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1. Introduction 

 
In the  context of the  European Water Framework Directive (DCE, 

2000), the Fresqueau project funded by the French Agency for research 

ANR (2011–2014) aims to develop new  methods for studying, compar- 

ing and exploiting all the available parameters concerning the status of 

running waters as well as the  information describing uses  and  under- 

taken measures. More  precisely, the  project will contribute to the  an- 

swer to two  specific issues: (1)  going  farther into  the  understanding 

of running water functioning through the  analysis of taxa that support 

biological indices, and  (2)  connecting the  sources of pressure and  the 

physicochemical and  biological quality of running waters. The first 

step  of the  project was  the  definition of an integrated  Database (DB), 

integrating data  from  20 public  databases related to water quality as- 

sessment. This  large  DB (2.6 Go) was  constructed to provide data 

analysis  and   knowledge  discovery  tools   and   methods  with  the 

necessary  data   at the  appropriate level   of  detail.  This  large   DB 

contains data  related to five major topics: water quality parameters 

(bioindices, physicochemical parameters, etc.), hydrographic networks 
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(descriptions of water quality stations and  their hydrographic net- 

works), land  uses  (land cover, flow obstacles, etc.), and  contextual fac- 

tors (climate, etc.). 

Current solutions (text files, ad hoc  programs, spreadsheet tools 

such  as Open  Office and  MS Excel, etc.)  used  by water quality practi- 

tioners are not suited to manage and to analyze large volumes of infor- 

mation. Recently, some studies have shown the ease and power of using 

Data Warehouse (DW) and On-Line Analytical Processing (OLAP) tech- 

nologies to store and  to analyze environmental data  (Alexandru et al., 

2010; Boulil et al., 2013b; McGuire  et al., 2008; Pinet  and  Schneider, 

2010). DWs are databases dedicated to the  integration and  storage of 

large volumes of data to support the decision processes of organizations 

(Inmon, 2005). DWs store decisional data at the finest granularity level 

and organize the data in a way that facilitates the analysis/aggregation. 

OLAP tools allow  an interactive exploration of DW data  at different 

levels  of detail, following a multidimensional approach. These  tools 

build  multidimensional data  structures having different granularities, 

called data cubes, by aggregating DW data and provide users with oper- 

ators for rapid exploration of these data cubes. Data cubes represent the 

measures/metrics (e.g., temperature) of the  subjects analyzed or of the 

facts in a space with multiple dimensions (analysis criteria for facts such 

as time and  geographic locations, etc.)  according to the  multidimen- 

sional abstraction model. The dimensions are organized into hierarchies
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of aggregation levels to allow viewing analysis indicators (aggregations 

of measures) at different granularities. 

DW and  OLAP data  cubes  are generally implemented in relational 

platforms consisting of four tiers  (Boulil et al., 2013b; Malinowski and 

Zimányi,  2008): the  ETL that integrates data  from  data  sources into 

the  DW, the  DW (a relational database that stores the finest data), the 

OLAP server that calculates the  data  cubes  from  the  DW data  and  the 

OLAP client that displays the data cube information using tables and dif- 

ferent types of statistical diagrams (pie  charts, histograms, etc.) and re- 

ports in different export formats. Unlike  the OLTP tools,  OLAP tools 

provide end  users with easy  to use  and  powerful analysis methods 

that enable dynamic changes of the analysis perspective and the granu- 

larity  of data.  The OLAP client interface is used  to trigger OLAP opera- 

tions  such  as Roll-up  and  Drill-down which, respectively, decrease and 

increase the  granularity of indicator values,  and  Slice, which returns a 

sub-cube by applying a filtering condition on one dimension, etc. 

In addition to data  structures (facts,  measures, dimensions, etc.), the 

definition of analysis indicators is a fundamental part of data  cubes.  The 

analysis indicators are computed by aggregating measure values along di- 

mension hierarchies. A simple analysis indicator is an application of a 

common aggregate function to a measure along  all dimensions of the 

data  cube  (e.g., the  average temperature (Fig. 1)). Common aggregate 

functions are  supported by  OLAP tools  and  DBMSs (e.g.,  Sum  and 

Count). In contrast, a complex analysis indicator may involve different ag- 

gregate functions on different measures and  along  different dimensions, 

or simply a complex aggregate function on a measure. Complex aggregate 

functions (e.g., percentile functions) are not supported by OLAP tools. 

In the  literature, many multidimensional models (languages) 

(Abelló et al., 2006; Luján-Mora et al., 2006; Malinowski and  Zimányi, 

2008;  Pinet  and   Schneider,  2010)  and   development  approaches 

(Glorio and  Trujillo,  2008; Hahn  et  al., 2000; Pardillo and  Mazón, 

2010; Romero and  Abelló, 2009) have  been proposed to model data 

cubes,  but  none of these models and  approaches has been adopted as 

a standard. All the existing propositions in the area of multidimensional 

modeling ignore the definition aspect of analysis indicators; the propo- 

sitions only allow the design of simple indicators. In Boulil et al. (2013a), 

we  proposed a conceptual and  implementation framework for data 

cubes. This framework is based on standard modeling and implementa- 

tion  languages (UML, OCL, SQL, and  MDX) and  allows for graphical 

modeling and automated implementations of data cubes. The conceptu- 

al framework is formalized as a UML profile, an extension of UML. Un- 

like related work,  our framework particularly allows the  definition of 

complex analysis indicators using  complex and/or multiple aggregate 

functions. 

In this paper, we first show the application of the OLAP technology to 

the field of water quality assessment. The architecture of the OLAP sys- 

tem that we defined consists of two data cubes, a data cube storing data 

about the  physicochemical water  quality and   another data cube 

concerning hydrobiological water quality data, tools that allow their pe- 

riodical feeding with data  from operational data  sources (an integrated 

database and some Excel files) and tools for the OLAP analysis by water 

quality practitioners. This architecture is based only on free software 

and  can easily be extended with other data cubes  (e.g., a data cube for 

the analysis of morphological data on watercourses that is another im- 

portant element in the water quality assessment) and software compo- 

nents (other data sources, other data analysis tools such as data  mining, 

etc.). Using some examples, we demonstrate how the OLAP technology, 

unlike OLTP tools  such as Excel, can help  water quality practitioners to 

increase their productivity by offering a series of intuitive interfaces 

that facilitate and  accelerate the multidimensional analysis and  under- 

standing of water quality data. We render this possible by defining var- 

ious  analysis indicators and  enabling simple (thematic, spatial, and 

temporal) and  combined (spatiotemporal) analysis on multiple scales. 

Using our framework (Boulil et al., 2013a) that we extend here by com- 

plex aggregate functions (e.g., a generic function to calculate all percen- 

tiles), we  show how  to define complex analysis indicators by using 

these complex functions and by introducing additional analysis dimen- 

sions to allow  their calculation and  also for information rendering pur- 

poses.  In Boulil et al. (2013a, 2013b), we have  shown how  to define 

complex indicators having multiple but  only  simple aggregate func- 

tions. In addition, we propose two strategies to address the heterogene- 

ity of measurement units (one of the  main  summarizability semantic 

problems) by (i) transforming source data at the ETL tier, and (ii) by in- 

troducing an additional analysis dimension at the  OLAP server tier. Se- 

mantic and  structural summarizability conditions grant the  accuracy 

and  the  correctness of indicator values if we assume a good  DW data 

quality (please see Boulil et al. (2012) for more details about the quality 

of OLAP analysis indicators). Finally, this paper constitutes a second ap- 

plication in the environmental domain of our framework for data cubes 

(Boulil et al., 2013a); a first experiment of this framework in agriculture 

is presented in (Boulil et al., 2013b). Our framework considerably re- 

duces the development times and effort by automating most of the im- 

plementation tasks. Our framework is used in this project to design and 

implement the water quality data cubes  and  their analysis indicators.

 

 
 

Fig. 1. A multidimensional model for analysis of weather.



 
 

The remainder of this paper is organized as follows. Section 2 intro- 

duces the main DW and OLAP data cube concepts and also presents the 

main concepts used  in the Fresqueau project of our  standard-based 

framework for the definition of data  cubes.  Section 3 describes related 

work  and  particularly discusses existing data cubes  in  the field  of 

water quality assessment. Section 4 presents the  Fresqueau project. In 

Section 5, we  show how  our  framework is used  to define two  data 

cubes  for water quality data  analysis and  particularly, how  to define 

complex indicators and  to address heterogeneity of measurement 

units. Section  6 presents examples of thematic, spatial, temporal and 

spatiotemporal OLAP analysis on the  data  cubes  that have  been built 

to demonstrate how OLAP tools can help water quality specialists to un- 

derstand the water quality data rapidly. Finally, Section 7 concludes the 

paper with future work. 

