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Joël Marthelot1,2,∗ Benôıt Roman1, José Bico1, Jérémie Teisseire2, Davy Dalmas2, and Francisco Melo3
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Straight cracks are observed in thin coatings under residual tensile stress, resulting into the
classical network pattern observed in china crockery, old paintings or dry mud. Here, we present a
novel fracture mechanism where delamination and propagation occur simultaneously, leading to the
spontaneous self-replication of an initial template. Surprisingly, this mechanism is active below the
standard critical tensile load for channel cracks and selects a robust interaction length scale on the
order of 30 times the film thickness. Depending on triggering mechanisms, crescent alleys, spirals or
long bands are generated over a wide range of experimental parameters. We describe with a simple
physical model the selection of the fracture path and provide a configuration diagram displaying the
different failure modes.

PACS numbers: 62.20.mm, 68.60.Bs, 81.16.Rf, 81.20.Fw

Nanometer to micrometer thin film coatings are exten-
sively used in material science to protect and function-
alize surfaces [1], from traditional thermal barriers [2],
mechanical or chemical protection, to more recent appli-
cations in biomedical [3] or stretchable electronics [4].
However, deposition processes, thermal expansion mis-
match or simply mechanical loading generally result into
compressive or tensile residual stresses that induce two
main types of failure of coatings. Compressive stresses
commonly induce the formation of wrinkles [5] and blis-
ters [1, 6] whereas tensile stresses leads to straight chan-
nel cracks across the film thickness [5]. Once triggered,
these fractures propagate along a straight trajectory, be-
ing only deflected in the close vicinity of a previous frac-
ture path, where they tend to connect perpendicularly
to the free boundary. In the case of a stiff substrate this
interaction distance is on the order of the thickness of
the coating. Such familiar hierarchical disordered pat-
terns are for instance observed in dry mud [8, 9], in the
glaze of ceramics or even in plant venation and urban
networks [10]. Delamination may eventually occur after
the previous fracture pattern has been established [11].

This scenario is observed in our experiments with thick
coatings of commercial Spin-On-Glass (SOG) trimethyl-
siloxane when adhesion is enhanced by a plasma treat-
ment of the substrate. In such coatings, which are com-
monly used for adjusting the optical index of buffer lay-
ers in laser cavities, residual bi-axial stresses result from a
sol-gel process [1]. However, unexpected crack morpholo-
gies (Fig. 1A) are observed in the case of moderate ad-

hesion (Γ ∼ 0.5 J/m
2
). Decreasing the density of defects

(e.g. by filtering the SOG solution prior to reaction) leads
to intriguing patterns. Archimedean spirals (Fig. 1B),
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FIG. 1: Unusual cracks in thin film moderately adherent to
a substrate (scale bar 100µm). Numerous nucleation spots
lead to complex patterns (a). Self-replicating cracks triggered
by scarce defects (see the supporting movies S1, S2, S3 in
the Supplemental Material): Archimedean spirals (b); regular
alleys of crescents (c),(d); and parallel bands (e) follow an
initial arch, loop, or line, at a fixed distance W 1 . (f) Pairs
of cracks simultaneously follow each other path leading to
isolated bands.

crescent alleys (Fig. 1C-D) or parallel bands (Fig. 1E-F)
grow spontaneously after the sol-gel condensation reac-
tion on a silicon wafer as the sample is removed from the
reacting chamber (see movies S1, S2, S3 in Supplemental
material). These cracks are triggered by sporadic defects
in the coating but can also be induced locally by the op-
erator (e.g. several fractures randomly initiate from the
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scratch of a sharp blade). As they propagate, cracks tend
to follow a previous cut at a fixed distance. Crescent al-
leys, spirals and series of parallel bands thus correspond
to the self-replication of an initial arch, loop or line, re-
spectively. The growth of an isolated band can also be
viewed as a pair of cracks following simultaneously each
other’s path.

These patterns are strikingly different from usual
crazing glaze figures, but they are not specific to the
SOG system studied in this article. Indeed, similar
crescent alleys or spiral patterns have been mentioned in
different areas of material science [1, 13–19]. However,
the corresponding fracture mechanism remains mysteri-
ous.

