
HAL Id: hal-01057030
https://hal.science/hal-01057030v1

Submitted on 21 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-tree extension of the Transition-based RRT:
Application to ordering-and-pathfinding problems in

continuous cost spaces
Didier Devaurs, Thierry Simeon, Juan Cortés

To cite this version:
Didier Devaurs, Thierry Simeon, Juan Cortés. A multi-tree extension of the Transition-based RRT:
Application to ordering-and-pathfinding problems in continuous cost spaces. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep 2014, Chicago, United States. 6 p. �hal-
01057030�

https://hal.science/hal-01057030v1
https://hal.archives-ouvertes.fr


A Multi-Tree Extension of the Transition-based RRT: Application to

Ordering-and-Pathfinding Problems in Continuous Cost Spaces

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract— The Transition-based RRT (T-RRT) is a variant of
RRT developed for path planning on a continuous cost space,
i.e. a configuration space featuring a continuous cost function.
It has been used to solve complex, high-dimensional problems
in robotics and structural biology. In this paper, we propose
a multiple-tree variant of T-RRT, named Multi-T-RRT. It is
especially useful to solve ordering-and-pathfinding problems,
i.e. to compute a path going through several unordered way-
points. Using the Multi-T-RRT, such problems can be solved
from a purely geometrical perspective, without having to use a
symbolic task planner. We evaluate the Multi-T-RRT on several
path planning problems and compare it to other path planners.
Finally, we apply the Multi-T-RRT to a concrete industrial
inspection problem involving an aerial robot.

I. INTRODUCTION

Sampling-based path planning has traditionally aimed at

finding collision-free paths to solve complex planning prob-

lems in high-dimensional spaces [1], [2]. However, beyond

feasible solutions, in many applications it is important to

compute high-quality paths with respect to a given cost cri-

terion. When a cost function is defined on the configuration

space, we call the latter a cost space.

Several approaches to sampling-based cost-space path

planning have been proposed based on the Rapidly-exploring

Random Tree (RRT) algorithm [1], such as RRT* [3] or the

Transition-based RRT (T-RRT) [4]. T-RRT combines the ex-

ploratory strength of RRT with a transition test favoring low-

cost regions. It has been successfully applied to diverse robot

path-planning problems [4]–[8] (some involving human–

robot interactions [5]) and structural biology problems [7],

[9]. Contrary to RRT*, T-RRT does not offer asymptotic-

optimality guarantees, but, in high-dimensional spaces, it

may converge faster than RRT* [7], [8].

In this paper, we propose a multi-tree variant of T-RRT,

named Multi-T-RRT. Since there exist numerous multi-tree

path planners that involve RRT [10]–[22], we have evaluated

existing techniques and selected the most effective ones.

The Multi-T-RRT is particularly useful when looking for

a path going through a given set of unordered waypoints.

Such ordering-and-pathfinding problems involve two aspects:

a low-level path planning problem that consists of connecting

pairs of waypoints, and a high-level ordering problem that

consists of finding an efficient way to visit all the waypoints

(which is a simple kind of task planning problem).

All authors are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France and Univ de Toulouse, LAAS, F-31400 Toulouse, France
(e-mails: devaurs@laas.fr, nic@laas.fr, jcortes@laas.fr)

This work has been partially supported by the European Community
under Contract ICT 287617 “ARCAS”.

Fig. 1. Top: eight waypoints (shown in red and circled in blue) defined
for a quadrotor (whose close-up is shown in yellow) inspecting an oil rig.
Bottom: example of a trajectory (going through these waypoints) produced
in 50 s by the Multi-T-RRT enhanced with useful-cycle addition.

Hybrid approaches to solve task-and-path planning prob-

lems are often based on decoupling the two aspects: a

symbolic task planner computes a high-level plan (possibly

based on geometrical data) that is refined by a path planner

computing precise low-level paths [23]–[25]. In some cases,

when tasks are simple enough, the overall problem possesses

a purely geometrical formulation, and no symbolic task

planner is needed [26]. In this work, we also follow a purely

geometrical approach: the geometric path planner (i.e. Multi-

T-RRT) yields high-quality high-level solutions based on the

costs of the low-level paths it computes between waypoints.

