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Taylor bubble rising in a vertical pipe against
laminar or turbulent downward flow: symmetric
to asymmetric shape transition

Jean Fabre'i and Bernardo Figueroa-Espinoza’

Hnstitut de Mécanique des Fluides, Institut National Polytechnique de Toulouse, Allée du Professeur
Camille Soula, 31400 Toulouse, France

2nstituto de Ingenieria, Universidad Nacional Auténoma de México, Calle 21 No. 97A,
Colonia Itzimna, 97100, Mérida, Mexico

The symmetry of Taylor bubbles moving in a vertical pipe is likely to break when the
liquid flows downward at a velocity greater than some critical value. The present
experiments performed in the inertial regime for Reynolds numbers in the range 100 <
Re < 10000 show that bifurcation to an eccentric motion occurs, with a noticeable
increase of the bubble velocity. The influence of the surface tension parameter (an
inverse Eotvos number), X', has been investigated for 0.0045 < X' < 0.067. It appears
that the motion of an asymmetric bubble is much more sensitive to surface tension
than that of a symmetric bubble. For any given X, the symmetry-breaking bifurcation
occurs in both laminar and turbulent flow at the same vorticity-to-radius ratio (w/r),
on the axis of the carrier fluid. This conclusion also applies to results obtained
previously from numerical experiments in plane flows.

Key words: bubble dynamics, drops and bubbles, gas/liquid flows

1. Introduction

Taylor bubbles moving in a vertical pipe become asymmetric when the surrounding
liquid flows downward at a mean velocity greater than some critical value. The tip
of the long bullet-shaped bubbles moves into an eccentric position, and the resulting
asymmetric bubbles move faster, relative to the liquid, than symmetric bubbles. This
has a significant influence in slug flow where most of the gas is carried in a series
of long bubbles and this is why symmetry breaking was first observed in such flow
conditions. In their study of upward and downward slug flow Griffith & Wallis (1961)
noted that ‘as the down flow water velocity was increased, a point was reached at
which the stable character of the bubble suddenly changes; the tip of the bubble began
to distort to become alternately eccentric on one side or another’. Fifteen years later
Martin (1976) focused on downward slug flow. His experimental results showed that ‘a
stable Taylor bubble is only possible in downward flow for large values of the surface
tension’ and that ‘the bubbles become more and more eccentric as the downward flow
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is increased’. However these studies were performed in slug flow and one cannot
exclude the possibility that the motion and shape of each bubble were modified by
those of the preceding bubble. Our understanding of the dynamics of an individual
Taylor bubble (as opposed to a train of bubbles) in liquid flowing in vertical pipes
was advanced by Nicklin, Wilkes & Davidson (1962), who obtained a correlation
between the bubble velocity V, the mean liquid velocity U, the pipe diameter D and
the gravitational acceleration g. Their correlation,

V =CoU + Cx+/2D, (1.1)

valid for the inertial regime and confirmed later by the theories of Collins et al. (1978)
and of Bendiksen (1985), became the cornerstone of slug flow models. It suggests
that the bubble velocity V depends on the uncoupled effects of liquid transport and
buoyancy. In (1.1) Cy and C,, are two dimensionless coefficients that may depend on
the Reynolds number Re = UD/v, the surface tension parameter (an inverse Eotvos
number) ¥ = 40 /pgD?, and the viscosity parameter N, = v/(gD*)'/?, where p is
the liquid density, v the liquid kinematic viscosity and o the surface tension (e.g.
Fabre & Liné 1992). Although Nicklin et al. (1962) paid little attention to bubbles
in downward flow, they noted that these bubbles behave as in slug flow by adopting
‘a wedge shape, in an attempt to avoid the fast moving liquid in the centre of the
tube’.

The dynamics of Taylor bubbles in downward flow were apparently ignored until Lu
& Prosperetti (2006) attempted to throw some light on this issue. They performed a
stability analysis of the bubble shape assuming zero surface tension, and demonstrated
that there exists in Poiseuille flow a critical mean velocity U, ~ —0.13(gD)"/* below
which (i.e. for U < U, < 0) the bubble is unstable to small irrotational perturbations.
They argued that the instability occurs because the relative velocity between the
bubble and the liquid decreases with increasing downflow, resulting in a flattening of
the bubble tip.

Figueroa-Espinoza & Fabre (2011) recently reported two-dimensional numerical
experiments on plane Taylor bubbles moving in vertical Poiseuille flow. They
observed that below a critical mean liquid velocity, a transition to a non-symmetric,
faster-moving, bubble occurs. They also showed that surface tension has a stabilizing
effect on the transition by decreasing the critical velocity (i.e. by increasing |U.|).
Carrying on from this numerical study, the present laboratory experiments investigate
the motion and the shape of Taylor bubbles rising in vertical pipes against downward
liquid flows and quantify the contribution of surface tension. They were performed
in two constant-volume rigs that allowed measurement of the bubble velocity and
observation of its shape (§2). Whereas the numerical experiments were limited to
laminar flow, the present results have been obtained in both laminar and turbulent
flows (§3). The results from the plane and axisymmetric geometries can be unified
by the choice of the right bifurcation parameter (§4).