We carried experiments on SOG layers with different
thicknesses and adhesion properties (deposition and char-
acterization of the coating are decribed in Supplemental
Material). We present in Fig. 2 the characteristic length
scale of the patterns observed with SOG on silicon. More
precisely, this length scale corresponds to the crack repli-
cating distance W1 in the case of spirals and crescent al-
leys, and to the width W2 of isolated bands (see inset im-
ages in Fig. 2). We extend these data with measurements
extracted from the literature, and with additional experi-
ments conducted with macroscopic layers of varnish. As a
striking result, the scale of the patterns is proportional to
the thickness of the film h over 4 orders of magnitude. We
indeed obtain W1 ' 32h and W2 ' 25h, which is large in
comparison with the interaction length of the usual chan-
nel cracks (on the order of h). The robustness of these
patterns observed with very different types of coatings
and deposition methods, such as sol-gel [1, 13–15], mag-
neton sputtering [17], or evaporation [16] suggests that
their characteristic width is independent from both load-
ing conditions or material properties and only depends
on the thickness of the film. This robust size selection
clearly indicates that these patterns are different from
other spiral or oscillating fracture paths observed in sys-
tems involving thermal gradients [20], drying fronts [21]
or tearing with a blunt object [22].

Our experimental system also allows for live observa-
tion of the quasistatic crack dynamics using a reflection
microscope. Interferences fringes show that the film
simultaneously delaminates as the crack propagates.
FEG-SEM imaging shows that the fracture fully extends
to the bottom of the debonding layer (see Supplemental
material). The film may eventually re-adhere to the
substrate far from the crack front. Delamination is
thus not always obvious in post-mortem images of
the cracked coating, although it actually takes place
during propagation (as confirmed by AFM images, see
Supplemental material).

Before describing these peculiar cracks, we first recall
the case of classical channel cracks propagating through
a thin film under an isotropic tensile stress σ. Following
Griffith classical criterion, fracture propagates if the elas-
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FIG. 2: (A) Width of the delaminating front in SOG films
with different adhesion energies Γ0 (color coded) as a func-
tion of the thickness h of the film for different morphologies:
pitch of the spiral or wavelength of the crescent alleys (W1,
open symbols) and width of paired cracks (W2, filled sym-
bols). Lines correspond to linear fits of the data. (B) Gen-
eralization to a wider range of systems including data from
the literature (other silicate films [1, 13, 14, 19], metal films
[16–18]) and macroscopic measurements on varnish or paint.

tic energy released per unit length overcomes the fracture
energy,

2γhe ≥ Gch, with e = hσ2(1− ν)/E, (1)

where e is the elastic energy in the film per unit sur-
face (h,E and ν are respectively the thickness, Young
modulus and Poisson ratio of the film) and Gc is the
fracture energy per unit area. The coefficient γ depends
on the mismatch in elastic properties between the film
and the substrate and is of order 1 for the relevant case
of comparable rigidities [5]. In physical terms, γh gives
the lateral size over which fracture allows stresses to re-
lax in the bonded coating. Eq. 1 shows that classical
channel cracks are expected to propagate above a criti-
cal thickness hc = GcE/2γσ

2(1 − ν). Surprisingly, the
non-standard crack patterns displayed in Fig. 1 are ob-
served below hc, confirming a different fracture mecha-
nism. In fact fracture and delamination collaborate here,
releasing residual stresses in the large delaminated area
surrounded by free boundaries.

We now present a simple theoretical framework for this
new collaborative mode, which explains the robustness
of the fracture path geometries, and provide a general
diagram for its domain of existence. We first focus on
the simpler case of an isolated band, i.e. a pair of cracks
propagating simultaneously (Fig. 1F), and then describe
path-following cracks (Fig. 1B-E).