 
2. OLAP and DW: main concepts 

 
In addition to data  mining tools,  Data Warehouses (DWs) and  On- 

Line Analytical Processing (OLAP) tools  are main Business Intelligence 

(BI) technologies (Kimball and  Ross, 2002). 

A DW is defined as “a collection of subject-oriented, integrated, non- 

volatile, and time-varying data to support the decision-making processes 

of an organization (Inmon, 2005)”. A DW often integrates and  stores 

large  datasets from  multiple and  heterogeneous data  sources, and  the 

DW information is generally accessed in a read  only way and  can have 

different values associated with different time instants or periods. DW 

also organizes data according to the main analysis subjects of the organi- 

zation in way that facilitates data  analysis tasks. For example, a DW of a 

retail company should contain data  about analysis subjects such as sales, 

purchases, inventory management, etc. DWs are implemented mostly in 

terms of relational databases following the  well-known star  schema 

(Kimball and Ross, 2002). This schema defines two main data structures: 

fact tables that store values of measures or metrics of the analysis sub- 

jects and  dimension tables that store data  related to analysis criteria. 

OLAP tools are a type of software allowing end users to explore DW 

data  interactively, multidimensionally and  at different levels  of detail 

(Codd et al., 1993; Kimball and Ross, 2002). On the basis of some meta- 

data  (the OLAP schema), these tools  transform DW data into  strategic 

information: different data analysis indicators that can be viewed at dif- 

ferent granularities and from different analysis perspectives. Indicators, 

granularities and/or analysis perspectives can be changed rapidly using 

OLAP operators that handle DW data in terms of data cubes. A data cube 

is a multidimensional representation of data where cells represent mea- 

sure  values,  and coordinates represent analysis criteria values.  In a flat- 

tened representation, a data cube corresponds to a table with multiple 

entries where axes  (columns and  rows) represent analysis criteria, 

and  cells represent measure values.  Data cubes  can be implemented in 

three main ways: (a) pre-computation and storage in optimized multi- 

dimensional arrays (Multidimensional OLAP (MOLAP)); (b) storage in 

relational databases (ROLAP); and  (c) Hybrid  OLAP (combination  of 

ROLAP and   MOLAP).  The  relational implementation  presented  in 

Section 2.3 remains the most dominant implementation. 

Decision  makers explore these data  cubes  by navigating through di- 

mension hierarchies and  performing OLAP operators. Common OLAP 

operators are the following: “Slice”, which defines a selection on one di- 

mension of the cube; “Dice”, which performs a selection on two dimen- 

sions   or  more; “Roll-up”,  which decreases the granularity of  the 

measure values by aggregating them along  a dimension hierarchy; 

and  “Drill-down”, which is the reverse of Roll-up. 

In Table 1, we present a brief  comparison between the OLAP and 

OLTP (On-Line Transaction Processing) technologies by highlighting 

their main differences. Unlike  OLAP that operates at the tactical and 

strategic levels, OLTP is a class of transaction-oriented information sys- 

tems that support operational level daily tasks. 

In the rest of this section, we will describe the abstraction model on 

which data cubes are based (Section 2.1), the UML-based framework we 

proposed in Boulil et al. (2013a) to design and to implement data cubes 

(Section 2.2) and the components of the common adopted architecture 

for their implementation (Section 2.3). 

 
2.1. Multidimensional model 

 
DWs  and  data  cubes  are  based on  the multidimensional model 

(Abelló et al., 2006; Malinowski and Zimányi,  2008). This model allows 

for  representing  decisional data (strategic information) according 

to   the   point  of  view   of  the  decision makers  by   organizing it 

multidimensionally into facts and  dimensions. Facts represent subjects 

of analysis and are described by attributes (generally numerical) called 

measures. For example, in the model represented in Fig. 1, the facts 

“weather bulletins” are described by temperature, rainfall level, humid- 

ity and  wind speed measures. Dimensions represent measure analysis 

criteria and  allow  for viewing measures from  different perspectives. In 

the  example of Fig. 1, weather measures are  analyzed according to 

time and  location dimensions. A dimension may consist of multiple hi- 

erarchies. For example, the  time dimension has  two  hierarchies, one 

grouping months by bimesters and  another grouping the  months by 

quarters. Each hierarchy defines a way of (or a support for) the measure 

aggregation by organizing dimension data  into  different granularities 

called  aggregation levels,  e.g., the former time  hierarchy consists of 

levels  Day, Month, Bimester and  Year. Dimension hierarchies allow  for 

viewing indicators (measure aggregates) at different granularities. For 

example, the average temperatures, the  maximum temperatures, etc., 

can be viewed by day, month, etc. Indicators are computed by applying 

aggregate functions (e.g., Sum, Average,  Minimum, and  Maximum) to 

measure values.  For example, the  average temperature is computed 

using the average function (Avg) on temperature values,  the maximum 

temperature is computed using  Max, the  Minimum humidity is calcu- 

lated by applying Min on humidity values,  etc. 

One of the outstanding properties of the multidimensional is that it 

allows a simple user  to view  all possible OLAP queries. Each query 

corresponds to a  combination of aggregation levels  (at most,  one 

from  each  dimension) and  one  analysis indicator. With  n dimensions 

D1,…, Dn each  having Mi aggregation levels  and  P indicators, we have 

M1 × M2 × … × Mn × P combinations (the number of possibilities is

 
Table 1 

Main differences between OLTP and OLAP. Based on (Malinowski and Zimányi, 2008). 
 

 OLTP DW-OLAP 

Purpose/usage Support of operational tasks Support of decisional tasks 

Users Numerous (thousands), operatives Less numerous (hundreds), analysts and decision makers 

Usage pattern regular, predictable, and frequent (every day) Irregular, not predictable and 

  less  frequent 

Data Very  detailed (secondary data), current (an average time horizon of Less detailed (monthly data), historical (an average time horizon of 5 

 60 to 90  days) and small amounts of data to 10  years) and large amounts of data 

Data model Normalized (does not allow data redundancies) and optimized for Denormalized and optimized for online analytical processing 

 transaction processing performance requirements performance requirements 

Operations on  data All operations (read, add, modify and delete) Generally only read and add 

Queries Transactional: access to a small number of records (hundreds) Analytical: access to and aggregation of a large number of records 

  (millions) 



 
 

infinite if we consider all filtering conditions that can be applied to ag- 

gregation level  attributes). For  example, for  the multidimensional 

model of Fig. 1, with only one aggregate function (one type of indicator) 

we have 72 (3 × 4 × 6 × 1) possible queries such as “what is the average 

temperature per month and  municipality?”, “what is the  average tem- 

perature per semester and  municipality?”, etc. 

 
 

2.2. An overview of our standard-based framework for spatial  data  cubes 

 
Object-Oriented (OO) models are used  heavily for data  modeling 

(Abelló et al., 2006) because they are  very  expressive and  represent 

Table 2 

Main stereotypes of our UML profile for DWs. 

 
Stereotype                              Specialization of    Semantics 

 
bb Fact  NN                                             Class                           A fact  class 

bb NumericalMeasure NN          Property               A measure having a numeric type 

bb SpatialDimension NN             Package                 A dimension that contains spatial 

information (locations of facts) 

bb TemporalDimension NN      Package                 A dimension that contains 

temporal information (time 

instants or time periods of facts) 

bb ThematicDimension NN       Package                Dimension that contains only 

thematic (nonspatial and 

nontemporal) information

static and  dynamic aspects of complex applications better. The Unified 

Modeling Language (UML) is the  standard language for OO modeling 

bb SpatialAggLevel NN, 

bb TemporalAggLevel NN, 

bb ThematicAggLevel NN 

Class                           The different levels of dimensions 

that contain spatial, temporal or 

thematic information.