To achieve that, we have enhanced the Multi-T-RRT with a

useful-cycle addition mechanism enabling it to continually

improve the solution path in an anytime fashion (which is

illustrated by the accompanying video).

After a brief review of T-RRT (Section II), we present

the Multi-T-RRT, based on the strategies we have selected to

expand and connect trees (Section III). Then, we report some

evaluation results and compare the Multi-T-RRT to planners

involving the Bidirectional T-RRT [8] (Section IV). Finally,

we apply the Multi-T-RRT to ordering-and-pathfinding prob-

lems, including a concrete industrial inspection problem

involving an aerial robot (Fig. 1, Section V).



Algorithm 1: Transition-based RRT

input : the configuration space C, the cost function
c : C → R+ and the initial configuration qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stoppingCriteria(T ) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null and
7 transitionTest(T , c(qnear), c(qnew)) then
8 addNewNodeAndEdge(T , qnear , qnew)

Algorithm 2: transitionTest (T , ci , cj)

input : the current temperature T and the increase rate Trate

output: true if the transition is accepted, false otherwise
1 if cj ≤ ci then return True
2 if exp(−(cj − ci) / T ) > 0.5 then

3 T ← T / 2(cj−ci) / costRange(T ) ; return True

4 else

5 T ← T · 2Trate ; return False

II. TRANSITION-BASED RRT (T-RRT)

Starting from an initial configuration qinit, RRT iteratively

builds a tree T on the configuration space C [1]. At each

iteration, a configuration qrand is randomly sampled in C,

and an extension toward qrand is attempted, starting from its

nearest neighbor, qnear, in T . If the extension succeeds, a

new configuration qnew is added to T , and connected by an

edge to qnear. The criteria on when to stop the exploration

can be reaching a given target configuration qgoal, a given

number of nodes in the tree, a given number of iterations,

or a given running time.

T-RRT (shown in Algorithm 1) is a variant of RRT used

to explore cost spaces [4], [8]. It extends RRT by integrating

a transition test favoring the exploration of low-cost areas of

the space. The transitionTest presented in Algorithm 2

is used to accept or reject the move from qnear to qnew
based on their respective costs. A downhill move (cj ≤ ci)
is always accepted. An uphill move is accepted or rejected

based on the probability exp(−(cj − ci) / T ) that decreases

exponentially with the cost variation cj − ci. In that case,

the level of selectivity of the transition test is controlled

by the temperature T , which is an adaptive parameter of

the algorithm. Low temperatures limit the expansion to

gentle slopes, and high temperatures enable it to climb steep

slopes. After each accepted uphill move, T is decreased

to avoid over-exploring high-cost regions: it is divided by

2(cj−ci) / costRange(T ), where costRange(T ) is the cost

difference between the highest-cost and the lowest-cost con-

figurations in the tree. After each rejected uphill move, T
is increased to facilitate the exploration and to avoid being

trapped in a local minimum: it is multiplied by 2Trate , where

Trate ∈ (0, 1] is the temperature increase rate. Following [8],

we set Trate to 0.1 and initialize T to 10−6.

III. MULTI-TREE VARIANTS OF T-RRT

This section introduces our multi-tree variant of T-RRT,

named Multi-T-RRT. To develop it, we have surveyed sev-

eral techniques proposed in similar work on multi-tree ap-

proaches to sampling-based path planning [10]–[22]. Some

approaches aim at solving single-query problems, the way

RRT usually works, but involve the construction of several

RRTs to reach a solution [10]–[17]. Others are multiple-

query approaches similar to the Probabilistic Road-Map

(PRM), where RRT is used as a local planner [18]–[20].