2. Experimental facilities

Previous theoretical studies in vertical pipe flow (e.g. Collins et al. 1978; Bendiksen
1985) have shown the importance of the velocity profile of the flowing liquid on the
bubble motion: for example, Cy~?2 or 1.2 according to whether the flow is laminar
or turbulent. Therefore, the bubble velocity and shape have to be determined in
conjunction with the velocity profile. In view of these two objectives we chose to use
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FIGURE 1. (Colour online) Experimental facility: 1, reservoir; 2, progressing cavity pump;
3, positive displacement flowmeter; 4, anti-swirl and honeycomb; 5, test section; 6, air
inlet; 7, vessel; 8, ball valve followed by a convergent; 9, air vent; 10, visualization box;
11, mirror; 12, HSV camera.

optical methods: particle image velocimetry (PIV) for characterizing the liquid flow
far ahead of the bubble, and high-speed video (HSV) to record the bubble shape and
velocity. For the velocity measurements to be accurate, the gas expansion that would
occur if bubbles ascended in an unpressurized rig must be avoided. This implies that
a closed loop is required to produce bubbles of constant volume. To investigate the
influence of the surface tension parameter X over as wide a range as possible, two
different loops were used.

The larger facility, designed for 40 and 80 mm diameter pipes and of total height
12.3 m, is shown schematically in figure 1. A water—glycerol mixture initially prepared
in a reservoir (1) was recirculated by one of the two progressing cavity pumps (2)
that produced flow rates over the range 70-3000 1 h='. The mixture flowed up to
the topmost section through a vertical pipe of 80 mm internal diameter. It passed
through a positive displacement flowmeter (3) that gave the flow rate to an accuracy
of £1% in the range 120-9000 1 h~! and was calibrated outside this range by timing
the filling of the 80 mm pipe up to a given height. The water—glycerol mixture then
flowed down through an elbow that contained an anti-swirl and a honeycomb (4):
these two devices were designed to reduce the development distance by counteracting
flow asymmetry and large eddies that were generated by the preceding elbows. The
test section (5) consisted of a 9 m long Plexiglas pipe that could be changed to
allow different diameter pipes to be used. For each run a given volume of air (6)
was introduced into a vessel (7) of 160 mm diameter closed at its top by a ball
valve (8) of the same diameter. Then the air vent (9) was closed. While the pump



Fluid Glycerol (%) Viscosity (mPa s) Density (kg m™) Surface tension (N m™')

Water 0 1.0 1000 0.072
Mixture 1 40 35 1096 0.048
Mixture 2 55 5.6 1126 0.045

TABLE 1. Physical properties of water—glycerol mixtures at 20 £ 1°C.

was operating, the ball valve was quickly opened and the trapped air escaped from
the vessel through the convergent, generating a Taylor bubble that rose in the test
section as long as the adverse liquid flow rate was not too large. When the bubble
reached the top of the loop, the air vent was again opened and a new run could start.
The optical systems, PIV and HSV, were located 3.5 m downstream of the honeycomb.
To reduce the distortion due to optical refraction, we used a transparent parallelepiped-
shaped box (10), 50 cm high and 15 cm wide, filled with the same water—glycerol
mixture. By using a mirror (11) at 45°, the HSV (12) captured two side-by-side views
simultaneously: the front and the side views referred to as the x- and y-views (see
figure 1). The y-view had to be rescaled numerically to account for the longer optical
path that led from the object to the camera via the mirror. For the box illumination,
LED backlight units were used to avoid shadows and reflections. The recorded movies,
with time-marked images, were used to determine the bubble velocity.

To extend the range of the surface tension parameter we designed a smaller rig
that used a 20 mm diameter pipe. This second loop was a 4 m high copy of the
previous, larger loop, with some minor differences: the volumetric pump was replaced
by a centrifugal one and the flow rates were measured with rotameters in the range
16-170 1 h™".

In both facilities we used three different water—glycerol mixtures the properties
of which are given in table 1. The viscosity was measured with a cone-and-plate
viscometer and the surface tension was determined by means of a Wilhelmy plate
tensiometer. As will become clear, these different mixtures were used mainly in order
to increase the fluid viscosity so as to extend the laminar domain. They offered less
scope for changing the surface tension, which could at best be halved.