We consider a pair of cracks propagating in a local
direction θ along a symmetric, but arbitrary, path with
curvilinear length s (Fig. 3A). In addition to the energy
released along the edges 2γehs, which would drive the
propagation of isolated channel cracks (Eq. 1), debond-
ing an area A is expected to completely release the resid-
ual energy eA, except in the vicinity of the debonding
front where boundary conditions maintain strains paral-
lel to the front. This incomplete release extends in an
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area proportional to W 2 leaving a residual energy αeW 2

(Fig. 3A). Nevertheless, the delaminated film is also free
to tilt up along the debonding front, releasing stresses
perpendicular to the delamination front (Fig. 3B). This
effects extends on a distance of order h ahead of the front,
corresponding an additional energy release βehW . Sum-
ming the different terms finally gives the released energy

Er = e(A− αW 2 + βhW + 2γhs), (2)

where α, β, γ are non-dimensional constants. This ex-
pression is in agreement with experimental measurement
of the strain fields obtained from image correlation and
with finite element calculations conducted on a parallel
band cut from a pre-strained film adhering to a substrate
(see Supplemental material).
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FIG. 3: (A) Delaminated symmetric band with imperfect
release of stress σyy close to the debonding front (B) The
spontaneous tilt of the band releases stresses σxx ahead of
the debonded zone. (C-E) Comparison of experimental crack
paths with the prediction from energy minimization with (α =
0.0251, β = 1.26) starting from an initial crack represented by
a thick black line. The debonding front is drawn in dashed
blue line.

Following Griffith’s criterion, symmetric cracks should
propagate by ds along a given direction θ when adhesion
and fracture energies, (ΓW cos θ+2Gch)ds, are balanced
by the released elastic energy dEr, i.e. for:

e[W cos θ+ 2γh− 2(2αW − βh)sin θ] = ΓW cos θ+ 2Gch,
(3)

where we have used the geometrical relations dA =
Wds cos θ and dW = 2ds sin θ.
In addition, cracks are expected to propagate in the di-
rection that maximizes the energy release rate [5, 23],

eW sin θ + 2e(2αW − βh) cos θ = ΓW sin θ. (4)

Combining equations (3) and (4) finally leads to

sin θ = − e

Gc − γe
(2αW/h− β), (5)

which predicts that the propagation is straight (θ = 0)
for a specific inter-crack distance

W2 =
β

2α
h. (6)

The sign of θ in Eq. 5 tends to compensate any devia-
tion from W2 and leads to a stable mode of propagation
for self peeling bands with constant width. In physical
terms, this width optimizes the energy released (Eq. 2),
by balancing the surface energy (α term) which penal-
izes large W , with the line energy (β term) dominant at
small W . Because the optimal width is set by elasticity
alone, it is independent from the magnitude of loading,
adhesion or fracture energies, as observed in experiments
(Fig. 2). A numerical estimate of the parameters α and
β, and the study of stress intensity factors, provide a pre-
dicted width W2 = 23.7h in quantitative agreement with
experiments (see Supplemental Material).

Although the geometry of the bands is similar for all
systems, the condition for propagation does depend on
the magnitude of adhesion. Indeed, the propagation of
a strip is energetically possible (Eq. 3) if the adhesion
energy is exactly Γ = Γ2, with

Γ2

e
= 1− 2

(
Gc
e
− γ

)
h

W2
. (7)

Experimental measurements of the adhesion energy
show that Γ depends on the speed of propagation (see
Supplemental material). Starting from a minimum
equilibrium value Γ0, the adhesion energy Γ is found to
increase with the velocity of the front, as observed in
similar systems where water activated delamination is
limited by diffusion kinetics [4]. As a consequence, the
propagation of a pair of parallel cracks is only possible
if Γ2 > Γ0, and Γ(v) = Γ2 prescribes the propagation
speed v, which typically ranges from 1 to 50 µm/s in our
experiments. Note that although Gc is also expected to
depend on v, we did not include this effect which only
changes the numerical value of the selected velocity.

