ns

Ns∑

k=1

K
′

σ(|y(n)|2 − |s(k)|2) y(n)x∗(n) (8)

where K
′

σ(x) = − x√
2πσ3

exp(−x2

2σ2 ) is the derivative of Kσ(x)

and (.)∗ denotes the complex conjugation operator. Then, the
equalizer coefficients are updated at symbol rate by inserting
Eq.(8) in Eq.(3). This algorithm is initialized with a tap-
centered equalizer. In [8], the squared modulus of the symbols
for the kernel variables (p = 2) is used to design J(w).
But, squaring does not preserve Gaussianity around noisy
constellation points. Then, with a view to make the criterion
statistically more meaningful we propose, in this paper, to also
address the case p = 1. Indeed, when p = 1, since constellation
points are apart from the axes, at convergence |y(n)| will
be roughly distributed according to a mixture of Gaussian
distributions around the constellation points that are in the
positive quadrant of the complex plane. This is true provided
the SNR remains in usual ranges for QAM modulations under
consideration. In addition, it is well known that multimodulus
approaches such as MMA [9], that decompose equalization
criteria into an in-phase term and a quadrature one, are more
efficient than criteria such as the CMA [2], that handle in-phase
and quadrature parts together. In the same way, the criteria that
we propose are made of a sum of two terms related to in-phase
and quadrature parts of the equalizer output. This will lead to
criteria that we name Multimodulus SQD-ℓp (MSQD-ℓp). The
advantage of proceeding this way is that involved distributions
show less modes, leading thus to reduced complexity, while
preserving phase recovery. In addition, we benefit from the
fact that 1D pdfs can be accurately estimated with less data
than 2D pdfs. Indeed, with the SQD algorithm there are M
symbols involved in the target pdf whereas with the MSQD-

ℓp algorithms there are only 2
√
M modes involved, for an

M-QAM modulation.

III. MSQD ALGORITHMS

A. MSQD-ℓp algorithm

MSQD family consists of algorithms based on cost func-
tions in the form:

J(w) =

∫ ∞

−∞
(f̂|yr|p(z)− f̂|sr|p(z))

2dz

+

∫ ∞

−∞
(f̂|yi|p(z)− f̂|si|p(z))

2dz (9)

where yr = ℜ{y}, yi = ℑ{y} and the pdf estimates are in the
form

f̂x(z) =
1

Nx

Nx∑

k=1

Kσ0
(z − xk) (10)

x is equal to |sr|p, |si|p, |yr|p or |yi|p. Nx = Ns for x = |sr,i|p
and Nx = L for x = |yr,i|p.
For fixed p, we denote the corresponding criterion by MSQD-
ℓp. In a stochastic gradient optimization approach, in general
only instantaneous statistics are involved in the criterion. Thus,



we consider a window length L = 1 as in [8]. Then, since for
Gaussian kernels we have
∫ ∞

−∞
Kσ0(y−C1)Kσ0(y−C2)dy =

1

2
Kσ0

√
2(C1−C2), (11)

thus, according to Eq.(9) and Eq.(10), J(w) becomes

J(w) = −
1

Ns

Ns∑

k=1

Kσ(|yr(n)|
p − |sr(k)|

p)

−
1

Ns

Ns∑

k=1

Kσ(|yi(n)|
p − |si(k)|

p) + Cst. (12)

Therefore, the derivative of J(w) with respect to equalizer
weights is

∇wJ(w) =
∂J(w)

∂wr
+ j

∂J(w)

∂wi

=
p

2
√
2πNsσ3

Ns∑

k=1

(

sign (yr(n)) |yr(n)|p−1(|yr(n)|p

− |sr(k)|p) e−
(|yr(n)|p−|sr(k)|p)2

2σ2 + j sign (yi(n))

× |yi(n)|p−1(|yi(n)|p − |si(k)|p)

× e−
(|yi(n)|p−|si(k)|p)2

2σ2

)

x
∗(n).

(13)

B. MSQD-ℓ2 and MSQD-ℓ1 algorithms

Since ℓ2 norm is often considered in the literature and
for comparison to the case p = 1 in the simulation part, we
consider first the case p = 2. From Eq.(13) we get the gradient
of the MSQD-ℓ2 cost function:

∇wJ(w) =
1√

2πNsσ3

Ns∑

k=1

(

yr(n)(|yr(n)|2 − |sr(k)|2)

× e−
(|yr(n)|2−|sr(k)|2)2

2σ2 + j yi(n)(|yi(n)|2 − |si(k)|2)

× e−
(|yi(n)|2−|si(k)|2)2

2σ2

)

x
∗(n)

(14)

Then, Eq.(3) is used to update equalizer taps. For the case
p = 1, that is statistically more meaningful, as discussed at
the end of section II, we get an updating term of the equalizer
in the form:

∇wJ(w) =
1√

8πNsσ3

Ns∑

k=1

(

sign(yr(n)) (|yr(n)| − |sr(k)|)×

e−
(|yr(n)|−|sr(k)|)2

2σ2 + j sign(yi(n)) (|yi(n)| − |si(k)|)

× e−
(|yi(n)|−|si(k)|)2

2σ2

)

x
∗(n)

(15)

In section IV, we will show on simulations that, as expected,
the proposed MSQD-ℓ1 algorithm is more effective than the
existing SQD algorithm in terms of mean square error and
convergence speed, especially for larger constellations.