To verify the symmetry of the velocity profile and to identify the range of
the Reynolds number over which the laminar—turbulent transition occurs, PIV
measurements were performed in the 40 mm pipe in the absence of any bubble.
The light sheet in the visualization box was positioned in the diametral plane that
cut both the pipe and the elbows, i.e. the plane where asymmetry might be observed.
The measurements were performed using water and mixture 1 with different inlet
systems: either honeycomb, anti-swirl, or both. An example of a velocity distribution
is given in figure 2(a) for a Reynolds number corresponding to laminar flow: the
asymmetry of the profile is almost indiscernible. To summarize the PIV results
we plot in figure 2(b) the maximum-to-mean velocity ratio uy/U together with the
values this ratio takes for the range of the Reynolds number under consideration:
2 for the laminar regime and (log,, Re 4+ 0.31)/(log,, Re — 0.74) for the turbulent
regime (appendix A). The present results show that the flow is laminar for Re <2000
whereas it is turbulent for Re > 5000. In between there exists an intermediate region
corresponding to the laminar—turbulent transition.
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FIGURE 2. (Colour online) Results of PIV. (a) Velocity distribution.
(b) Maximum-to-mean velocity ratio.

3. Experimental results

Single bubbles of given volume were released into liquid flowing at velocity U.
Each bubble is characterized by its equivalent length L, i.e. the length of a cylinder
of diameter D of the same volume. Note that L is smaller than the bubble length and
that, as shown below, the velocity of a bubble of length L > D is independent of its
length.

Selected images of each movie were processed by using the Canny (1986) edge
detection method to determine the polynomial approximation of the x- and y-contours
of the bubble pictured in the x- and y-views. For an asymmetric bubble, the only
coordinates of the bubble surface that can be unambiguously identified in these
contours are those of the tip, e, and e,. In consequence, it was not possible to
determine the radius of curvature of the bubble. The x- or y-contour may be viewed
as the orthographic projection of the bubble on the planes x =0 or y =0 that pass
through the tip. As such it is not necessarily identical to the cross-section of the
bubble in the planes x = 0 or y = 0. This can be demonstrated by approximating
the bubble surface in the vicinity of the tip by the second-order Taylor series
7= ax> + 2bxy + cy*: terms of higher order can be ignored since they play no role
in the determination of the radii of curvature. The equations in the x- and y-planes
are z = ¢y’ and z = ax’> whereas the equations of the orthographic projections are
7= (c — b*/a)y* and z = (a — b*/c)x*. The bubble mean curvature is a + ¢, but an
attempt to determine the curvature from the projections would erroneously lead to
(a + ¢)(1 — b*/ac), which is correct only for the improbable case b = 0, i.e. when
the bubble is oriented such that it is symmetric with respect to one of the two
planes. Thus we determined the radius of curvature R at the tip only for symmetric
or quasi-symmetric bubbles.

From here on, dimensionless quantities will be used: L* = L/D for the equivalent
length, ¢* = 2(e? + €2)'"/?/D for the eccentricity, R* = 2R/D for the mean radius of
curvature at the tip, U* = U/4/gD for the liquid velocity and V* =V/,/gD for the
bubble velocity.

Preliminary experiments were carried out in the 40 mm pipe with water. The
corresponding results are shown in figure 3 for bubbles of equivalent length L* =3.33.
Here and in the following similar figures, each data point corresponds to a single
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FIGURE 3. (Colour online) Bubble velocity in 40 mm pipe for water
(X =18x1073, N, =40 x 107°).

bubble. The two vertical grey lines delimit the transition region between laminar and
turbulent regimes. The solid lines are the numerical predictions (see appendix A)
obtained in laminar and turbulent regimes for a symmetric bubble by the boundary
element (BE) method of Ha Ngoc & Fabre (2006), whereas the dashed line is
estimated, in the transition region, from a linear interpolation. As a preliminary
remark, the results appear slightly scattered, except in the laminar region. In fact the
velocity measurements made by timing the motion of the bubble over the box height
were not sufficiently accurate: the bubble velocity experienced small fluctuations
about the average due to the shape fluctuations near the tip. Nicklin er al. (1962)
made a similar observation: ‘the unsteadiness in the region of down flow was shown
by the wide variation in C, when this parameter was obtained by timing a slug over
a short distance’. In the experiments that followed, the velocity was determined by
timing the bubble motion over 2 m.

In the laminar region of figure 3, the bubble behaviour depends on whether U*
is greater or smaller than the critical velocity U* = —0.038. If U* > U the bubble
remains symmetric, as in still liquid, and its velocity is in good agreement with the
numerical results of appendix A. If U* < U¥, the bubble becomes asymmetric and it
moves faster than anticipated. In the turbulent region the bubble velocity is clearly
greater than that predicted for a symmetric bubble. In the transition region, u/U
continuously evolves with the Reynolds number (see figure 2b) so that it is impossible
to draw firm conclusions.