We extend previous arguments to the case of crescent
alleys or spirals, where a single crack follows an older
fracture path of arbitrary geometry, assuming the same
expression for the energy released. We derive the incli-
nation of the debonding front (assumed straight), and
obtain general analytical equations for the crack trajec-
tory and the conditions for propagation (see Supplemen-
tal Material). The resolution of these equations pro-
vide an excellent prediction of the experimental path
(see Fig 3C,D,E). Some particular analytical solutions
are worth mentioning. In the case of a crack interacting
with a previous straight cut, we obtain a stable width,

W1 =
βh

2α

(
1√
2

+
Gc/e− γ

2β

)
, (8)

corresponding to a debonding front tilted by an angle of
45◦. This relation explains the robust tendency to repli-
cate a crack path at a well defined distance observed in
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experiments (Fig. 3C), although the quantitative depen-
dence of W1 with Gc/e is difficult to capture (Fig. 2A).
The propagation velocity is now set by Γ(v) = Γ1, with

Γ1

e
= 1−

(
Gc
e
− γ

)
h

W1
. (9)

In the case of a crack rotating around a point (or around
the tip of a straight segment), we obtain a circle of radius
equal to the width W2 of the symmetric band. Crack
velocities are also identical, given by Γ(v) = Γ2. Since
in our system Γ2 < Γ1, cracks rotating around a tip,
or paired parallel cracks, propagate at lower velocities
than cracks following a straight cut. A crack following a
parallel band thus catches up with the paired cracks as
illustrated in Fig. 3D (see also movie S4 in Supplemental
material). More importantly, in the case where adhesion
energy is high enough (Γ0 > Γ2), rotation around a
sharp turning point (such as the extreme point of the
crescent path) is not energetically possible, and the
front stops. In experiments, we observe that a secondary
delamination front then slowly develops, and triggers
the propagation of the returning branch, leading to a
crescent alley (Fig. 3E and movie S2).

Three main physical ingredients dictate the different
crack patterns : the residual energy density per unit sur-
face e, the fracture energy of the film Gc and the adhesion
energy for vanishing speed Γ0. In our experiments with
silicate coatings, e and Γ0 could be varied independently
by respectively adjusting the thickness of the film and
the chemical treatment of the substrate, while Gc was
set by the system. In Fig. 4 we present the morphologies
of the cracks structures as a function of the two non-
dimensional parameters, γe/Gc and e/Γ0.

In the classical picture, isolated channel cracks prop-
agate when γe/Gc ≥ 1/2. Delamination is energetically
favorable when the residual elastic energy overcomes
adhesion energy, e ≥ Γ0, but this mode of failure requires
free boundaries to propagate and the damaged zone is
usually confined within limited regions along defects or
between channel cracks. The boundaries corresponding
to these classical conditions are drawn as straight lines in
Fig. 4, and the pink colored domain is therefore expected
to be stable. However, the collaborative mechanism
occurs within this region usually recognized as safe.
Two additional limiting boundaries are introduced
to describe these modes : Γ0 = Γ2 which sets the
condition to obtain parallel paired cracks (brown line),
and Γ0 = Γ1 for follower cracks (black line). These
conditions are compatible with our experiments (circles
and squares represent the patterns experimentally
observed) although experimental uncertainties do not
allow quantitative determination of the boundaries.
Crescent and paired cracks are also observed in the
domain where isolated cracks are possible. Different
states can indeed coexist for the same set of parameters
depending on nucleation. While spirals are triggered by
localized defects, crescent alleys require relatively long

initial cracks to develop and parallel bands are found
along rough boundaries. More complicated interacting
structures can also be observed when the density of
defects is increased (Fig 1.A). Nevertheless, we do not
expect any fracture when Γ0 > Γ1, which defines a new,
reduced domain for the stability of coatings (in darker
pink in Fig. 4). Systems where residual stresses increase
progressively (for instance as drying takes place) follow
a straight line in this diagram starting from the origin.
The first failure mode encountered is therefore either
classical isolated cracks or the collaborative modes if
Γ0/Gc < γ. This condition quantifies the fact that
when adhesion energy is weaker than fracture energy,
delamination collaborates with transverse fracture into
a cooperative failure mode.
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FIG. 4: Experimental observations of patterns in the
(γe/Gc, e/Γ0) plane: cracks following a previous cut (©, spi-
ral or crescent) and paired cracks leading to self peeling strip
(�). Two borders γe/Gc ≥ 0.5 (pink line) and e/Γ0 ≥ 1 (yel-
low line) classically define the regions where isolated channel
cracks and delamination are respectively impossible. How-
ever, collaborative delamination cracks are observed within
the light pink domain. The different patterns are observed
for Γ2 > Γ0 (paired cracks above the brown curve), Γ1 > Γ0