IV. SIMULATION RESULTS

A. Adaptive adjustment of the kernel size

As in [8], the kernel size was adaptively controlled as-
suming a linear relationship between the kernel size and the
decision error:

σ(n) = aG(n) + b (16)

where,

G(n) = αG(n− 1) + (1− α) min
︸︷︷︸

k=1,...,Ns

((|y(n)|2 − |sk|2)2)

α is a forgetting factor and (a, b) are empirically determined
constants. As mentioned in [8], the minimum of the stochastic
cost function is a scaled version of the desired constellation.
Then, the original symbols |sk|2 in Eq.(14) and Eq.(15) are
substituted by |sck|2 = Q(σ)|sk|2, where Q(σ) is the compen-
sation factor that depends on the kernel size and is obtained
by ensuring that the zero-ISI solution (y(n) = s(kn)) is a
minimum of E [J(w)], that is E [∇wJ(w)] = 0, or

Ns∑

k=1

E[K
′

σ(|s(kn)|2 −Q(σ)|sk|2)s(kn)x∗(n)] = 0

Fig.2 shows the compensation factor Q(σ) for 16-QAM, 64-
QAM and 256-QAM modulations when using the MSQD-ℓ1
algorithm. For the MSQD-ℓ1 and MSQD-ℓ2, we implement
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Fig. 2. Evolution of the compensation factor Q(σ) for MSQD-ℓ1 algorithm.

the same steps as the algorithm summarized in [8], using the
appropriate cost functions and Q functions.

B. Numerical results

In simulations, we first use the channel that was used in
[8]:

H1 = [0.2258, 0.5161, 0.6452,−0.5161]T . (17)

Performance of the proposed MSQD-ℓ2 and MSQD-ℓ1 algo-
rithms are compared with those of the CMA, MMA and SQD.
For simulations, we employed an equalizer of length Lw = 21
initialized using the tap-centered strategy. Table I summarizes
the parameters which were used to draw the curves in Fig.3.
To compare the performance of the proposed algorithms in
terms of residual error, we set the step size µ for each algorithm
such as they converge with the same speed. Thus, in Fig.3, we
can clearly notice that MSQD-ℓ2 and MSQD-ℓ1 outperform
the CMA, MMA and SQD algorithms in terms of residual error



for 16-QAM and 64-QAM modulations. On the other hand,
when we fix the value of µ for each algorithm such as they
converge to the same MSE in Fig.4, we notice that MSQD-
ℓ2 and MSQD-ℓ1 converge faster. These figures show that the
MSQD-ℓ1 converges close to the MSE of the MMSE equalizer.
This is in accordance with [10] where we have proved that
the MMSE equalizer is the only stationary stable point of
the MSQD-ℓ1 algorithm. In Fig.5 we show the performance

TABLE I. PARAMETER VALUES USED FOR SIMULATIONS

16 QAM SQD MSQD-ℓ2 MSQD-ℓ1

µ 10−4 1.3× 10−4 7.7× 10−4

a 3.5 3.5 1.5
b −9.5 −9.5 −1

1− α 5× 10−3 5× 10−3 5× 10−3

E0 7 7 5
64 QAM

µ 1.2× 10−6 9× 10−7 4.7× 10−5

a 3.5 3 2
b −2 −18 −10

1− α 10−3 10−2 10−3

E0 5 7 6.5
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Fig. 3. MSE (dB) for SNR=30 dB using H1.

of the proposed methods when using the channel of length

Lh2 = 10 with transfer function H2(z) =
∑Lh−1

l=0 h2(l)z
−l

with h2(l) ∼ N (0, Ge−ρl) such that
∑Lh−1

l=0 E[|h2(l)|2] = 1.
For simulations, we chose ρ = 0.7. We can check that with
this channel, the MSQD-ℓ1 outperforms the other algorithms
and converges to the MMSE equalizer [10].
To study the performance of the MSQD-ℓ1 algorithm as a
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Fig. 4. MSE (dB) for SNR=30 dB using H1.

function of SNR, we draw in Fig.6 the Symbol Error Rate
(SER) for the MMA, SQD, MSQD-ℓ1 algorithms and for an
AWGN channel between SNR = 0 dB and SNR=20 dB for a
16-QAM modulation. To plot these curves, we take the optimal
equalizer for each algorithm with the same convergence rate. It
is clear in this figure that the MSQD-ℓ1 algorithm outperforms
the other algorithms in terms of the SER. We can also notice
that for a value of SER equal to 10−2, the MSQD-ℓ1 has a gain
of 1.2 dB compared to the SQD. Moreover, its performance
are very close to those obtained with an AWGN channel for
any SNR.