These experiments demonstrate the need to increase (resp. decrease) the viscosity or
decrease (resp. increase) the diameter, in order to investigate the bifurcation in laminar
(resp. turbulent) flow.

3.1. Experiments in the laminar regime

Two sets of experiments were carried out in the laminar regime: one set in a 40 mm
pipe with water, mixture 1 or mixture 2, and the other in a 20 mm pipe with water
or mixture 2.

The results in the 40 mm pipe are shown in figure 4: they are presented as two
graphs, one for the velocity, the other for the eccentricity. For the sake of clarity
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FIGURE 4. (Colour online) Bubble velocity and eccentricity in 40 mm pipe for mixture 1
(X=10.2 x 1073, N, =126 x 107°) and mixture 2 (¥ =10.3 x 1073, N, =197 x 107°).

the experiments with water, already shown in figure 3, have been removed. Let us
leave aside for the moment the three points corresponding to V* =~ 0.4: these will be
discussed later. Bubbles of various equivalent lengths (L* = 1.6, 3.3, 4.1, 6.5) were
released and no velocity difference was observed apart from measurement uncertainty.
In fact the velocity of a long symmetrical bubble is independent of its length as long
as it is larger than approximately D. This somewhat counter-intuitive result can be
explained by the fact that the surface waves are swept down by the supercritical-like
flow of the falling film: thus the bottom of the bubble cannot influence the motion
of its tip. The results of figure 4 show that the length independence is also true
for asymmetric bubbles of length L* > 1.6. Moreover, no significant difference was
observed between mixtures 1 and 2 since X is approximately the same. Since
the ratio N,»/N,; between these mixtures is approximately 1.6, one can state that
viscosity has no observable influence. As in the experiments with water, two velocity
regimes were observed according to whether U* is larger or smaller than the critical
velocity U = —0.045. The first, symmetric regime is again in good agreement
with the numerical simulations performed in inviscid flow (appendix A): for this
regime e* should be strictly zero but a small eccentricity may be observed, as
for the flow condition (b) of figures 4 and 5. The second regime corresponds to
the asymmetric regime of faster-moving bubbles whose eccentricity increases with
increasing downflow. It must be noted that the steep rise in velocity near U} is
concomitant with the steep rise in eccentricity. Examples of shape and motion of
bubbles corresponding to the flow conditions of figure 4 are displayed in figure 5 and
in online supplementary movie 1 (available at http://dx.doi.org/10.1017/jfm.2014.429).
The bubbles are smooth and their tip stable, unlike their rear. As the downflow
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0.5
¢ Mixture 2, X = 0.067
s Water, X = 0.038
0.4 1 — BEmethod ¥ = 0.067
BE method X = 0.038
--- Critical velocity ¥ = 0.067
o3l Critical velocity X = 0.038
V*
0.2 1
"
H
¢ @ ' '
ol v oo P
Re = 2000 .
Water ! !
0 . . HE i
-0.25 -0.20 -0.15 -0.10 -0.05 0

U*
FIGURE 6. (Colour online) Bubble velocity in 20 mm pipe for water (X =67 x 1073,
N, =106 x 107%) and mixture 2 (¥ =38 x 1073, N, =526 x 107°).

is increased an evolution of the bubble curvature is observed: while the bubble of
figure 5(c) is apparently convex everywhere, that of figure 5(d) has a convex side
shaped by the pipe whereas the other side is concave.

Results obtained in the 20 mm pipe are given in figure 6 for water and for mixture
2 (preferred to mixture 1 because it leads to a wider Re-range). Apart from the
transition from a quasi-symmetric to asymmetric shape (U} = —0.11 for the mixture,
U =-0.09 for water), there is little difference between the two fluids. But differences
compared to results obtained in the 40 mm pipe (figure 4) are noticeable. On the one
hand the transition in the 20 mm pipe is less steep, the bubble velocity continuing
to decrease with increasing downflow. On the other hand, for U* < U* < 0.02, the
shape is not strictly symmetric and the velocity departs slightly from that predicted
by computations for symmetric bubbles.

3.2. Experiments in the turbulent regime

Figure 3 suggests that the bubble symmetry breaks for U} ~ 0.16. However this
critical velocity falls in the transitional flow regime. To extend the turbulent range
we used an 80 mm pipe. The bubble velocity is plotted versus the liquid velocity in
figure 7 together with the numerical predictions for symmetric bubbles in laminar and
turbulent flows. Bubbles with velocity close to the numerical value are symmetric or
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FIGURE 8. Bubble shape for the flow conditions of points (a—d) of figure 7.

quasi-symmetric; the others have asymmetric shapes. These observations are illustrated
in figure 8 and supplementary movie 2. In still liquid the bubble is symmetric, its
shape is smooth and stable (figure 8a). As the downflow is increased, the bubble
may become either quasi-symmetric with a fluctuating tip (figure 8b) or asymmetric
(figure 8c). For higher downflow (figure 8d) surface waves start from the tip and
are swept down to the rear. However the critical velocity is not clearly defined:
U: € [-0.10, —0.07].