(spirals and oscillating crescents above the black limit). Dif-
ferent patterns are observed for the same range of physical
parameters, depending on nucleation geometries. We observe
crescent patterns with larger amplitude closer to the black
limit.

Although cracks are usually viewed as a failure, the ex-
treme robustness of the self-replicated patterns induced
by the collaborative mode presented here can turn frac-
ture into a design tool. The patterns form spontaneously
along a path determined completely by the geometry of
the initiation spot independently from inhomogeneities of
adhesion properties (often difficult to control perfectly).
Recently developed micropatterning techniques allow the
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control of the geometry of initiation [25]. Our study pro-
vides the operating conditions for these robust patterns
through a physical description of the phenomenon sup-
ported by numerical and experimental tests.

We thank ECOS C12E07, CNRS-CONICYT, and
Fondecyt Grant No. N1100537 for partially funding the
project. We are very grateful to Mélanie Lebental for
introducing us to such beautiful crack samples.
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Supplemental Material

I. METHODS: DEPOSITION AND
CHARACTERIZATION OF THE LAYERS

Coating procedure
Silica layers were deposited by spin-coating commer-
cial “spin on glass” (SOG, Accuglass T-12B from
Honeywell) methyltriethoxyorthosilicate solutions on
silicon substrates (rotation speed of 500 to 1200 rpm
for a duration of 18 to 22 s). The liquid layer was
baked at 200◦C in a oven for 2 hours, allowing the
solvent to evaporate and the sol-gel condensation to
operate [1]. A thin first layer of commercial SOG,
methyltriethoxyorthosilicate, tetraethylorthosilicate,
glycidoxypropyltrimethoxysilanetetraethoxysilane or
1H,1H,2H,2H-Perfluorodecyltrichlorosilane was de-
posited to modify the adhesion energy with the
substrate. The thicknesses of the layers were deter-
mined with a contact profilometer (Dektak), AFM or
FEG-SEM microscope. The cracks started propagating
as the samples were removed from the oven and were
thus immediately observed with an optical microscope.
Additional SEM or AFM observations were conducted
on post mortem samples. When cracks did not nucleate
spontaneously, we tried to trigger their propagation
manually by scratching the sample with a blade. Al-
though this last operation was not precisely controlled,
we only expect the stress distribution to be modified in
the vicinity of the scratch.

Observation by microscopy
Cross sections of the layers were imaged with Field Emis-
sion Gun Scanning Electron Microscopy (FEG-SEM) for
isolated channel crack and crescent alleys (Fig. 5). The
layers do not exhibit any anisotropy and the crack path
is nearly orthogonal to the substrate. In the case of a
layer deposited on a preliminary (stable) SOG coating,
images in Fig. 5B-C show that only the top layer is
cracking, and that delamination occurs below this first
layer.

AFM images (Fig. 6) and phase contrast microscopy
reveal the variation of thickness of the layer when
the stress is released in the z direction. We use this
information to estimate the Poisson ratio of the layer.
This feature is a powerful tool to determine the area
where delamination occurred even if the layer eventually
re-adheres to the substrate. Note also the large opening
along the crack path, resulting from contraction over
large areas.

Measurement of the Young modulus
Once removed from the oven, the Young modulus of the
film (Ef = 4 ± 1GPa) was determined by nanoindenta-
tion (MTS XP form Agilent) on layers of SOG of 2µm

A B

C D

FIG. 5: FEG-SEM images of the cross-section of the deposited
layers. A. Isolated channel crack in a 4µm thick silicate layer
deposited on a silicon wafer. B-D. Crescent alleys in a 955 nm
thick silicate layer.