Others focus on dynamic environments and build several

RRTs at different points in time [21], [22]. The version of

the Multi-T-RRT we present here is a single-query planner

building several T-RRTs to find a path. We do not deal with

multiple queries or dynamic environments.

Growing multiple trees on the configuration space can be

done in various ways. The aim can be to have several RRTs

rooted in different regions of the space to ensure a broader

exploration [12]–[17]. In this context, trees are initialized and

grown rather independently of one another. Other approaches

aim at maintaining a road-map of RRTs over the space [19]–

[22]. In this case, trees can be created or modified as a

result of merging, splitting or pruning operations. Other

approaches make use of sub-trees produced by previous

queries [19], [22]. Others build RRTs in different subspaces,

independently of each other [10], [11]. Finally, RRTs can be

reduced to local connections between components of a large

road-map [18]. In this work, we focus on growing several

T-RRTs rooted at given waypoints.

When building several trees, controlling their number and

the timing of the connection attempts are difficult issues [2].

First, the number of trees can be unbounded [19]–[21]. It

can also be subjected to a pre-defined bound [13]–[16] or

implicitly limited at runtime [17], [22]. Second, the tree roots

can be sampled a priori [13] or at runtime [20]–[22]. They

can also be strategic states discovered at runtime, such as

configurations in narrow passages [14]–[17]. We focus here

on the case where the number of trees is fixed and equal to

the number of waypoints.

A. Multi-T-RRT

The pseudo-code of the Multi-T-RRT is presented in

Algorithm 3. Instead of building a single tree, we build n
trees rooted at n given waypoints qkinit, k = 1..n. At each

iteration, a tree T ′ is chosen for expansion in a round-robin

fashion among the trees Tk, k = 1..n. Then, an extension is

attempted toward a randomly sampled configuration qrand,

starting from its nearest neighbor, q′near , in T ′. We use an

Extend function and not a Connect one, as recommended

in [8]. If the extension succeeds and the transition test is

satisfied, the new configuration qnew is added to T ′ and

connected to q′near. Then, we look for the configuration q′′near
(and the tree T ′′ containing it), which is the closest to qnew
within all trees other than T ′. A connection between qnew
and q′′near is attempted in both directions, by calling twice the

attemptLink function. The exploration continues until all



Algorithm 3: Multi-T-RRT

input : the configuration space C, the cost function

c : C → R+ and the waypoints qkinit , k = 1..n
output: the tree T

1 for k = 1..n do

2 Tk ← initTree(qkinit)

3 while not stoppingCriteria({Tk | k = 1..n}) do

4 T ′ ← chooseNextTreeToExpand()
5 qrand ← sampleRandomConfiguration(C)
6 q′near ← findNearestNeighbor(T ′, qrand)
7 qnew ← extend(q′near , qrand)
8 if qnew 6= null and

9 transitionTest(T ′, c(q′near), c(qnew)) then

10 addNewNodeAndEdge(T ′, q′near , qnew)
11 (T ′′, q′′near) ← findNearestTree(qnew)
12 T ← attemptLink(T ′, qnew , T ′′, q′′near , n)
13 if T = null then

14 T ← attemptLink(T ′′, q′′near , T ′, qnew , n)

Algorithm 4: attemptLink(T1, q1, T2, q2, n)

input : the extension step-size δ
output: the tree T

1 if distance(q1, q2) < 10 · δ then
2 qcur ← q1 ; qnext ← extend(q1, q2)
3 while qnext 6= null and c(qnext) ≤ c(qcur) do
4 qcur ← qnext ; qnext ← extend(qcur , q2)

5 if qcur = q2 then
6 T ← linkAndMerge(T1, q1, T2, q2) ; n← n− 1

trees are merged or another stopping condition (number of

nodes, number of expansions, running time) is met.