(OMG, 2011). Because  using  the UML formalism is time consuming and 

not sufficient to design DW applications, many authors have  proposed 

UML-based  multidimensional models (extensions of UML to represent 

DW concepts at the conceptual design stage (Boulil et al., 2013a), but 

to date, no standard model has emerged. Many of these multidimension- 

al models are defined as UML profiles that are a UML extension mecha- 

nism  that allows adapting the UML metamodel to specific platforms or 

domains (e.g., conceptual design of environmental DWs). A UML profile 

consists of a set of stereotypes, tagged values and  constraints. Stereo- 

types are  specializations of UML metaclasses (e.g., a specialization of 

the  “class” metaclass) that are rendered by an icon or a name enclosed 

by bbNN. Tagged values represent the properties of stereotypes and  are 

rendered as tagged value name = ‘value’. Constraints are used to formal- 

ize the stereotypes and tagged values by capturing all their domain se- 

mantics, then preventing the  arbitrary use of the profile by designers. 

In Boulil et al. (2013a), we proposed a UML profile for conceptual de- 

sign of spatial data cubes. This profile allows for representing all classical 

concepts of data cubes such as the facts (using the bbFactNN stereotype), 

measures, dimensions, hierarchies, aggregation levels, aggregation rela- 

tionships, relationships between facts and  dimensions, etc. The profile 

defines useful  specializations of information allowing for better quality 

control and  automated implementations. For example, dimensions and 

aggregation levels are classified into three types: thematic, tempo- ral 

and  spatial, measures into numeric, spatial, etc. 

One of the outstanding advantages of our profile is that this  profile 

allows the representation of simple and  complex aggregations/indica- 

tors. First, we distinguish between the  measure and  analysis indicator 

concepts. A measure is defined as a fact attribute that can be subjected 

to different aggregations (Sum, Min, etc.). An indicator (bbIndicatorNN 

stereotype) is viewed as a result of a measure aggregation. For example, 

the  average population in France  is calculated by applying the  average 

aggregate function to “population” measure. In this way, we can associate 

different analysis indicators with the same measure. To allow  the defini- 

tion of complex indicators, we formalize the concepts of the aggregation 

rule and the aggregate function as UML operations. An aggregation rule is 

defined as an application of an aggregate function (bbaggregatorNN) to a 

measure among all dimensions of a cube  (bbAggRuleNN), some dimen- 

sions  of the  cube  ((bbDimensionAggRuleNN), some hierarchies, or be- 

tween two aggregation levels. For the “Average  population” indicator, 

we have  one  simple aggregation rule  (bbAggRuleNN) that is “Average 

among all dimensions”. A basic indicator (bbBasicIndicatorNN) is defined 

as a set  of aggregations that apply  to one  measure. For example, the 

“Average  population” is a basic indicator. A derived indicator is defined 

as an expression over basic indicators and may concern many measures. 

In Table 2, we summarize all necessary stereotypes to understand 

the cube  models of Section 5.1. 

Finally, our  profile for DWs has  been implemented with a UML- 

based tool  called  MagicDraw.1  This implementation allows designers 

to design the  DW conceptual model graphically using  our UML profile 

and  to check  its  validity (the absence of errors and  contradictions 

 
1  

http://www.nomagic.com. 

bb IDAttribute NN                            Property               An attribute used to identify 

aggregation level instances 

(members) 

bb DescriptiveAttribute NN      Property               An attribute used for member 

rendering in the application user 

interface such as a parameter 

name. 

bbBasicIndictorNN                      Class                           Analysis indicator related to one 

measure (e.g., average 

population) 

bbAggregatorNN                          Operation             An aggregate function (e.g., Avg, 

Sum, etc.) 

bbAggRleNN                                  Operation             An application of an  aggregate 

function on  a measure along all 

                                                                                                  dimensions  of  a  cube   

 

 
 
in the  model). We have  also developed a code  generator to transform 

DW models automatically and designed our profile into implementations 

(DW and OLAP physical schemas). 

 
2.3. ROLAP architecture 

 
The classical  relational OLAP architecture is composed of four tiers 

(Boulil et al., 2013b; Malinowski and  Zimányi,  2008): ETL, data storage 

tier, OLAP server and  OLAP client. 

The ETL (Extract, Transform and Load tools) tier generally consists of 

programs that extract data  from operational internal and  external data 

sources, which integrate them (unify their schema) and  periodically 

load them into the DW. 

The data  storage tier  contains an organization DW and/or several 

data  marts, and  some metadata generally used  for system administra- 

tion tasks. The organization DW contains all data at the finest granular- 

ity level needed for all analysis needs/subjects of the  organization. The 

organization DW can also be viewed as a set of linked data  marts. Data 

marts (DMs)  are small  DWs that can contain data related to a sub-set 

of analysis subjects or a group of end  users.  Data  marts can  be  fed 

with data  sources or DW data. 

DWs and  DMs are  managed using  a Relational DataBase  Manage- 

ment System (DBMS) such  as PostgreSQL. The DW/DM data  can  be 

structured following three schema types: star, snowflake or starflake. 

In the star schema, every dimension is represented by one table contain- 

ing all its aggregation level attributes as columns. In the snowflake sche- 

ma, dimensions are normalized, and  each  aggregation level is mapped 

into one table. The starflake schema combines the two representations 

by normalizing some dimensions or parts of dimensions and 

denormalizing others. In all of these schema types, each analysis subject 

(fact) is represented by one table  that references the dimension tables 

by using foreign keys. The well-known constellation schema (a constel- 

lation of stars,  or snowflakes, or starflakes) is obtained when the  MD 

model is composed of two or  more cubes,  which eventually share 

some dimensions. 

The choice  between normalizing and  denormalizing dimensions is 

often based on the  storage cost and  the  expected query performance.

http://www.nomagic.com/


 
 

In contrast to denormalized dimensions, normalized dimensions are 

easy to maintain and optimize the storage space; however, normalized 

dimensions decrease the  query performance because many joins need 

to be performed when executing queries. 

The relational OLAP (ROLAP) server (e.g., Mondrian)  builds data 

cubes  from DM or DW data  and  implements OLAP operators to handle 

and  to navigate rapidly through these data  cubes.  Usually,  the data 

cubes  (SOLAP Server  models) are defined by means of a graphical wiz- 

ard or using  XML files. 

Finally, OLAP clients (e.g., JRuBiK) provide users with user  friendly 

and  interactive interfaces that trigger OLAP operators and allow  the vi- 

sualization of OLAP query results in the  form  of pivot tables, different 

statistical diagrams, tree-maps, etc. 

 
3. Related work 

 
DW and  OLAP technologies were developed successively in  the 

1990s to support decision-making processes in organizations better by 

allowing integration and  storage, multidimensional and  multi-scale 

analysis of large  data  volumes (Kimball and Ross, 2002). These BI tech- 

nologies were applied in many domains: manufacturing (for order ship- 

ment and  customer support), retail (for  user  profiling and  inventory 

management), financial services (for claims analysis, risk analysis, cred- 

it card  analysis, and  fraud  detection), transportation (for fleet  manage- 

ment), telecommunications (for call  analysis and  fraud  detection), 

utilities (for power usage analysis), and healthcare (for outcomes anal- 

ysis). However, these technologies do not allow  for spatial analysis. 

New BI technologies, namely, Spatial Data Warehouses (SDWs)  and 

Spatial  OLAP (SOLAP), have  been introduced to take  advantage of the 

spatial analysis potential of increasing geo-referenced data  volumes 

generated by different technologies (e.g., sensor networks, remote sens- 

ing systems). These spatial BI technologies extend DW and  OLAP with 

new  data  structures (e.g., spatial dimension), aggregate functions (e.g., 

spatial union) and operators (e.g., spatial drill-down). SDWs are defined 

as collections of spatial and non-spatial data that support spatial multi- 

dimensional analysis (Stefanovic et al., 2000). SOLAP is a class of soft- 

ware tools  that allow  spatiomultidimensional analysis of SDW data; 

they  combine OLAP and  GIS functionalities to provide end  users with 

cartographic, multi-dimensional and  multi-scale visualizations of the 

information (Bédard et al., 2007). 

A number of studies apply  (S)OLAP to decision support in domains 

such  as marketing, public  health monitoring, transportation planning, 

agriculture, environmental risk management, etc. (Bédard et al., 2007; 

Miquel et al., 2010). However, only  Chen  et al. (2007), McGuire  and 

Gangopadhyay (2006), and Wang and Guo (2013) investigate this tech- 

nology in the  specific domain of water quality management. McGuire 

and  Gangopadhyay (2006) present a multidimensional data  model 

that allows the  analysis of only one hydrobiological water quality pa- 

rameter (The Fish Index  of Biotic Integrity) at multiple spatial resolu- 

tions.   The  data model was  implemented in  a  relational database 

management system and linked with a GIS that provides users with vi- 

sualizations of data on different spatial scales. As the  authors exploit a 

GIS (ArcGIS), using  this  solution may require a certain level of experi- 

ence  in geographic systems. Additionally, using  the  proposed solution 

in other application domains can be difficult because no detail is provid- 

ed for the general architecture. McGuire  et al. (2008) propose an SDW 

design methodology that is based on  the four-step methodology of 

Kimball and  Ross (2002). This methodology is applied in the design of 

an SDW for ecological research (a research question related to freshwa- 

ter  ecology  and  analysis of biological sampling results). Chen  et  al. 