25 microns

-27nm

+27nm

FIG. 6: AFM images of a 1µm thick silicate film, revealing
Poisson dilatation due to in-plane contraction.

of thickness spin-coated on silicon substrates.

Measurement of Poisson ratio
The Poisson ratio was determined by measuring the
variation of the thickness of the film by AFM on a
stripe delaminated from the substrate were the stress
is fully released compared to a film under residual
stress. The relative variation of thickness εzz is re-
lated to the Poisson ratio ν : εzz = 2 ν

1−ν εxx. For a
film of 1µm, we measure a variation of thickness of
6 nm, which corresponds to a Poisson ratio of 0.25±0.05.

Measurement of the residual strain
The residual strain in the film was determined by
depositing the SOG coating on a thin (100) silicon wafer
(of thickness of 100µm) and subsequently measuring
the slight deflection of the wafer induced by the strain.
The curvature κ of the wafer is related to the stress in
the film through Stoney’s law σ =

Esh
2
sκ

6h(1−νs) [2], where

Es = 169 GPa and νs = 0.36 are respectively the Young’s
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modulus and the Poisson coefficient of the substrate. For
0.68, 0.9 and 1µm thick films, we measured respectively
curvatures of 0.1, 0.14 and 0.15 m−1, which corresponds
to a residual stress of 55 MPa and a strain on the order
of 1%. This value is consistent with direct strain field
measurement during fracture propagation.

Measurement of the strain field
Submicrometer scale carbon particles were sputtered
on the surface of the film by placing the film a few
seconds above the smoke of a candle. The displacement
field following the motion of a crack front and the
corresponding strain field were inferred from the image
correlation software DAVIS from LaVision.

Estimation of the fracture energy
The fracture energy of the film is computed from the
minimal thickness hc required for the propagation of
channel cracks from initial flaws in the case of strong
adhesion. We obtained a critical thickness hc = 1.8µm
for a residual stress σ = 55 MPa, which leads to a
fracture energy, Gc = 2γhσ2(1 − ν)/E = 1.5 ± 0.2 N/m
with γ = 0.64 obtained numerically (the layer is here
directly deposited on the rigid substrate).

Estimation of the adhesion energy
The adhesion energy is deduced from the shape of the de-
lamination front around a steady straight crack (Fig. 7).
The shape of the front depends on three parameters ζ, λ
and the Poisson ratio ν [3]. ζ = σ

σc
is the ratio between

the actual strain in the film σ and the critical strain as-
sociated with steady-state plane delamination σc, λ is a
parameter which accounts for the influence of the con-
tribution of mode 3. The fronts obtained in experiments
are comparable to theoretical predictions with λ = 0,
suggesting that mode 3 is negligible in our case. Under
this condition, the aspect ratio of the delaminated zone
is only a function of ζ (see Fig. 8 in [3]) which allows

to estimate the adhesion energy as, Γ = σ2(1−ν2)h
2Eζ . The

delamination front extends slowly with time (Fig. 7, and
Supplementary movie S5), which shows that the adhe-
sion energy Γ depends on time. In other words, adhesion
enegy depends on the velocity of the delamination front
(Fig. 7D), as it has already been observed with similar
systems [4]. We refer to Γ0 as the plateau value of the ad-
hesion energy at long times, i.e. when the crack reaches
a steady shape.

II. QUANTITATIVE CALCULATION USING
NUMERICAL SIMULATIONS

Numerical simulations of a straight debonded strip
are performed within three-dimensional linear elasticity
(Abaqus software, Dassault Systèmes). Guided by ex-
perimental observation, we impose a straight debonding
front (Fig. 8A). The delamination front is straight, per-
pendicular to the cracks separated by a width W . The

FIG. 7: A-B. Cut test experiment: the progressive delamina-
tion of the the film around a steady straight crack is monitored
as a function of time (scale bar 100µm). C. Evolution of the
extent of the delamination front a as a function of time. D.
The corresponding delamination energy computed from the
shape of the front decreases progressively in time and reaches
a plateau value Γ0.

numerics includes the first layer covering an infinitely
stiff substrate. The computation is validated by compar-
ing computed and experimental estimations of the strain
fields (Fig. 8C).