The attemptLink function (shown in Algorithm 4) was

developed to attempt connections between both trees of the

Bidirectional T-RRT [8]. If the configurations q1 and q2 are

closer than ten times the extension step-size δ, and if the cost

along the local path between them decreases monotonically

(which is checked after every step of size δ), the trees T1
and T2 are merged, and the number of trees is decreased by

1. A distance threshold of 10 · δ represents a good trade-off

between 1) wasting time checking edges that are unlikely

to be valid (if the threshold is too high) and 2) having

difficulties connecting trees (if the threshold is too low), as

shown by the experiments presented in [8].

Using the transition test of T-RRT and testing tree con-

nections based on cost constraints enables the Multi-T-RRT

to favor low-cost regions of the space, and thus to yield low-

cost paths. The cost of a path can be defined in several ways

based on the costs of the configurations along the path, as

we will show in the examples.

B. Other Multi-Tree Variants

To develop the Multi-T-RRT we addressed several points

for which we had to choose among various alternatives. The

first point was to decide which tree(s) to expand at a given

step of the exploration process. The simplest strategy is to

grow all trees at each iteration toward the same configuration

qrand [19], [21]. By having a single tree grown at each

iteration, chosen in a round-robin fashion [13], [15], the

trees are expanded toward different configurations qrand,

which appears to work better. Another strategy is to expand

the tree that is the closest to qrand [22]. However, when

testing this approach, we have found that it can be difficult

to expand trees that are growing close to the boundaries

of the configuration space. A more sophisticated approach

consists of choosing the tree to be expanded based on some

probabilities that can be fixed [14] or adaptive [16]. But, we

have found that such strategies show no clear benefit in terms

of improving running time or path quality.

The second point was to decide when to attempt to link

trees. The simplest strategy is to try after each successful

expansion of a tree [12], [13], [15], [19], [21], [22]. Other,

more sophisticated approaches consist of attempting a con-

nection only when the bounding box of the expanded tree

has increased in size [14], or when some stochastic test

is satisfied, based on fixed or adaptive probabilities [16].

However, we have found that these approaches lead to many

missed good opportunities for connection.

The third point was about how to perform the link attempt

after a tree has been successfully expanded. This can involve

a single tree, usually the nearest one [13], [16], [22], or

a randomly chosen one. It can also involve all the other

trees [12], [14], [17], [19], [21] or a subset of these trees,

containing, e.g., some of the closest ones and some randomly

chosen ones [20]. When a tree is chosen for the link attempt,

we have to decide which node in this tree we will try to

connect the new node of the expanded tree to. Again, it can

be the nearest one or a randomly chose one. After evaluation,

we have found that random choices are not beneficial. It

works better to attempt a connection between the new node

and its nearest neighbor within the nearest tree.

C. Useful-Cycle Addition

Even though the paths the Multi-T-RRT returns have low

cost, from a higher-level ordering perspective, they might not

represent the most efficient way to visit a set of waypoints.

To address this issue, we propose a simple approach based on

the anytime paradigm and the addition of useful cycles: after

all trees are connected, we allow the exploration to continue

and we activate a cycle-addition procedure. This leads to

the appearance of new paths that can be of better quality

(with respect to the sequence of visited waypoints) than the

one found so far. Adding cycles works as follows: When a

new configuration qnew is added to the graph, we consider

all other configurations within a pre-specified distance in C

as potential candidate targets for new edges. Among these

candidates, we are interested in those that are “close” to qnew
in C, but “far” from qnew in the graph: for each candidate

qc, if the cost of the local path between qnew and qc in C

is strictly less than the cost of the lowest-cost path between

qnew and qc in the graph, we add an edge between qc and

qnew, thus creating a useful cycle. For more details on the

anytime variant of T-RRT, and for a theoretical analysis, the

interested reader is referred to [27].



Fig. 2. Search tree built by the Multi-T-RRT on the Landscape problem. On
this 2D cost-map, the cost is color-coded (from blue to red) and represented
by the elevation. The ten waypoints are materialized by red disks.