C. Computational complexity analysis

For a square M-QAM modulation, the computational com-

plexity is summarized in table II where Ns = (
√
M/2)!

2!(

√
(M)

2 −2)!
+

√
M
2 and N

′

s =
√
M
2 when M > 4 and Ns = N

′

s when
M = 4. Therefore, we can conclude that the MSQD-ℓ1 is

TABLE II. COMPUTATIONAL COMPLEXITY OF CMA, SQD AND

MSQD-ℓ1 ALGORITHMS FOR ONE ITERATION

Equalizers Multiplications Exponent

CMA 8Lw + 4 0
SQD 4Ns + 8Lw + 4 Ns

MSQDℓ1 6N
′

s + 8Lw + 2 2N
′

s

computationally less demanding than the SQD and slightly
more demanding compared to the CMA. However, it requires
many fewer iterations to converge to a low MSE. In Fig.4
we can notice that the MSQD-ℓ1 converges about 10 times
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Fig. 5. MSE (dB) for SNR=30 dB using H2.
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Fig. 6. SER for MMA, SQD, MSQD-ℓ1 algorithms using H1 and 16-QAM
modulation.

faster than the CMA. Fig.7 shows the global computational
cost needed to achieve convergence, according to Fig.4. We
can notice that the global computational complexity of the
MSQD-ℓ1, is lower than that of the SQD and the CMA.

V. CONCLUSION

In this paper, we have proposed new criteria for kernel
based blind equalization techniques that force the pdf of the
real and imaginary parts of the equalizer output to match
that of the noisy constellation real and imaginary parts by
employing the Parzen window method to estimate the data
pdf. Performance of the proposed methods has been compared
with that of CMA, MMA and SQD. We have shown that they
converge faster with a reduced residual error. The behaviour

Fig. 7. Number of multiplications needed by the equalizers to converge for
{16, 64}-QAM modulations.

of the MSQD-ℓ1, most powerful proposed method, has been
examined in [10]. The analysis that we have conducted and
simulation results prove that the MSQD-ℓ1 algorithm con-
verges to the MMSE equaizer and brings further validation of
the pdf fitting approach for equalization in digital transmission.
Although in this paper we only addressed QAM modulations,
the proposed methods can be extended to any modulation.

REFERENCES

[1] D. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,” IEEE Transactions on Com-

munications, vol. 28, no. 11, pp. 1867 – 1875, November 1980.

[2] J. Treichler and B. Agee, “A new approach to multipath correction of
constant modulus signals,” IEEE Transactions on Acoustics, Speech and

Signal Processing, vol. 31, no. 2, pp. 459 – 472, April 1983.

[3] K. N. Oh and Y. O. Chin, “Modified constant modulus algorithm:
blind equalization and carrier phase recovery algorithm,” in IEEE

International Conference on Communications, ICC Seattle, vol. 1, June
1995, pp. 498 –502.

[4] A. Labed, T. Chonavel, A. Assa-El-Bey, and A. Belouchrani, “Min-
norm based alphabet-matching algorithm for adaptive blind equalisation
of high-order qam signals,” in European transactions on telecommuni-

cations, vol. 24, no. 6, October 2013, pp. 552–556.

[5] J. Sala-Alvarez and G. Vazquez-Grau, “Statistical reference criteria for
adaptive signal processing in digital communications,” IEEE Transac-

tions on Signal Processing, vol. 45, no. 1, pp. 14 –31, january 1997.

[6] I. Santamaria, C. Pantaleon, L. Vielva, and J. Principe, “Adaptive
blind equalization through quadratic pdf matching,” Proceedings of the

European Signal Processing Conference, Toulouse, France, vol. II, pp.
289–292, September 2002.

[7] M. Lazaro, I. Santamaria, C. Pantaleon, D. Erdogmus, K. E. Hild II,
and J. C. Principe, “Blind equalization by sampled pdf fitting,” 4th

International Symposium on Independent Component Analysis and

Blind Equalization, Nara, Japan, pp. 1041–1046, September 2003.

[8] M. Lazaro, I. Santamaria, D. Erdogmus, K. Hild, C. Pantaleon, and
J. Principe, “Stochastic blind equalization based on pdf fitting using
parzen estimator,” IEEE Transactions on Signal Processing, vol. 53,
no. 2, pp. 696 – 704, february 2005.

[9] J. Yang, J.-J. Werner, and G. Dumont, “The multimodulus blind
equalization and its generalized algorithms,” IEEE Journal on Com-

munications, vol. 20, no. 5, pp. 997 –1015, June 2002.

[10] S. Fki, M. Messai, A. Assa-El-Bey, and T. Chonavel, “Blind equaliza-
tion based on pdf fitting and convergence analysis,” Signal Processing,
vol. 101, no. 0, pp. 266 – 277, August 2014.