(2007) concentrate on the integration and  propose an integration sys- 

tem/architecture of water quality government repositories that, unlike 

existing works, supports both deep and shallow integration approaches 

and exploits semantic relationships among data  sources using semantic 

networks (which assist  users in locating related sources for their infor- 

mational needs). Wang  and  Guo (2013) present a water quality 2.0 

OLAP system  designed  for   the  South  Water  Resources  Bureau 

(TSWRB) of Taiwan: the  technology Web 2.0 was adopted to integrate 

qualified data  resources, and  an OLAP was  designed to analyze water 

quality data  from distributed resources. 

In the domain of environmental risk management, some recent pa- 

pers  investigate using  (S)OLAP for hydrological pollutants analysis. 

The authors Alexandru et al. (2010) study the analysis of natural pollu- 

tion  risks  presenting a multidimensional model where the  pollution 

value  is described per  pollutant and  group of pollutants, in the  same 

way as Vernier et al. (2013) define a SOLAP system for the analysis of ag- 

ricultural pollutants. Pollution has  been addressed also by Radulescu 

and  Radulescu (2008), by defining classical pollutant value  measures 

and  some risk alert measures: the  number of values that exceed the 

alarm level for a pollutant or a category of pollutants and  the  number 

of values that exceed the maximum admissible concentration level for 

a pollutant or a category of pollutants. In Boulil et al. (2013b), we devel- 

oped an OLAP system to store and  to analyze pesticide transfer data 

generated by a simulation model called  MACRO, to validate the model 

and  compare its different versions. The use of DW and  OLAP technolo- 

gies for the analysis of environmental simulation model results has par- 

ticularly been investigated in Mahboubi et al. (2013, 2010). 

In the domain of public  health monitoring, Bédard et al. (2003) pro- 

pose  an application that allows for SOLAP analysis of cancers/diseases, 

deaths and  hospitalizations of individuals  following disease/death 

causes, sex, age, date (time), and location and using meaningful indica- 

tors  (comparative figures). This work  provides a comparison between 

SOLAP and  traditional GIS technologies. Scotch  and  Parmanto (2006) 

propose the Spatial OLAP Visualization and  Analysis  Tool (SOVAT), 

which combines OLAP and GIS technologies, allowing for spatial and nu- 

merical queries. They show an application of this  tool  in Community 

Health Assessment research. Datasets concerning cancer, incidence, 

birth, death, etc., are  analyzed following dimensions age, diagnosis, 

race,  sex, etc. Finally, SOLAP applications in transportation planning 

were presented in Shekhar et al. (2002). 

 
4. Fresqueau project 

 
The European Water Framework Directive (DCE, 2000) was imposed 

to preserve or restore the good condition of water bodies. The European 

Water Framework Directive also underlined the need for new tools able 

to process a large  amount of complex information, to assess the  func- 

tioning of water bodies and the effects of actions that have been under- 

taken. Actually,  the evaluation of water bodies is conducted using 

biological quality elements, based on macroinvertebrates, oligochaeta, 

fishes,  diatoms or macrophytes. Five French bioassessment indices can 

be used,  based on macroinvertebrates, oligochaeta, fishes,  diatoms or 

macrophytes. For each  of the indices, normalized protocols exist for 

(i) sampling, (ii) identification and counting animals or plants, (iii) cal- 

culating intermediate metrics and a final index. For instance, for macro- 

invertebrates, respectively: (i) XP T 90-333 norm (AFNOR, 2009), (ii) XP 

T 90-3888 norm (AFNOR, 2010), and  (iii)  NF T 90-350 norm (AFNOR, 

2004) are used  to calculate index IBGN. 

Physical  or chemical anthropogenic degradation is also followed, 

thanks to  numerous  parameters  (especially macropollutants  and 

micropollutants). 

Therefore, on each  sampling reach (measurement station), during 

each   year,   numerous  data   on   watercourse  state  are   produced: 

(i) biological data: faunistic and  floristic lists,  metrics and  indices, 

(ii) at least six  series of  water analyses for  each  macropollutant, 

(iii) analysis of different micropollutants, and (iv) chemical and ecolog- 

ical states according to the level of expertise of these results. Data char- 

acterizing sampling reaches or stations, describing the hydrographical 

network and  habitat degradations, complete the previous data. 

Furthermore, data  estimating human activities (land use and waste- 

water treatment plants), climate and  environmental forcing  variables 

have  also to be considered. Finally, there are five major categories of



 
 

data: (i)  data  on chemical and  ecological states of the  water courses, 

(ii) data  characterizing sampling reaches or measurement stations, 

(iii)  data  describing the  hydrographical network, (iv) data  estimating 

human activities, and  (v) climate and  environmental forcing  variables. 

The Fresqueau project funded by the French Agency for research 

ANR (2011–2014) aims to develop new  methods for studying, compar- 

ing and exploiting all the available parameters concerning the status of 

running waters as well as the  information describing uses  and  under- 

taken measures. More  precisely, the  project will contribute to the  an- 

swer for two  specific issues: (1)  going  farther into  the  understanding 

of running water functioning through the  analysis of taxa that support 

biological indices, and  (2) connecting the  sources of pressures and  the 

physicochemical and  biological quality of running waters. 

To achieve these objectives, an Information System (IS) has been de- 

signed that provides knowledge discovery and  data  analysis tools such 

as OLAP and  different data  mining algorithms with necessary data. 

The global  architecture of the IS is shown in  Fig. 2. The integrated 

Fresqueau database integrates datasets collected from  20 public  data- 

bases having different access protocols, different use rights and different 

formats (Lalande et al., 2013). The integration issues are beyond the 

scope  of this paper. These  public  databases are  owned and  provided 

by 12 public institutions such as water agencies, the National Geograph- 

ic  Institute (IGN),  the  ministries of  agriculture and   ecology,   the 

European Environmental Agency (EEA), and research units, etc. For ex- 

ample, physicochemical and  biological data  are  produced by French 

Water Agencies  in North-East (Rhin-Meuse watershed)  and  South- 

East (Rhône-Méditerranée watershed) of France. 

The Fresqueau integrated DB model consists of 7 packages (Fig. 3). 

We have  Physical  Chemistry (water quality physicochemical parame- 

ters  and  their values), Hydrobiology (bioindices,  taxon  lists, etc.), 

Hydromorphology (physical characteristics of watercourses such as di- 

mensions and  shapes of river  beds,  substrate characteristics, state 

banks, etc.),  Land Uses (land cover,  flow  obstacles, wastewater treat- 

ment plants (WWTPs), etc.), Flows and  Climate  Packages, which are 

all connected to the  Hydrographic network package that contains de- 

scriptions of water quality stations and  descriptions of their hydro- 

graphic networks (a station (or  sampling reach) is a point located 

along  a watercourse-segment that is a line  located within a water- 

course; the  watercourses are related to watersheds of different levels 

represented by polygons, etc.). Finally, the integrated DB is implement- 

ed using  PostgreSQL DBMS, and  its total size is approximately 2.6 Go. 

In what follows,  we  focus  on the definition of data  cubes  for the 

OLAP analysis of physicochemical and  hydrobiological Fresqueau DB 

parts. 
 

 
5. Definition of data cubes for water quality assessment 

 
In this section, we introduce two data cubes for water quality assess- 

ment: a data  cube  for physicochemical data and  another data cube  for 

hydrobiological data.  In Section 5.1, we present their conceptual design 

using  our UML profile for data  cubes.  In Section 5.2, we describe their 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The Fresqueau integrated DB—main pancakes. 

 
implementation in a ROLAP architecture. In Section 5.3, we  present 

practical solutions to address measurement unit heterogeneity and  to 

define complex indicators; our solutions are discussed and  compared 

to existing solutions in related work. 

These data cubes have been defined with the help of domain experts 

(mainly hydrobiologists) who are the end users of the OLAP system. The 

hydrobiologists have  mainly chosen the hierarchies, the  interesting di- 

mension levels  at which they  want to visualize data,  and  the way data 

had  to be aggregated to compute the desired indicators. 