Fig. 3. Path computed by the Multi-T-RRT on the Stones problem, going
through all ten waypoints. The cost is the inverse of the distance between
the 2-DoF yellow disk and the blue rectangular-shaped obstacles.

IV. EVALUATION RESULTS

We have evaluated the Multi-T-RRT on several academic

path planning problems that differ in terms of C-space di-

mensionality, geometrical complexity and cost-function type.

We report results for three of them here. To fairly compare

all algorithms, we first set aside the enhancement involving

useful-cycle addition. For each example, we define ten way-

points that have to be visited in a pre-defined order (only to

facilitate the evaluation of the algorithms). The Landscape

problem is the 2D cost-map illustrated by Fig. 2, in which

the cost is the elevation. The Stones problem (presented in

Fig. 3) is a 2-degrees-of-freedom (DoF) problem in which a

disk goes through a space cluttered with rectangular-shaped

stones. The objective is to maximize clearance, so the cost

function is the inverse of the distance between the disk

and the closest obstacle. The Inspection problem (shown in

Fig. 4) involves a 6-DoF manipulator arm holding a sensor

with a spherical extremity, used to inspect a car engine.

The objective is to keep the sensor as close as possible to

the engine, so the cost function is the distance between the

sphere and the engine surface.

The Multi-T-RRT has been implemented in the motion

planning platform Move3D [28]. To fairly assess it, no

smoothing is performed on the solution paths. On all prob-

lems, we record the running time t (in seconds), the number

of expansion attempts X , the number of nodes N in the

produced tree, and several quality criteria evaluated on the

extracted path (with steps of size δ): the average cost avgC,

Fig. 4. Ten waypoints defined for the Inspection problem. The 6-DoF
manipulator arm holds a sensor (the red sphere) that has to follow the
surface of the car engine.

Fig. 5. Path produced by the Multi-T-RRT enhanced with useful-cycle
addition on the Stones problem, for a running time of 5 s. The labels show
the order in which the waypoints are visited.

the maximal cost maxC, the mechanical work MW , and

the integral of the cost IC. The mechanical work of a path

is the sum of the positive cost variations along this path [4].

For all variables, we give values averaged over 100 runs.

Results were obtained on an Intel Core i5 processor at 2.6

GHz with 8 GB of memory.

We have compared two variants of the Multi-T-RRT to

the basic version presented in Algorithm 3. We report the

results of this comparison in Table I. The first variant

involves having a local temperature associated to each tree,

as opposed to having a global temperature. After evaluation,

it seems that this modification has barely any influence on

the results. The second variant is based on ensuring that

all trees remain balanced (in terms of number of nodes)

during the exploration. After evaluation, it is unclear whether

this modification is advantageous or not. It appears to have

sometimes a positive impact (e.g., on the Stones problem)

and sometimes a negative impact (e.g., on the Landscape

problem) on performance.

We have compared the Multi-T-RRT to the Bidirectional

T-RRT [8] in two ways. First, in a simple scheme involving

the Bidirectional T-RRT, we compute paths between pairs

of consecutive waypoints, starting from scratch each time,

and concatenate them to obtain the full path visiting all

waypoints. Second, in an incremental scheme involving the

Bidirectional T-RRT, we compute paths between pairs of

consecutive waypoints, while keeping the tree built so far in-

stead of deleting it as in the simple scheme. Results obtained

with these two schemes are reported in Table I. As expected,



TABLE I

EVALUATION OF THE MULTI-T-RRT AND BIDIRECTIONAL T-RRT ON THE Landscape, Stones AND Inspection PROBLEMS.

avgC maxC MW IC t (s) N X

Landscape

Multi-T-RRT
- basic 11 22 240 10,000 0.06 1,100 6,000
- balanced 11 22 230 9,900 0.18 1,300 13,000
- local temperature 11 22 240 10,000 0.08 1,200 9,000 Average values over 100 runs

simple Bidirectional T-RRT 11 22 230 9,800 0.12 2,700 20,000 are given for:
incremental Bidirectional T-RRT 11 22 240 9,900 0.12 1,400 10,000