3.3. A surprising case: the high-speed bubble

We return now to the three fastest bubbles, the velocity of which is approximately
0.4 (figure 4). During the experiments, several other similar cases were observed but
they were mistakenly rejected because of a possible measurement error. By carefully
looking at the video clips we noticed that a small bubble moved near the tip of
the Taylor bubble (see figure 9a). In the experiments, small bubbles were entrained
from the rear of the long one during its ascending motion. These small bubbles were
recirculated with the liquid and were trapped in the upper part of the loop in the
air vent (see figure 1). However a few of them escaped from the air vent and were
entrained downward with the liquid. There were some cases where the small bubble
remained on the tip of the Taylor bubble, instead of moving past it as was usually
the case. The capture of a small bubble by the Taylor bubble was thus possible,
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FIGURE 9. Tips of a high speed and of a regular bubble, 40 mm pipe with mixture 2.
(a) Point (e) of figure 4: U* = —0.53. (b) Point (d) of figure 4: U* = —0.56.

though very unlikely. This is why this phenomenon was observed only in a very few
experiments. Because these cases involved an element of chance, they were difficult
to reproduce. A similar phenomenon was observed in the past by Maxworthy (1986),
for the case of viscous fingers in Hele-Shaw cells. To increase the probability of
trapping the small bubble we carried out a small modification to the experimental
rig: we perforated a small air inlet in the base of the tube and injected small bubbles
prior to releasing the Taylor bubble. We succeeded only a few times, enough to
obtain video sequences of the bubble train.

The coupled motion of the two bubbles poses two questions. What flow conditions
are behind the stable position of the small bubble? Why do the coupled bubbles of
figure 9(a) move much faster than the regular one pictured in figure 9(b)?

In our opinion, the former question is the most difficult to answer. It can be shown
that the trajectory of similar bubbles rising in line at large Reynolds numbers is
unstable (Harper 1970) but this effect has not been studied for such a large bubble
size difference. However from simple arguments it can be shown that a small bubble
of diameter d and terminal velocity V, has no stable position near the tip of a
spherical cap bubble of radius R rising in still liquid at velocity V. The equilibrium
position of the small bubble at a distance z, from the stagnation point of the larger
one must satisfy the force balance (Magnaudet, Rivero & Fabre 1995):

g+(1+CM)}'+§CD%=O, (3.1)
where g is the buoyancy, directed upward, Cy, and Cp are the added mass and drag
coefficients, y and u are the fluid acceleration and velocity. Near the stagnation point
(z < R) the flow behaves as a biaxial straining flow, the Stokes stream function of
which is ¥ = —3Vzr?/2R, in cylindrical coordinates (z, r). The axis-component of (3.1)
leads to a second-degree equation in z, that possesses a positive root

C R?
Iy 142 8%
3(14 Cy)? dV?

_ 2(1 +CM)d

, 3.2
3G, (3.2)

Zb

resulting from the competition among drag (x—z7), inertia (oxz,) and buoyancy
(constant). If the bubble is shifted by a small positive (resp. negative) quantity 8z,
the difference between inertia and drag decreases (resp. increases) and thus restores
the bubble position: therefore the axial position is stable. In contrast the radial
position is unstable. Indeed inertia and drag are both destabilizing forces since they
increase with 7. In potential flow, the small bubbles must move around the spherical
cap. Why they do not do so in our experiment remains unexplained.



That the coupled bubbles move much faster than a regular one might be understood
as follows. Because the Taylor bubble remains in the close wake of the small one,
the coupled bubbles behave as a single bubble, the tip curvature of which is that
of the small bubble (figure 9a shows that the fast moving bubble is more pointed
than the regular one of figure 9b). As the inviscid theory tells us (Collins et al. 1978;
Batchelor 1987) the smaller the curvature radius the greater the bubble velocity. The
Taylor bubble could thus be slaved to the small one. This interaction between a Taylor
bubble and a small leading bubble has not been studied in the literature and represents
an interesting phenomenon which should be addressed in future investigations.