 
5.1. Data cube conceptual design 

 
In the  literature, many multidimensional languages have  been pro- 

posed to represent data  cubes  at the  conceptual level. In this  Section, 

we  present the conceptual models of the  two data  cubes  specified 

using  our UML profile (Sections 5.1.2 and  5.1.3), after  briefly introduc- 

ing the modeling approach we  followed to identify the  dimensions, 

measures and analysis indicators of the data cubes  (Section 5.1.1). 

 
5.1.1. Modeling approach 

In the literature, many DW development approaches have been pro- 

posed (Romero and Abelló, 2009). These approaches fall into three main 

categories: 

 
(1) Data-driven, where the  DW or the data  mart schema is derived 

from  the  schemas of the  data   sources. This  category of ap- 

proaches guarantees capturing all the  analysis potential of the 

data  sources and populating the resulting DW, but the user anal- 

ysis needs are not considered or are only partly considered. 

(2) Requirement-driven approaches start with determining the user 

analysis requirements to map  them onto data sources later. The 

risk with this  category of approaches is that populating of all 

DW parts is not guaranteed.

 

 
 

Fig. 2. The Fresqueau IS global architecture.



 
 

(3)   Hybrid-approaches propose to combine both paradigms to de- 

sign the DW schema from  the data  sources but bearing in mind 

the  end user  requirements. 
 

To define the  data  cube  models, we follow  a hybrid approach. We 

start by identifying and  collecting informational needs of water quality 

practitioners using  classical  methods for elicitation of user  needs such 

as interviews, forms,  etc. At the  same time,  we verify the  existence of 

necessary data  in the Fresqueau integrated DB to reply to those analysis 

needs, if not the data availability in other accessible data sources such as 

Excel files. This verification is performed to avoid defining unusable data 

cube  schemas for which data  are  not  available. From  these two ele- 

ments, user  analysis needs and  available data,  we identify the  dimen- 

sions, facts, measures and  indicators of each data cube. 

 
5.1.2. Physicochemical data  cube conceptual model 

This cube  allows for OLAP analyzing of results of physicochemical 

samples. The multidimensional diagram of this  cube  designed using 

our  UML profile is shown in Fig. 4. This model defines one  measure 

(“the value  of the  physicochemical parameter”) expressed in different 

measurement units (microgram per liter, centimeter per minute, cubic 

centimeter, gram,  gram  per meter squared, etc.). This measure is ana- 

lyzed  according to seven dimensions: 
 

(1)  Parameter dimension. A thematic (nonspatial and nontemporal) 

dimension that contains information about water quality 

physicochemical parameters that are organized in a hierarchy: 

physicochemical parameters  (e.g., glyphosate)  are  gathered 

into sub-categories (e.g., pesticides) and  sub-categories (e.g., 

pesticides) into  categories (e.g., micropollutants) to allow  sum- 

ming  of water quality measures by parameter, sub-category or 

category. 

(2) Station dimension. A spatial dimension that contains data char- 

acterizing measurement stations of water quality. Water quality 

stations (for short, we  will use  the  term station in the  rest of 

this  paper) are represented by points in space.  This dimension 

is very important because it allows calculating spatial distribu- 

tions  of water quality measures. The dimension is organized 

into many spatial hierarchies: 

-  the administrative hierarchy "Station b Municipality b Department" 

that groups stations into  municipalities and  then departments 

(French administrative divisions). 

-  the  hierarchy “Station b Waterbody b Hydroecoregion_1” that 

groups stations into water bodies and  then into hydroecoregions 

of level 1. A hydroecoregion of level 1 (e.g., Alsace) is a geographic 

region with specific climate, geological and hydrological characteris- 

tics. 

-  the hierarchy “Station b Waterbody b Fr_Type” that groups stations 

into water bodies and  then into water body French types that are 

mainly combinations of two types of information about water bod- 

ies and  watercourses, their size  (small, medium, etc.)  and  their 

hydroecoregion of level 2 (e.g., Rhin). 

-  the   hierarchy  “Station b Waterbody b Modification_Type”  (cf. 

Fig. 5) that groups stations into water bodies and then into modifi- 

cation categories (natural,  artificial, heavily modified, etc.).  In 

response to the  second project objective (cf. Section 4), this hierar- 

chy models some sources of human physical pressures on water 

bodies (dams, channeling, etc.) and enables viewing their influence 

on water quality indicators. 

-  the  hierarchy “Station b Watercourse b Watercourse rank”  that 

groups stations into  watercourses and  then into  ranks (stream or- 

ders  that are  calculated using  a method reverse to the  Strahler 

method (Strahler, 1957)). 

-  the  hierarchy “Station b Watercourse b Watershed_3 b Water- 

shed_2 b Watershed_1” that groups stations into  watercourses, 

then into watersheds (drainage basins) of level 3 (e.g., “Le Sânon”: 

a small  waterstream), watersheds of level 2 (e.g., “La Meurthe”: a 

large  waterstream), and  finally  into  watersheds of level  1 (e.g., 

“Le Rhin”: a major waterstream). 

All of these hierarchies have  an “All” aggregation level (containing 

and  aggregating all their dimension members) and  are defined to 

permit different aggregations of water quality measures at various 

spatial scales and units. 

(3)   Time  dimension. A temporal dimension that  contains dates 

of samples. The temporal dimension defines two hierarchies: 

“Day  b Month b Bimester b Semester b Year”  and  “Day  b 

Month b Trimester b Semester b Year”.  This  dimension is 

very  important because it allows temporal aggregation and 

analysis of water quality measures. 

(4)   Support dimension. A thematic dimension that describes the 

type of the sampled element (water, sediments, etc.). This in- 

formation is organized into a hierarchy of two levels: analyzed 

fractions (e.g., raw water) grouped into supports (e.g., water).

 

 
 

 
 

Fig. 4. The multidimensional model of the “physicochemical” data cube.



 
 
 

 
 

Fig. 5. An example of a spatial hierarchy. 

This dimension is very important because it can prevent sum- 

ming  water quality measures of different supports. 

(5)  Sampler dimension. A thematic dimension describing the per- 

sons  in charge of sampling. 

(6)   Laboratory dimension. A thematic dimension describing the 

laboratories in charge of sample data  analysis to determine 

the water quality measure values. This dimension is important 

because laboratories use different analysis methods and  tools 

and  specific thresholding rules.  Therefore, representing the 

laboratories as a dimension allows for pointing out these spec- 

ificities by viewing water quality indicators by laboratory. 

(7)   Supplier dimension. A thematic dimension describing the or- 

ganisms that order the  samples at laboratories and supply ex- 

ternal demanders with returned data. 

 
According to Section 2, analysis indicators are calculated by aggre- 

gating measures using  aggregate functions along  hierarchies. For this 

cube, we defined several analysis indicators by applying different aggre- 

gate  functions (Avg, Min, Max, etc.) to the measure “parameter value” 

(see  Fig. 6). For example, the indicator “Average_parameter_values” is 

calculated by applying the average function (aggregator = ‘Avg’ of the 

aggregation rule) among all dimensions (the aggregation rule  is of 

type  AggRule, which means that it applies to all dimensions of the 

cube (see  Section 2 for more details)). With the current cube modeling, 

the  indicator Count_parameter_values yields  only  the  number of pa- 

rameter values (or fact table  rows) for a combination of dimension 

members (e.g., a time period, a sub-set of physicochemical parameters 

and  a sub-set of geographical zones). Based on this  indicator, we will 

show in Section 5.3 how  to define a more complex indicator, the  pres- 

ence  count of physicochemical parameters, which is more informative 

and  pertinent for water quality practitioners. 

 
5.1.3. Hydrobiological  data  cube conceptual model 

This cube allows for OLAP analysis of results of hydrobiological sam- 

ples. The multidimensional diagram of this  cube  is depicted in Fig. 7. 

This model defines six biological water quality measures: 

 
(1)  the biological index score (e.g., for the French macrophyte index 

IBMR we have  scores belonging to [0, 20]); 

(2)  the sample's abundance, i.e., the total  number of individuals 

counted in one  sample (e.g., 60 fishes of different species for 

the  river  fish index);

 

 
 

Fig. 6. The “physicochemical” simple analysis indicators.



 
 
 

 
 

Fig. 7. The multidimensional model of the “hydrobiological” data cube. 