The computed elastic energy of this system Er for
different widths W provides the energy released during
propagation. The difference (Er−e sW )/eh2 is well fitted
by a function α(W/h)2 − β(W/h), with α ' 0.0251 and
β ' 0.642.

Numerical simulations also provide a direct com-
putation of stress intensity factors at the crack tips,
as a function of W , from which the direction of the
crack can be predicted. As stated in the principle of
local symmetry, a crack is expected to follow a straight
path if the shear stress intensity factor kII at its tip
vanishes [5]. In the numerics, this condition is only
satisfied for a given value W2 = 23.7h (Fig. 8B), in
quantitative agreement with our experiments in SOG
coatings where W2 ∼ 25h. This path is stable since the
sign of kII indicates an inward (respectively outward)
propagation for W > W2 (resp. W < W2).

However, we note that the values of α and β lead to an
optimal width W2/h = 12.78 in Eq.(3), which is smaller
than prediction from stress fields, and than observed in
experiments. The discrepancy in the theoretical results
is due to an approximation in the computation of the
elastic energy released along the crack path. We have
indeed assumed a released elastic energy proportional to
the length of the path γhs, independently from the cur-
vature of the path. The value of prefactor γ was actu-
ally obtained by numerical computation of a straight cut
where the stress field is invariant along the crack line
(plane strain). This is not true if the path is curved,
leading to a three-dimensional stress field. We give here
an estimate of this effect, and show that it tends to in-
crease the equilibrium width W2 by a significant amount,
reconciling both theoretical approaches.
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FIG. 8: A, Finite element calculations of the elastic strain
energy (color coded) on a delaminated band (of optimal width
W2) cut from a pre-strained film adhering on a substrate. The
strip spontaneously tilts up. B, (top), stress intensity fac-
tors ratio kII/kI from numerical calculation as a function of
the normalized width W/h, where h is the thickness of the
coating. Since the sign of the ratio is related to the direc-
tion of propagation of the crack, parallel cracks are expected
for W ' 23.7h. (bottom), Elastic energy (Er − e sW )/eh2

computed from numerical calculation, and fit by a function
−α(W/h)2 + β(W/h) + c, with α = 0.0251, β = 0.642. C,
Experimental measurements of the strain fields estimated by
digital image correlation (left) and comparison with the nu-
merical calculation (right). The component εyy (up) shows
that the residual stress is released in the strip except in the
vicinity of the delamination front. The component εxx (down)
illustrates the stress released ahead of the debonding front due
to the tilting of the strip.
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FIG. 9: A. Kink of angle θ in the crack path. B. Additional
energy released due the kind non-dimensionalized by eh2

We now compute the perturbation to the elastic energy
released due to a kink of the crack path with an angle
θ. If we locate the kink at the center of a disk of radius
l � h, the crack path separates the disk into two sec-
tors. According to our approximation, the elastic energy
released in each sector, Ers(θ) = γhl, is independant of θ.
However, numerical computations show that more energy
is released in the left sector when θ is positive (and less
in the opposite situation). This effect was not included

in our description, and favors the outward propagation
of the strip. Nevertheless, we note that in the case of
classical isolated channel cracks, adding up the contribu-
tion of left and right leads to a maximum energy release
rate for θ = 0. As a consequence, isolated channel cracks
are not expected to form kinks, but to propagate along
straight paths, as observed in experiments.

A reasonable fit for this numerical result (valid for
θ � 1 and l � h) is Ers(l, θ) = e(γhl + δh2 sin θ), where
δ is of order 0.63. It is not straightforward to include
this effect in Griffith’s relation, which considers an in-
finitesimal propagation of a kinked crack and includes
the corresponding energy release rate ∂Ers(l, θ)/∂l.