4. Discussion
4.1. Symmetric bubbles

Axisymmetric bubbles in flowing liquid have been extensively investigated, especially
at high Reynolds number and small surface tension. However the results, be they
analytical, experimental or numerical, are limited to upward flow. The present
experimental results fill the gap for downward flow at least for the bubble velocity.
But for the tip curvature, it was difficult to get an accurate value from the
present experiments. This is why we performed additional numerical experiments
to complement the present experimental results. For such free-surface flow at high
Reynolds number where the viscosity can be ignored, the BE method has proved to
be both fast and accurate. A summary of the results obtained from the method of Ha
Ngoc & Fabre (2006) is given in appendix A.

The theory of Collins et al. (1978) shows that the bubble dynamics is primarily
controlled by the flow near the bubble tip. Thus the velocity profile may be
approximated near the axis by the truncated series

uwt (r) ~ g — 38257, (4.1)

where §£2 = —w/r, w being the vorticity. Note that with this definition £2; and uj have
the same sign, positive for upward flow and negative for downward flow; note also
that the above equation is exact for laminar flow. Equation (4.1) implies that V* and
R* should depend on u; and £2; regardless of whether the flow is laminar or turbulent.

Therefore, to unify the results obtained from various velocity distributions, V*
should be plotted against uj rather than against U* as (1.1) might suggest. The
bubble velocity V* is shown in figure 10(a) for two different X'. Over the range of
liquid velocities considered in the figure, V* is a linear function of uf: this function
equally applies to upward and downward flows. The slope C;, = CyU/u, weakly
depends on the surface tension parameter (see table 2); it may also depend on £2;. It
decreases when X increases and for X < 0.02 it is independent of the flow regime.
Moreover C, is always smaller than unity contrary to what most of the analytical
studies suggest: for example the solution in cylindrical harmonics of Collins et al.
(1978) and Bendiksen (1985) leads to C; = 1.13. The solid lines of figures 3, 4, 6
and 7 were calculated with (1.1) and the values of C; = CoU/uy and C,, given in
table 2: they are in good agreement with the experimental values.

The curvature radius at the bubble tip, R*, plays a major role in the bubble stability
(Figueroa-Espinoza & Fabre 2011). Like V*, R* should be a function of uj and £2;.
However it is a frame-invariant quantity and, as such, it should not depend on u but
solely on £2;. Because £2; =2u; in laminar flow, it could be argued that this question
is irrelevant but for a turbulent velocity distribution (see appendix A) 25 = 2yu;
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FIGURE 10. (Colour online) (a) Velocity and (b) curvature radius from the method of Ha
Ngoc & Fabre (20006).

X C C Co R*
laminar turbulent U*=0
0.067 0.79 0.89 0.346 0.68
0.038 0.89 0.94 0.346 0.69
0.018 0.97 0.97 0.345 0.72
0.010 0.99 0.99 0.343 0.74
0.0045 0.99 1.00 0.340 0.84

TABLE 2. Velocity and curvature parameters determined from the BE method of Ha
Ngoc & Fabre (2006).

with y < 1. R* is plotted versus £2; in figure 10(b) for two values of X. Negative
(resp. positive) §2; corresponds to downward (resp. upward) flow. It should be noted
that the bubble tip flattens out when £2; decreases. This phenomenon is accentuated
in downward flow for which the curvature radius at the tip may be greater than the
tube diameter (R* > 1). The surface tension also has a great influence on the curvature
radius, especially in downward flow: the smaller X' the greater R*. As one expects
that ‘the bubble is gravitationally unstable for sufficiently large radii of curvature’
(Batchelor 1987) it should be more fragile in downward flow and even more so if
the surface tension is smaller.

4.2. Asymmetric bubbles

The present experimental results are combined in figure 11, using the axis velocity
ug, to characterize the liquid motion. A grey line has been added to show the region
of symmetric bubbles. Although surface tension has a marginal influence on the
dynamics of symmetric bubbles, it has a significant influence on asymmetric bubbles,
no matter how small X might be. A similar result has been observed in channel
flow by Figueroa-Espinoza & Fabre (2011, figure 8). The results of figure 11 raise
two important issues: the occurrence of symmetry breaking and the dynamics of
asymmetric bubbles.

In the transition from symmetric to asymmetric bubbles the viscosity has no
influence whenever the viscosity parameter N, is small enough (see for example
figure 5). Under the inviscid assumption the dynamics of a symmetric bubble in
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FIGURE 11. (Colour online) Summary of the present results (the grey line indicates the
symmetric domain).

Flow regime ) =U: -85, R

Laminar 0.011 0.045 0.18 0.88
Laminar 0.040 0.110 0.44 1.15
Laminar 0.018 0.038 0.15 0.85
Laminar 0.067 0.090 036 0.90
Turbulent 0.018 0.160 0.19 0.90
Turbulent 0.0045 0.086 0.12 097

TABLE 3. Critical conditions at symmetry breaking.

rotational flow depends on uj, X and £2; but for the reasons mentioned in §4.1 the
transition should not depend directly on u;. Thus £2; should be the correct bifurcation
parameter.