(3)   the  taxonomic variety, the  number of different species or taxa 

found in one  sample for one  index (e.g., 10 different types of 

plants for macrophytes); 

(4) the faunal group for invertebrates, a value  between 1 and  9, 

which corresponds to the  most pollution-sensitive group of in- 

vertebrate families found in a sample of macroinvertebrates 

(e.g., 9 if the  most pollution-sensitive families, Chloroperlidae 

and/or Perlidae, and/or Perlodidae and/or Taeniopterygidae, are 

found); 

(5) the Tubificidae with hairs for oligochaetes indices, the number of 

individuals  “Tubificidae with  hairs”   found  in  a  sample  of 

Oligochaeta (e.g., 7); 

(6)  the Tubificidae without hairs  for oligochaetes indices, the  num- 

ber of individuals “Tubificidae without hairs”  found in a sample 

of Oligochaeta (e.g., 30). 
 

These measures are analyzed according to 7 dimensions (cf. Fig. 7). 

Six dimensions are identical to the dimensions of the physicochemical 

cube, one dimension is new. 
 

(1) Indices dimension. A thematic dimension that groups biological 

indices (e.g., IBG, IBGA, IBGN, etc.) into taxonomic themes (e.g., 

invertebrates) to allow  viewing of biological analysis indicators 

per indices and  taxon theme. 

For the OLAP analysis of the above-mentioned biological measures, 

we define many analysis indicators. For each measure, we define a cer- 

tain number of indicators using  different aggregate functions. Complex 

indicators and aggregate functions are described in Section 5.3. For now, 

we  present only  simple indicators that use  common and  OLAP tool- 

supported aggregate functions such as Avg, Min, Max, etc. For example, 

in Fig. 8, we show the simple indicators related to the “index_score” 

measure,  each   defined using   a  common  aggregate  function.  For 

example,  the   “Minimum_index_score”  is  computed  by  applying the  

Minimum function to “index_  score”  values.  For now,  the 

“Count_index_score” indicator gives only the  number of scores (or fact 

table rows) for a combination of dimension members (e.g., a time peri- 

od and a sub-set of indices). With the current cube modeling, this indi- 

cator  does  not  give the  count for a given  index score  (e.g., how  many 

times we  have  the score  10  for  the  IBGN index). We  will  show in 

Section  5.3 how  to make this  indicator give this  information without 

losing  the current information possibility. 

 
 
5.2. Implementation 

 
To implement our solution, we chose  a ROLAP architecture that is 

based only on free software tools (cf. Fig. 9).

 

 
 

Fig. 8. The index score hydrobiological analysis indicators.



 
 
 

 
 

Fig. 9. Cube implementation architecture. 

 
 

5.2.1. The ETL tier 

The ETL tier allows for periodically populating the data  marts with 

data  from the  data sources, which are in our application the integrated 

Fresqueau DataBase  and  some Excel files. The ETL tier consists of a set 

of data extraction and  transformation JAVA programs implemented 

and  performed using  free  ETL tools  that are  Spatial  Data  Integrator 

(SDI)2 and  Talend  Open  Studio  (TOS).3  Spatial  Data Integrator is used 

particularly for the integration of spatial data. 

 
5.2.2. The DW tier 

The data  storage tier  or the  project DW tier, which consists of two 

related4 data  marts (we have  defined a data  mart for each  data cube), 

is  implemented  using   a  DataBase Management   System  (DBMS) 

PostgreSQL.5  These  data  marts are defined following the  star  schema. 

As stated above  (Section 2.3),  this  implementation schema defines 

one dimension table  for each  conceptual dimension. This schema type 

allows denormalized representations of dimensions. All of the aggrega- 

tion  levels  of a dimension are  stored in the same table. For example 

(Fig. 10), both levels of the “Indices” dimension (“Indices” and “Catego- 

ry”) are mapped into  the  table “Indices”,  all levels  of the  “Stations” di- 

mension into the “Stations” table,  etc. Denormalization is used  very 

often  in DWs. This method produces redundancies (repetitions)  of 

values but  vastly  improves the  data access  time. The  star  schema 

(as other DW schema types) uses  a fact table  to store measure values 

at the most detailed levels of dimensions. The fact table defines columns 

to represent conceptual measures and  foreign keys that reference di- 

mension tables to link these measure values to dimension data.  For ex- 

ample, the  fact table  “Indices_results” stores index scores,  sample 

abundances, taxonomic varieties, faunal groups, etc., by station, indices, 

day, support, sampler, laboratory, and  supplier. 

In terms of the sizes of the datasets, the total size of both data marts 

is approximately 4055  MB. The physicochemical fact table contains 14 

602 580 rows,  the hydrobiological fact table (Indices_results) contains 

34 415 rows. 
 

 
5.2.3. The OLAP server and client tiers 

Additionally, we chose  two  other popular tools to explore and  dis- 

play data: Mondrian6 as the OLAP server and JRubik7 as the OLAP client. 

Mondrian is an open-source OLAP server that builds OLAP logical struc- 

tures (e.g., dimensions, measures) on top of any DB on the basis of a spe- 

cific XML file, called  the Mondrian OLAP schema. This schema provides 

XML definitions for data cubes, dimensions, hierarchies, analysis indica- 

tors  and  their mappings to the  DW/data mart data  structures. In this 

schema, the XML definition of each  dimension is between the  XML 

 
2  

http://www.spatialdataintegrator.com. 
3  

http://www.talend.com. 
4   

The two data marts share some tables such as Suppliers, Laboratories and Samplers. 
5  

http://www.postgresql.org. 
6  

http://mondrian.pentaho.com. 
7  

http://rubik.sourceforge.net/jrubik/intro.html. 

elements bDimensionN and b/DimensionN, and every  analysis indicator 

definition is between bMeasureN and  b/MeasureN. 

Finally, JRubik is a software package that provides a graphical pre- 

sentation layer  on top of Mondrian. This layer  consists of a set of user- 

friendly interactive interfaces that trigger OLAP queries and  display 

their results in different ways: pivot tables, statistical diagrams, maps, 

etc. 

 
5.3. Modeling issues 

 
In this section, we highlight some complex OLAP issues encountered 

in this  project that are related mainly to the measure aggregation and 

the definition of the indicators, present the solutions proposed in the lit- 

erature and  show the practical solutions we adopted. 

 
5.3.1. Complex indicators 

In addition to hierarchies, the definition of analysis indicators is one 

of the  fundamental parts of data  cubes.  As stated before in Section  3, 

analysis indicators, which can be simple or complex, are computed by 

aggregating measures using  aggregate functions along  hierarchies. A 

simple indicator involves a common aggregate function, a measure 

and all dimensions. Common aggregate functions are functions support- 

ed by DBMSs and OLAP tools (e.g., Sum, Avg and Count). A complex in- 

dicator can  be  defined as  an  application of different functions on 

different measures and along different dimensions, or as an application 

of a noncommon or complex aggregate function to a measure. 

 
5.3.1.1. Complex aggregate functions.  Complex aggregate functions are 

not supported by OLAP tools and  need ad hoc definitions and  develop- 

ments by designers. In our project, examples of complex functions are 

standard deviation, percentile 10, median (percentile 50),  percentile 

90, and  mode (the most frequent value). The standard deviation func- 

tion  is supported by the  DBMS but  not  by the  OLAP server Mondrian. 

The percentile P and  mode functions are  supported neither by the 

DBMS nor by the OLAP server. 

To consider these functions in this application, we first added them 

to  our  conceptual framework (the UML profile) and  then mapped 

them into  implementations in ROLAP server and  data  storage tiers. 

Adding  these functions to our  UML profile allows designers to reuse 

them in other applications. 

For  example,  to  consider the  functions percentile  1,  …,  and 

percentile 99,  we  extend our  profile with the  aggregate function 

(bbaggregatorNN) percentile (P) where 1 b =P b = 99, and  propose 

implementations (i) in the data  storage tier (PostgreSQL DW) in terms 

of PL/pgSQL stored procedures, and  (ii) in the  ROLAP server tier (Mon- 

drian) in terms of MDX expressions. MDX (MultiDimensional eXpres- 

sions  language) is a standard language to query multidimensional and 

OLAP databases,  just like  SQL  for  the relational databases. These 

implementations are easily transferable to other platforms (e.g., Oracle, 

MySQL, etc.). In Fig. 11, we show an example of usage of the percentile

http://www.spatialdataintegrator.com/
http://www.talend.com/
http://www.postgresql.org/
http://mondrian.pentaho.com/
http://rubik.sourceforge.net/jrubik/intro.html


 

 
 
 

 
 

Fig. 10. The Indices data mart implementation schema. 

function (added to our UML profile) to define three indicators, the per- 

centiles 10, 50 (median) and  90 of physicochemical values. 