This quantity is not directly measurable because of the
necessary condition l � h in our numerical approach.
However, we assume as a first approximation that this
energy correction is released when the crack propagates
by a distance on the order of a thickness h, leading to a
term δh sin θdl, with an unknown prefactor of order one.
Griffith’s relation (Eq. 3) is thus modified into:

dE/dl = e[W cos θ+ 2γh+ 2hδ sin θ− 2(2αW −βh) sin θ]

We note that this additional term is equivalent to change
β into β + δ. Since this correction is difficult to com-
pute exactly, we take β = 1.26 which corresponds to the
width W2/h ∼ 23.7 obtained in the numerical study of
the stress intensity factor. We note that the correction
δ = 0.56 is compatible with the order of magnitude esti-
mate δ ∼ 0.63

As a conclusion, our simple energetic approach is con-
sistent with the direct numerical calculation of stress
intensity factors, using a value of parameter (α =
0.0251, β = 1.26) which we use throughout the article.

III. CRACK FOLLOWING A PREVIOUS ONE :
SPIRALS AND CRESCENTS

In spiral and crescent morphologies, an advancing
fracture follows an older crack path. The debonding
front connecting the crack tip of abscissa s to a point of
abscissa S along previous arbitrary cut has now to be
determined (Fig. 10). We assume here that the crack
front is a straight segment with length l, normal and
tangent vectors ~n and ~u, respectively.

The elastic energy released is now Er = eA + γehs +
ef(l), where f accounts for the contribution of the re-
gion of the film neighboring the delamination front. We
assume that f takes the same functional form as in the
previous case, f(l) = −αl2 +βhl. Geometry now implies

variations of the area 2dA = l~n · (~tds+ ~TdS) and of the

front length dl = ~u · (~tds − ~TdS), where ~T and ~t corre-
spond to the local tangent to the old and new paths, re-
spectively. Griffith’s criterion reads dEr = ΓdA+Gchds,
and leads to:

(C~n−D~u) · ~T dS +
[
(C~n+D~u) · ~t− (Gc − γe)h

]
ds = 0,
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previous crack

FIG. 10: Front following a previous crack at a distance l.
The old and new cracks are characterized by paths S and s
and local tangents ~T and ~t, respectively. ~u and ~n define the
tangent and normal directions to the delamination front of
width l.

with C = (e−Γ)l/2 and D = ef ′(l) = βeh−2αel. Since S
and s are independent variables, both terms must vanish.
The first equation,

(C~n−D~u) · ~T = 0 (10)

imposes the geometry of the debonding front (i.e. the
position of point S). The second equation,

γeh+ (C~n+D~u) · ~t = Gch, (11)

is equivalent to Griffith’s relation. According to the max-
imum energy release rate criterion, fracture propagates in
direction:

~t parallel to (C~n+D~u). (12)

The set of rules (10-12) allows to compute the trajec-
tory of a crack when propagating together with a de-
lamination front bounded by a previous cut of arbitrary

geometry. Fig. 3 compares several qualitatively differ-
ent experimental paths with predictions using the pa-
rameters (α, β, γ) determined previously, starting from
different initiation geometries: an Archimedian spiral
(Fig. 3B) starts from a localized defect; an alley of cres-
cents (Fig. 3D) is generated from an initial cut extracted
from experimental path; three interacting crack paths
(Fig. 3C) are computed from three segments intersecting
at 120o degrees. The calculated fracture paths reproduce
the diversity of geometry of experimental fracture trajec-
tories with a remarkable precision given the simplicity of
the propagation rules.

In all situations, following fractures tend to propagate
at a well defined distance from the partner cut. This
distance can be analytically assessed in two simple pre-
existing cut geometries: a straight line and a point. Par-
allel propagation along a straight partner cut implies
~t = ~T , which leads to C = −D = (Gc − γe)h/

√
2, and

to a 45◦ tilt angle of the delamination front. The width
of the delaminated strip W1, and propagation velocity v
are finally given by Γ(v) = Γ1 where:

W1 =
βh

2α

(
1√
2

+
Gc/e− γ

2β

)
(13)

Γ1

e
= 1−

(
Gc
e
− γ

)
h

W1
(14)

Eq. (13) gives the right order of magnitude for W1, how-
ever the quantitative dependence of W1/h with Gc/e is
not directly evidenced in our experiments (Fig. 2A).
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