Stones

Multi-T-RRT
- basic 2.4 5.9 110 27,000 0.38 2,000 18,000 avgC average cost
- balanced 2.4 5.9 110 29,000 0.28 1,100 8,000 maxC maximal cost
- local temperature 2.5 5.9 110 29,000 0.38 2,100 18,000 MW mechanical work

simple Bidirectional T-RRT 2.3 5.9 97 25,000 0.57 4,500 38,000 IC integral of the cost
incremental Bidirectional T-RRT 2.2 5.9 104 28,000 0.43 2,100 18,000

Inspection

Multi-T-RRT
- basic 4.4 19 470 20,000 0.8 500 14,000 t running time
- balanced 4.1 19 480 20,000 0.9 600 16,000 N number of nodes
- local temperature 4.3 19 470 19,000 1 600 18,000 in the tree

simple Bidirectional T-RRT 3.8 19 400 16,000 2 1,100 39,000 X number of
incremental Bidirectional T-RRT 3.7 19 540 20,000 1.5 700 28,000 expansion attempts

the Multi-T-RRT is faster than the planners involving the

Bidirectional T-RRT. Moreover, in spite of performing a

quicker exploration of the space, the Multi-T-RRT produces

paths whose costs are only slightly worse than those of paths

produced by the planners involving the Bidirectional T-RRT.

Therefore, the performance improvement is not achieved at

the expense of path quality.

V. APPLICATION OF THE MULTI-T-RRT

In Section IV, we used the Multi-T-RRT to compute a

high-quality path visiting an ordered set of waypoints, but

only for evaluation purposes. In practice, the waypoints are

not ordered a priori. Such ordering-and-pathfinding problems

encompass two levels: a low-level path planning problem

aiming at connecting the waypoints (which is solved by a

geometric path planner) and a high-level ordering problem

aiming at finding an efficient way to visit all the waypoints,

based on the costs of the low-level paths (which is a simple

kind of task planning problem). No symbolic task planner

is required if we consider that the latter problem is an

instance of the Traveling Salesman Problem (TSP) involving

the complete graph (when path-cost is the integral of the

cost) or digraph (when path-cost is the mechanical work)

whose nodes are the waypoints. The distance associated with

an edge of this graph (or digraph) can be estimated as the

cost of the lowest-cost path between two waypoints in the

tree built by the Multi-T-RRT. When only few waypoints are

defined, the TSP is solved by an exhaustive search among all

sequences. When more waypoints are involved, the Nearest-

Neighbor or Multi-Fragment heuristics are used [29].

Based on this approach, we present an industrial inspection

problem involving an aerial robot in a dense environment,

as illustrated by Fig. 1. This example is typical of those ad-

dressed by the ARCAS project (http://www.arcas-project.eu).

One of the goals of this project is to develop robot systems

for the inspection and maintenance of industrial installations

difficult to access for humans. In this example, a quadrotor

is used to inspect an oil rig, going through eight waypoints

defined a priori without explicit order (cf. Fig. 1). The

quadrotor is modeled as a 3-DoF sphere (i.e. a free-flying

sphere) representing the security zone around it. For safety

reasons, it has to move in this environment trying to maxi-

mize clearance. The cost function is thus the inverse of the

distance between the quadrotor and the obstacles. Assuming

that the motions of the quadrotor are performed quasi-

statically, we restrict the problem to planning in position

(controllability issues lie outside the scope of this paper).

Even though this example features a large-scale workspace,

the Multi-T-RRT can quickly provide a first solution path: in

about 5 s on average over 100 runs.