The   MDX  implementation  of   the  indicator  “Percentile10_ 

parameter_values” is: 

This implementation uses  a PL/pgSQL stored procedure 

“percentile_cont” that is implemented in PostgreSQL DBMS and allows 

for calculating all percentiles. The behavior of this procedure is identical 

to the PERCENTILE_COUNT Oracle function.8 

 

 
5.3.1.2.  Counting  the  presence/absence of parameters.  Counting the 

presence/absence of physicochemical parameters such  as pesticides is 

important to see, for example, how  the  appearance/disappearance of 

those parameters influences the  water quality. In Section 5.1.2 (Fig. 6), 

we have  defined a simple indicator, “Count_parameter_values”, which 

gives only the number of parameter values for a given  combination of 

dimension members by performing a nonconditional counting of fact 

table  rows.  To calculate the  presence/absence of physicochemical pa- 

rameters, we need to perform a conditional counting of physicochemi- 

cal  measure  values by  considering information  concerning these 

values such  as if they  are  in their domain of validity, below or above 

the  detection threshold, etc. In the  literature and  existing OLAP tools, 

there is no aggregate function that allows such conditional counting. 

To allow  this conditional counting, we introduced an additional di- 

mension that we  call “Remarks”. This dimension stores information 

about the validity and the exploitability of the  results of the analysis of 

samples (e.g., in the domain of validity, below the detection threshold, 

etc.), allowing for conditional counting of values and,  in general, for 

careful measure aggregations. This dimension is organized in a hierar- 

chy of remark types (quantitatively exploitable, qualitatively exploit- 

able, and  nonexploitable) to ease  the  selection of its members by end 

 
8  
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users.  Based  on  this dimension and  the Count function, we  defined 

the  indicator “Count_of_Presence”. Similarly to the  problem of the  het- 

erogeneity of measurement units, we proposed two  types of controls/ 

implementations for this  indicator: a non-automated control if we as- 

sume the end  user  awareness of the use of those remarks and an auto- 

mated control based on an MDX implementation. 
 

 
5.3.1.3. Counting index scores. Counting the  index scores is useful  for a 

definition of more interesting hydrobiological data  analysis scenarios 

and  a better interpretation of analysis results. Having  the  information 

of the  count and  distribution of scores over time periods, zones of sta- 

tion locations, etc., helps end users to formulate more pertinent analysis 

queries and  interpret their results better. In Section 5.1.3, we have  de- 

fined the Count_index_score indicator (Fig. 8) that gives  only  the 

count of score  rows  but not  the information of distribution (how 

many times we  have  a given  score  or a score  class for a given  index 

and for a combination of other dimension members). To allow this dis- 

tribution information, we defined an additional dimension, “Scores”, 

which organizes scores in a hierarchy of 2 levels: score  classes  of level 

2 are gathered into  score  classes  of level 1. For example, the classes  of 

level  2 ]0, 1], ]1, 2], …, ]9,10]  are  aggregated to the  class of level  1 ] 

0,10]. This hierarchy allows counting the number of times a score  class 

occurs for an index and  also facilitates selecting the  Scores dimension 

members in the OLAP client. 

This type of situation (a single  attribute, index-score, having a dual 

usage,  as a measure and  as a dimension) is known in the  literature as 

a degenerate dimension (Kimball and  Ross, 2002; Luján-Mora et al., 

2006). The solution proposed is to implement this  type  of attribute as 

a fact table  column and  to define a logical dimension that is mapped 

to this  column (Kimball and  Ross, 2002). Nevertheless, this solution 

does  not  allow  for calculating the  distributions (the number of times 

each  value  class of the  measure occurs according to other dimensions).

http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions110.htm


 

 
 
 

 
 

Fig. 11. Modeling of percentile indicators. 

To overcome this  limitation, we propose to implement this  measure 

index-score as a fact table column and  also to define a materialized di- 

mension that is mapped to this column and  records score  classes. 

 
5.3.2. Multiple heterogeneous measurement units 

The correct aggregation of measures, known as summarizability, is a 

key issue  in data  cubes.  To avoid  incorrect indicator values, structural 

(such as the strictness of aggregation relationships—for example, a 

water quality station must be linked to one municipality in the Stations 

administrative hierarchy) and  semantic conditions have  to be verified 

by OLAP data  structures/engines. The compatibility of measurement 

units is stated as one of the fundamental semantic conditions because 

aggregating measure values having different measurement units gener- 

ally leads  to meaningless results (e.g., summing micrograms per  liter 

with grams per liter of physicochemical parameter values). 

In the  Fresqueau project, physicochemical results are provided by 

data suppliers with multiple heterogeneous measurement units (micro- 

gram per liter, centimeter per minute, cubic centimeter, gram, gram per 

meter squared, etc.). This heterogeneity is essentially because each lab- 

oratory has its own  objectives and  management rules  as well as differ- 

ent objectives and  conventions for the source databases. 

To address this problem of measurement unit heterogeneity and 

allow  correct and  meaningful aggregate values,  we use two solutions. 

 
(1) Define  the  “Measurement units” as a dimension of the  physico- 

chemical cube.  This definition is very  important to control the 

measure aggregation (prevent summing results with incompati- 

ble measurement units, for example, grams with liters) and  also 

for  information rendering aspects (displaying measurement 

units is necessary for end users to understand and to interpret re- 

sults). This solution can be applied independently of the convert- 

ibility between measures. In the OLAP client, this control can be 

automated or not. For the nonautomated control, the user can se- 

lect the compatible measures by selecting them in coordinates of 

the pivot table  (if he/she wants to visualize them) or in the filter 

zone  to focus the aggregation on them. To fasten this selection/ 

filtering, we can define a hierarchy for this dimension by group- 

ing measurement units into  categories according to their com- 

patibility. The automated control is achieved by adding some 

test conditions (that are expressed in terms of MDX expressions) 

to the  definitions of analysis indicators. 

(2) ETL transformations. This solution is implemented in the ETL tier. 

The solution consists of transforming the results having convert- 

ible  measurement units into  the  same unit. For example, by 

converting parameter values having g/L and  mg/L into  μg/L by 

multiplying by 106 and  by 103, respectively. The first solution is 

needed because we  have  many nonconvertible measurement 

units (e.g., L, kg, mg, L/cm2, etc.). 
 

 
6. OLAP analysis 

 
OLAP analysis is generally performed in an exploratory way follow- 

ing a top-down approach (Sapia, 1999). In an OLAP analysis session 

which is a sequence of queries, the  user  starts by formulating a first 

coarser query by selecting (on the  OLAP client interface) the indicators 

and dimensions level (that he/she wants to display in the result) at their 

most coarse granularity levels. Based on this result, the user can perform 

further finer  analysis by clicking  on interface components (buttons, 

maps, etc.) that trigger OLAP operations, or by formulating other combi- 

nations of dimensional elements. 

In this section, we present examples of different types of OLAP anal- 

ysis, thematic, temporal, spatial, spatiotemporal and multiscale analysis, 

using the hydrobiological data  cube, to show the feasibility and the pro- 

ductivity which can be gained by end  users by using  OLAP solutions in 

the field of water quality assessment. We also illustrate three types of vi- 

sualizations (pivot table, pie charts and histogram diagrams). Obviously, 

many other basic and advanced operations and visualizations are avail- 

able allowing for finer  and  more complex analysis. 

 
6.1. Thematic multiscale analysis 

 
Thematic multiscale analyses are performed using/along thematic di- 

mension hierarchies such as “Supports”, “Suppliers”, “Samplers” and “Lab- 

oratories”. As stated before, OLAP analyses are generally performed in a 

top-down way, going  from  larger queries (summaries) to finer  queries. 

Thus, the first queries should show indicator values at the coarsest aggre- 

gation levels of dimensions. Next, we show examples of thematic queries. 

Query  1. This  query shows the average and  standard deviation 

values per  index and  for all laboratories and  all samplers. To increase 

the readability, only five indices are represented, one for each taxonom- 

ic theme: the  Specific  Pollution-Sensibility Index  of diatoms (“IPS” in 

French), the  Normalized Global Biological Index  of invertebrates 

(“IBGN”), the  standardized River Macrophyte Biological Index  (“IBMR”), 

the  Oligochaetes Sediment Bioindication Index  (“IOBS”), and  the River 

Fish Index  (“IPR”). IBGN, IBMR, and IPS values are positive real numbers 

in the  range of [0, 20]; IOBS values are in the  range of [0, 10]; and  IPR 

values are in the  range of [0, ∞]. For the  IBGN, IBMR and  IPS, the  best 

score  is 20;  the  IOBS best  score  is 10  and  the  IPR best  score  is 0. 