It may be difficult to determine the critical flow condition especially when the
surface tension is not small enough or when the flow is turbulent: for ¥ > 0.01
the transition is too smooth and for turbulent flow the points are too scattered (see
figure 11) for the critical conditions to be determined accurately. Moreover, as tap
water was used one cannot rule out its contamination. The critical conditions given in
table 3 are thus determined with some uncertainty. In particular £2; was determined
from the analytical velocity profile used by Collins et al. (1978) as detailed in
appendix A. Figure 12(a) shows that most of the present results fall into the strip

25, =—(7.52 +0.06) +0.07, 4.2)

the width of which may result from the uncertainty in estimating the bifurcation.
It is remarkable that the above equation applies to both the laminar and turbulent
results. It is still more remarkable that it also applies to the results in channel
flow (numerical experiments of Figueroa-Espinoza & Fabre 2011). Coincidence? A
theoretical investigation would be helpful to address this issue. The only attempt is
that of Lu & Prosperetti (2006) which leads to U.=0.135, i.e. to §25,=0.54, from
a linear stability analysis for X = 0. Unfortunately this result disagrees with (4.2),
perhaps because the analytical solution of the unperturbed flow, a truncated series of
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FIGURE 12. (Colour online) (a) Critical value of $£2, and (b) curvature radius at
criticality, for: laminar flow (A), turbulent flow (#), two-dimensional numerical simulation
of Figueroa-Espinoza & Fabre (2011) (M), and linear stability analysis of Lu & Prosperetti
(2006) (O). Grey strips correspond to (4.2) for (a) and to R:~0.6 and 0.9 for (b).

cylindrical harmonics, fails to predict the bubble velocity and the curvature radius
accurately.

For channel flow, Figueroa-Espinoza & Fabre (2011) observed that the curvature
radius of a symmetric bubble is smaller than the critical radius R} ~ 0.6 (see
figure 12b). A similar conclusion can be drawn from the present results: bifurcation
occurs at R* ~ 0.9 whether the velocity distribution is laminar or turbulent. This
suggests that the symmetry cannot be maintained when the bubble tip is too flat. The
similarity between channel and tube flow is not only qualitative, it is also quantitative
since RY,,./R: umme = 3/2, the ratio between the dimensions of three-dimensional
and two-dimensional flows.

The excess velocity AV*, defined as the difference V* — (Ciu + C) between the
actual velocity and that of fictitious symmetric bubbles, characterizes the behaviour of
asymmetric bubbles. This excess is plotted versus £2; in figure 13(a) and the channel
results, determined from the data of Figueroa-Espinoza & Fabre (2011), are shown
in figure 13(b). The similarity between the tube and channel cases is remarkable for
laminar flow. When £2; decreases below £27 ., AV* increases and, after a transition
region, the slope dAV*/d§2; becomes nearly constant and depends little on X unlike
in the transition region in which dAV*/d£2; is very sensitive to X. At the present
time, a comprehensive theory of the dynamics of asymmetric bubbles is lacking.
Because of the complexity of the three-dimensional case, a two-dimensional approach
should be tried.

5. Conclusion

The problem of a single Taylor bubble rising in counter-current flow was addressed,
by means of a series of experiments in 20, 40 and 80 mm diameter tubes. With these
diameters the surface tension parameter could be varied by a factor of 16. Different
mixtures of water and glycerol were prepared to vary the viscosity and to control
the velocity profile through the flow regime (laminar and turbulent). This velocity
profile, which has a major influence upon the bubble dynamics, was measured by
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FIGURE 13. (Colour online) Excess velocity of asymmetric bubbles: (a) experiments in a
tube; (b) simulations in a channel (Figueroa-Espinoza & Fabre 2011).

PIV. Taylor bubbles were formed by injecting a given volume of air into a separate
chamber. The experiments were carried out at constant volume to eliminate errors
due to the expansion of the bubble while rising. The bubble velocity was carefully
measured and its shape was captured using a high-speed camera. Confirming previous
investigations in downward liquid flow (Griffith & Wallis 1961; Nicklin et al. 1962;
Martin 1976), it was observed that below some critical liquid velocity (U* < U} < 0),
the flow symmetry is broken and the bubble changes its shape to rise in an eccentric
motion. The bubble tip moves close to the tube wall; its shape changes to resemble
that of a wedge, trying to avoid the fastest moving liquid at the centre of the tube. As
the liquid velocity increases, the tip eccentricity also increases, as, presumably, does
its mean curvature. The critical velocity was determined for each value of the surface
tension parameter X'; however, for the turbulent regime there exists some uncertainty
due to the unsteady character of the flow.