As already mentioned, a path produced by the Multi-T-

RRT does not necessarily provide the best-quality solution

visiting all the waypoints (see Fig. 3). The variant of the

Multi-T-RRT involving useful-cycle addition was developed

to enable continual improvement of the solution quality. As

an example, Fig. 5 shows the achieved benefit on the Stones

problem, especially when compared to Fig. 3. The path in

Fig. 5 is representative of what we obtain for a running time

of 5 s (as observed over 100 runs). Its cost is about half the

cost of the path in Fig. 3 (obtained in 0.3 s). As another

example, Fig. 1 shows a high-quality solution path obtained

in 50 s on the Oil rig problem. Its cost is about half the cost

of the first path obtained in 5 s.

To quantify the benefits of adding useful cycles, we

evaluate the evolution of the quality of the solution path over

time on the four examples (see Fig. 6). On the Landscape

problem, path quality is measured by the mechanical work,

MW , and on the other problems it is measured by the

integral of the cost, IC. We compare the rate of convergence

of the quality of paths produced by the Multi-T-RRT to the

rates of convergence observed when planning with versions

of PRM [30] and RRTobst way [13] creating cycles. Fig. 6

shows that the Multi-T-RRT yields a slightly better rate of

convergence than RRTobst way. The poor results of PRM,

especially in high-dimensional spaces, are due to the fact

that it does not involve any cost constraint. As it features

a similar convergence rate, IRS [31] would probably not

perform better. RRT* [3] would provide a better point of

comparison, but it would require a multi-tree extension,

which is out of the scope of this paper.



Landscape

13

15

17

19

21

0 1 2 3 4 5
t (s)

PRM

RRT obst way

Multi-T-RRT

MW Stones

15

17

19

21

23

25

0 2 4 6 8 10
t (s)

PRM

RRT obst way

Multi-T-RRT

IC Oil rig

4

7

10

13

16

0 20 40 60 80 100
t (s)

PRM

RRT obst way

Multi-T-RRT

IC Inspection

0

10

20

30

40

50

60

70

0 20 40 60 80 100
t (s)

PRM

RRT obst way

Multi-T-RRT

IC

Fig. 6. Evolution of the quality of paths produced by the Multi-T-RRT, RRTobst way and PRM over time on problems of increasing dimensionality.

VI. CONCLUSION

We have presented a multi-tree variant of T-RRT named

Multi-T-RRT. To achieve the highest efficiency, we have

selected the best techniques involved in other multi-tree path

planners. We have studied several path planning problems

with different cost functions, geometrical complexity, and

configuration-space dimensionality. When looking for a path

going through an ordered list of waypoints, we have shown

that the Multi-T-RRT is faster than planners based on the

Bidirectional T-RRT, and that it yields paths of similar

quality. When the planning problems involve both ordering

and path planning aspects (i.e. when the order of the way-

points is not defined a priori), an anytime variant of the

Multi-T-RRT enhanced with useful-cycle addition enables

the solution to be continually improved. This allows us to

visit the waypoints following a high-quality path computed

(without the use of a symbolic task planner) based on the

costs of the low-level paths connecting pairs of waypoints.

Finally, we have applied the Multi-T-RRT to a realistic

industrial inspection problem. We have also shown that the

convergence rate of the solution quality is better with the

Multi-T-RRT than with PRM and RRTobst way.

The approach we have proposed to solve ordering-and-

pathfinding problems in continuous cost spaces is a general

one. This paper has focused on enhancing the T-RRT algo-

rithm to solve such problems, by applying the multiple-tree,

anytime and useful-cycle paradigms. It would be interesting

to enhance other path planners in a similar way and compare

their performance to that of the Multi-T-RRT. The poor

results obtained with PRM highlight that such path planners

should involve cost constraints. Therefore, a good candidate

seems to be RRT* [3], in a multiple-tree version.

REFERENCES

[1] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: progress
and prospects,” in Algorithmic and Computational Robotics: New

Directions. A. K. Peters, Wellesley, MA, 2001.
[2] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, 2011.

[4] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, no. 4, 2010.

[5] J. Mainprice, A. Sisbot, L. Jaillet, J. Cortés, R. Alami, and T. Siméon,
“Planning human-aware motions using a sampling-based costmap
planner,” in Proc. IEEE ICRA, 2011.