Fig.  12(a)  shows a  pivot   table   representation of  the   results, and 

Fig. 12(b) shows a histogram diagram representation. With  these repre- 

sentations, we can rapidly see, for example, that the  IOBS is particularly 

low,  and   an  expert can  conclude that  for  this   dataset, pollution- 

sensitive oligochaetes have  disappeared and  sediments most likely are 

in a bad  state. The statistical diagram representation is synchronized 

with the pivot  table representation: every  change in the pivot  table rep- 

resentation is instantaneously reproduced in the diagrammatic represen- 

tation. In terms of query response time, the results are displayed instantly 

after  the execution of the query by the end  user. 

Query 2. To illustrate a multiscale thematic analysis, the query repre- 

sented in Fig. 13 shows the  same indicators as above,  the  average and 

the standard deviation values of index scores, at the “Supplier” aggrega- 

tion level (thematic scale), by index and for all laboratories. The results 

of this query are obtained from the query 1 by performing a Drill-down 

OLAP operation on the “Suppliers” dimension hierarchy. The drill-down 

operation as shown here increases the  level of detail of indicators. For 

more readability, we show only  the  “Average_index_score” indicator 

values.  In the pivot table of Fig. 13 and  inversely to the pivot  table 

above  (Fig. 12(a)), the laboratories, samplers and  indicators are repre- 

sented in rows,  and  the  indices in columns. The pivoting of the  table 

axis is performed instantly (after the  drilling down operation) using 

the Rotate OLAP operator. 

 
6.2. Temporal multiscale analysis 

 
Temporal multiscale analyses are  possible through different 

temporal aggregation levels  contained in both temporal hierarchies



 

 
 
 

 
 

Fig. 12. The average and standard deviation of index scores by index and for all samplers and all laboratories. (a) Pivot table visualization. (b) Histogram visualization. 

 
 

(cf. Section 5.1.2).  An example of a temporal query is described 

next. 

Query  3 (Fig. 14). This query represents the  average index scores 

(the “Average_index_score” indicator values), by index,  by year (a tem- 

poral  scale),  and for all samplers. The results are displayed with a pivot 

table  representation in Fig. 14(a) and  a histogram representation in 

Fig. 14(b). For more readability, we consider only  the  years  between 

2000  and  2010.  Fig. 14(a) shows a visualization of results using  a 

pivot  table  where the  dimensions “Indices”  and  “Suppliers” (“all sup- 

pliers”  member) are placed in columns and  the  “Time” dimension in 

rows.  Fig. 14(b) shows a pie chart diagram representation of these re- 

sults  (a diagram per  index), which allows a  rapid viewing of the 

distribution of scores  of every  index over  the  time period considered 

(2000 to 2010). 

 

 
6.3. Spatial multiscale analysis 

 
Spatial multiscale  analyses  are  rendered  possible through  the 

different spatial granularities of the  “Stations” dimension hierarchies 

(cf. Section 5.1.2). An example of a spatial query is shown next. 

Query  4 (Fig. 15).  This query shows the  average index scores by 

index,  for all samplers, at the hydroecoregion spatial scale. The Indices 

and  Samplers dimensions with the  indicator “Average_index_score”

 
 

 

 
 

Fig. 13. The average of index scores by index, by sampler and for all laboratories.



 

 
 
 

 
 

Fig. 14. The average of index scores by index, by year and for all samplers. (a) Pivot table visualization. (b) Histogram visualization. 

are    placed  in   columns  and    the   spatial  dimension  hierarchy, 

“Hydroecoregion_hierarchy”, in rows. 

 
 

6.4. Spatiotemporal multiscale analysis 

 
Hybrid analyses can be performed by combining thematic, temporal, 

and spatial dimension hierarchies when exploring the data.  Spatiotem- 

poral analyses in particular allow for viewing indicator values at various 

combinations of spatial and temporal scales of the defined Stations and 

Time  dimensions. Examples of spatiotemporal  analysis are  shown 

below. 

Query  5 (Fig. 16).  This query shows the  average index scores by 

index,  year (the temporal scale) and for all hydroecoregions (the spatial 

scale). The Indices and Spatial dimension hierarchies are put in columns 

and  the  temporal hierarchy in rows.  The results are  displayed with a 

pivot table representation in Fig. 16(a) and with a histogram represen- 

tation in Fig. 16(b). 

Query  6  (Fig.  17).  This  query shows the  average index scores 

by   index,   hydroecoregion  and   year.   Query   6  is  obtained  from 

query 5,  after   a  drill-down operation on  the  spatial member  “all 

hydroecoregions”. The table axes  of query 6 are  also  pivoted (using 

the Rotate operation) for more readability. 

We  can  choose other hydrobiological indicators (such as 

“Minimum_index_score” and  “Maximum_index_score”), display many 

indicators and dimensions at the same time, and use different diagram- 

matic visualizations, etc. 

 
 
7. Conclusions and future work 

 
In this paper, we have shown an application of the OLAP technology 

to the  field  of water quality assessment. Based on our  framework for 

data cubes  (Boulil et al., 2013a), we developed a free tool-based and ex- 

tensible ROLAP system composed of two data cubes: (1) a data cube for 

the OLAP analysis of physicochemical water quality data, and (2) a data 

cube  for  the OLAP analysis of  hydrobiological data.  We  proposed 

standards-based (UML, SQL and  MDX) and  generic solutions to model 

and  implement complex indicators using  complex aggregates such  as 

percentiles by extending our  framework with these functions. Other 

complex analyses are  defined by introducing useful  dimensions and 

using  common aggregate functions. Additionally, we  proposed two



 

 
 
 

 
 

Fig. 15. The average of index scores by index, for all samplers and by hydroecoregion. 

practical solutions to address the summarizability problem of heteroge- 

neous measurement units. Finally, to validate our system and  to show 

the  productivity that can  be  gained by  water quality practitioners 

when using  OLAP, we provided the  reader with a number of examples 

of OLAP analysis. 

This  work   has  been achieved in  the context of  the Fresqueau 

project which aims  to develop new  methods for collecting, analyzing 

and  interpreting all available data  related to water quality parame- 

ters.  The built  data  cubes  proved to be relevant and  usable tools  to 

help  domain experts (mainly hydroecologists) exploring, selecting 

and   analyzing the  huge and   complex datasets  collected in  the 

Fresqueau database. These users are very satisfied with the  rapidity, 

interactivity and  facility of the analyses that can be performed using 

the  developed OLAP system, the variety of results according to the

 

 
 

Fig. 16. The average index scores by year, index and for all hydroecoregions. (a) Pivot table visualization. (b) Histogram visualization.



 

 
 
 

 
 

Fig. 17. The average index scores by index, hydroecoregion and year. 

various aggregation levels, and  the  new  viewpoints on data they  can 

thus obtain. 

The next steps in this  work  are to extend/enrich our ROLAP system 

by: (1)  other data  cubes  (such as a data  cube  for hydromorphological 

data  of water bodies, a data  cube  for environmental forcing  variables 

such   as  flows,   etc.),  (2)  linking the   data   cubes   to each   other to 

allow  drill-across OLAP operations, to answer the  questions related to 

interdependencies between the  water quality parameters such  as the 

influence of physicochemical state of water bodies in the appearance/ 

disappearance of faunal and  floristic specifies, the influence of 

hydromorphological characteristics of water bodies in their physico- 

chemical states, etc. Another perspective is to study the possibilities of- 

fered  by spatial OLAP tools  (Bédard et al., 2007; Miquel  et al., 2010). 

These tools may help end users to understand water quality data better 

by allowing map visualizations and explorations of data. Finally, we also 

plan  to develop an architecture that integrates or connects the  OLAP 

tool to a data mining module consisting of different data mining algo- 

rithms (Wang and  Guo, 2013). The OLAP module will be used  for a 

first  and  rapid exploration of the  data.  Based on the  OLAP exploration 

results, the end user can execute an adequate algorithm of the data min- 

ing module on the adequate dataset to discover additional knowledge 

such  as existence or absence of correlations between water quality pa- 

rameters, etc. 
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