Additional numerical experiments were performed using the BE method of Ha Ngoc
& Fabre (2006) to determine the velocity and shape that the Taylor bubble would have
if it were symmetric.

The results of physical and numerical experiments as well as theoretical consider-
ations can be summarized as follows.



(a) From dimensional analysis, the dynamics of Taylor bubbles at high Reynolds
number is shown to depend on the fluid properties X and flow conditions, i.e. the
velocity uj and the vorticity to radius ratio 2§ =2yu on the axis, with y(<1)
characterizing the velocity distribution.

(b) Whenever the bubble is symmetric, the law (1.1) of Nicklin ef al. (1962) that
expresses V* as a linear function of U* applies equally to upward and downward
flows. On using u rather than U*, the law extends to various velocity profiles,
i.e. laminar and turbulent. The bubble velocity V* is weakly sensitive to X. The
present results show that the theoretical solutions (Collins ef al. 1978; Bendiksen
1985) overestimate the velocity in laminar flow (they predict C; =1.13 for ¥ =0
whereas the values of table 2 show that C, is always smaller than unity). As a
consequence they overestimate the curvature radius at the nose. Unlike V* the
curvature radius at the tip R* (that plays a major role in the bubble stability)
is very sensitive to X. The bubble tip flattens out when §2; decreases. This
phenomenon is accentuated in downward flow for which the curvature radius at
the tip may be greater than the tube diameter.

(c) From dimensional arguments it has been shown that the critical parameter is §2;.
Its value increases with increasing X. It is remarkable that the results obtained
(i) in channel and pipe flows and (ii) for laminar and turbulent profiles, display
almost the same trend as that represented by (4.2) and shown in figure 12(a). In
addition, symmetry breaking is shown to occur above a critical curvature radius
at the bubble tip, i.e. for RY > 0.9 in tube flow and R} > 0.6 in plane flow.

(d) The three-dimensional results in tubes and the two-dimensional numerical
simulations of Figueroa-Espinoza & Fabre (2011) in channels are remarkably
similar. A theoretical study of two-dimensional channel flow should therefore be
worthwhile, and has the added advantage that it should be easier to perform.

(e) A very unexpected phenomenon was observed a few times at large liquid
counter-current flow: an asymmetric Taylor bubble slaved to a small leading one.
Although small, the leading bubble shelters the Taylor bubble and imposes its
curvature on the bubble pair. As a result, the coupled bubbles rise at a speed
that is even greater than that of a Taylor bubble in stagnant liquid.
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Appendix A. Axisymmetric bubbles: velocity and tip curvature

The numerical solution for axisymmetric bubbles is obtained from a code developed
by Ha Ngoc & Fabre (2006) that computes the irrotational or rotational inviscid
two-dimensional flow of a liquid past a bubble at large Reynolds number. For
axisymmetric flow in a tube, the equation of the Stokes stream function i satisfies
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FIGURE 14. Velocity and curvature radius at the bubble tip: (a) laminar profile;
(b) turbulent profile.

where 2% = —w*/r*, and " is the vorticity. This equation is solved in the (z*, r*)
plane by a boundary element method with an iterative loop for the terms of the
right-hand side. It is solved together with the Bernoulli equation at the interface
and a prescribed velocity profile far upstream. The bubble shape and its velocity are
determined as part of the solution.

For the present calculations, we adopted the velocity distribution used by Collins
et al. (1978) and Bendiksen (1985):

w () = uj[l —yr? — (1 —y)r, (A2)
which gives the £2* distribution
Q4(r) = 2ugly +n(1 = y)r?V], (A3)

in which y is chosen to fit the desired profile:

(A4)

)1 for laminar profile,
V= 1.51/log,,(1.23Re) for turbulent profile,



with Re=UD/v, the Reynolds number of the carrying fluid. The exponent n depends
on Re through the friction law:

log,, Re — 0.74 -
108y fte —U. 7+ 1+ )/> 1. (A5)
log,, Re + 0.31 2

n=(y -1 (
Although the turbulent profile from (A 2) or (A 3) is questionable near the tube wall, it
is accurate within a cylinder of approximately 0.8D and thus adequate for the present
purpose.
The mean-to-maximum velocity ratio is expressed as

=
Uy

U~ y l—y
A6
5 (A6)

- n+1°

Some numerical results in upward flow have already been obtained by Ha Ngoc
& Fabre (2004) with this code. They have been complemented in both upward and
downward flow for ¥ = 0.067, 0.038, 0.018, 0.010, 0.0045. Figure 14(a) shows the
velocity V* and the curvature radius R* for laminar profiles and ¥ = 0.067, 0.038,
0.018, 0.010, 0.0045, figure 14(b) for turbulent profiles and X =0.018, 0.0045.
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