[6] D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in Proc. IEEE ICRA, 2011.

[7] R. Iehl, J. Cortés, and T. Siméon, “Costmap planning in high dimen-
sional configuration spaces,” in Proc. IEEE/ASME AIM, 2012.

[8] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
RRT to deal with complex cost spaces,” in Proc. IEEE ICRA, 2013.

[9] L. Jaillet, F. Corcho, J.-J. Pérez, and J. Cortés, “Randomized tree
construction algorithm to explore energy landscapes,” Journal of

Computational Chemistry, vol. 32, no. 16, 2011.
[10] J. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validating hy-

brid robotic control systems,” in Algorithmic Foundations of Robotics

VI. Springer-Verlag, 2005.
[11] C. Belta, J. Esposito, J. Kim, and V. Kumar, “Computational tech-

niques for analysis of genetic network dynamics,” The International

Journal of Robotics Research, vol. 24, no. 2-3, 2005.
[12] M. Clifton, G. Paul, N. Kwok, and D. Liu, “Evaluating performance

of multiple RRTs,” in Proc. IEEE/ASME MESA, 2008.
[13] A. Ettlin and H. Bleuler, “Randomised rough-terrain robot motion

planning,” in Proc. IEEE/RSJ IROS, 2006.
[14] M. Strandberg, “Augmenting RRT-planners with local trees,” in Proc.

IEEE ICRA, 2004.
[15] W. Wang, X. Xu, Y. Li, J. Song, and H. He, “Triple RRTs: an effective

method for path planning in narrow passages,” Advanced Robotics,
vol. 24, no. 7, 2010.

[16] W. Wang, Y. Li, X. Xu, and S. Yang, “An adaptive roadmap guided
Multi-RRTs strategy for single query path planning,” in Proc. IEEE

ICRA, 2010.
[17] D. Flavigné and M. Taı̈x, “Improving motion planning in weakly

connected configuration spaces,” in Proc. IEEE/RSJ IROS, 2010.
[18] M. Morales, S. Rodrı́guez, and N. Amato, “Improving the connectivity

of PRM roadmaps,” in Proc. IEEE ICRA, 2003.
[19] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion

planning with roadmap management,” in Proc. IEEE ICRA, 2002.
[20] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-

based roadmap of trees for parallel motion planning,” IEEE Transac-

tions on Robotics, vol. 21, no. 4, 2005.
[21] R. Gayle, K. Klinger, and P. Xavier, “Lazy Reconfiguration Forest

(LRF) - an approach for motion planning with multiple tasks in
dynamic environments,” in Proc. IEEE ICRA, 2007.

[22] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid
replanning in dynamic environments,” in Proc. IEEE ICRA, 2007.

[23] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal

of Robotics Research, vol. 28, no. 1, 2009.
[24] L. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion

planning in the now,” in Proc. IEEE ICRA, 2011.
[25] S. Kiesel, E. Burns, C. Wilt, and W. Ruml, “Integrating vehicle routing

and motion planning,” in Proc. ICAPS, 2012.
[26] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation

planning with probabilistic roadmaps,” The International Journal of

Robotics Research, vol. 23, no. 7-8, 2004.
[27] D. Devaurs, T. Siméon, and J. Cortés, “Efficient sampling-based

approaches to optimal path planning in complex cost spaces,” in Proc.

WAFR, 2014.
[28] T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: a generic

platform for path planning,” in Proc. IEEE ISATP, 2001.
[29] J. Bentley, “Experiments on traveling salesman heuristics,” in Proc.

ACM-SIAM Symposium on Discrete Algorithms, 1990.
[30] D. Nieuwenhuisen and M. Overmars, “Useful cycles in probabilistic

roadmap graphs,” in Proc. IEEE ICRA, 2004.
[31] J. Marble and K. Bekris, “Towards small asymptotically near-optimal

roadmaps,” in Proc. IEEE ICRA, 2012.


