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Acoustical and optical vortices have attracted large interest due to their ability in capturing
and manipulating particles with the use of the radiation pressure. Here we show that acoustical
vortices can also induce axial vortical flow reminiscent of cyclones whose topology can be controlled
by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity
enables generating ”attractive streaming” with a flow directed toward the sound source. This opens
perspectives for contact-less vortical flow control.

PACS numbers: 43.25.Nm,43.25.+y,47.15.G-,47.61.Ne,*43.28.Py

I. INTRODUCTION

Acoustic streaming, that is to say vortical flow gener-
ated by sound plays a fundamental role in a variety of
industrial and medical applications such as sonochemical
reactors [1], megasonic cleaning processes [2], ultrasonic
processing [3], acoustophoresis [4], or therapeutic ultra-
sound [5, 6]. More recently, acoustic streaming is the
subject of a burst of interest with the development of
microfluidic applications [7, 8]. For instance, it is at the
core of the physics involved in droplets actuation with
Surface Acoustic Waves (SAW) [9] for lab-on-a-chip fa-
cilities, providing a versatile tool for droplet displacement
[10–12], atomization [13], jetting [14, 15] or vibration
[12, 16, 17]. Moreover, vorticity associated with acoustic
streaming is the main envisioned phenomenon to ensure
efficient mixing of liquids [18, 19].
Different forms of streaming are generally distin-

guished according to the underlying physical mechanism
[20, 21]. Boundary layer-driven streaming [22] arises
when an acoustic wave impinges a fluid/solid interface
due to viscous stresses inside the viscous boundary layer.
This form of streaming can be decomposed between in-

ner streaming, also called Schlichting streaming [23], oc-
curring inside the viscous boundary layer and counter
rotating outer streaming outside it [24]. The former is
not exclusive to acoustics since it does not require com-
pressibility of the fluid but only the relative vibration of
a fluid and a solid. The latter, first enlightened by Lord
Rayleigh, can be either seen as the fluid entrainment out-
side the boundary layer induced by Schlichting streaming
or as a consequence of the tangential velocity continuity
requirement for an acoustic wave at a fluid/solid bound-
ary. Finally bulk streaming, or so-called Eckart streaming
[25] is due to the thermo-viscous dissipation of acoustic
waves and the resulting pseudo-momentum transfer to
the fluid [26, 27]. Since the early work of Rayleigh [24],
many studies have been dedicated to acoustic streaming
and the investigation of the influence of various phenom-
ena on the resulting flow, such as unsteady excitation
[28–30], nonlinear acoustic wave propagation [31, 32] or

high hydrodynamic Reynolds number [33, 34]. However,
in all these studies, only plane of focalized acoustical
waves [35] are considered.
In this paper, we report on bulk acoustic streaming

generated by specific solutions of the Helmholtz equation
called acoustical vortices. New acoustic streaming con-
figurations are obtained with cyclone-like flows, whose
topology mainly depends on the one of the acoustical vor-
tex. Flow streamlines are not only poloidal as in classic
bulk streaming [25], but also toroidal due to the orbital
momentum transfer. This special feature provides an
acoustical control of the axial vorticity, while in all forms
of acoustic streaming reported up to now, the topology
of the induced hydrodynamical vortices is mainly deter-
mined by the boundary conditions. Finally, in confined
geometries, the azimuthal vorticity can also be tailored
by adjusting the properties of the acoustic beam. In this
way, attractor and repeller hydrodynamic vortices, cor-
responding respectively to flow directed toward or away
from the sound source, can be obtained.

II. THEORETICAL ANALYSIS

Acoustical vortices (or Bessel beams) are helical waves
possessing a pseudo orbital angular momentum and a
phase singularity on their axis (for orders ≥ 1). The
pitch of the helix l is called order or topological charge
[36]. These waves are separated variables general solu-
tions of the Helmholtz equation in cylindrical coordinates
and are therefore not exclusive to acoustics (see e.g. [37]
for their optical counterparts). Separated variables so-
lutions means that their axial and radial behavior are
independant, i.e. the diffraction is canceled for infinite
aperture and remains weak in others cases [38]. This en-
ables their controlled synthesis even in confined geome-
tries. Acoustical vortices can be generated by firing an
array of piezo-electric transducers with a circular phase
shift [39] or using inverse filtering techniques [40–42]. As
little as four transducers are enough to develop a first or-
der vortex [39]. Recently, it has been observed that their
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orbital momentum can be transferred to dissipative me-
dia which results in a measurable torque for solids [43, 44]
or azimuthal rotation for fluids [45].
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FIG. 1. a: Acoustical vortex with topological charge l = 3,
tan (α) = 1.21 and Kr1 = 10 (z-axis was dilated 10 times).
Surfaces correspond to the phase lθ + kzz = π/2 while colors
indicate the magnitude of the radial function B. b: Corre-
sponding radial function B(Kr) for l = 1 to 3.

In the following, we derive the equations of the flow
generated by an attenuated collimated Bessel beam of
finite radial extension r1 (Fig. 1.a), traveling along the
z-axis of an unbounded cylindrical tube of radius r0. This
model constitutes an extension of Eckart’s perturbation
theory [25] initially limited to plane wave. In the case
of Bessel beams [39], the density variation ρ1 induced by
the acoustical wave takes the form:

ρ1(r, θ, z, t) = ρ̂1B(s) sin(lθ + kzz − ωt), (1)

B(s) = A(s)Jl(s) (2)

In these equations, ρ̂1, l, θ, kz, ω, t and Jl denote respec-
tively the amplitude of the acoustical wave, the topo-
logical charge of the Bessel beam, the angular coordi-
nate, the projection of the wave vector on the z-axis,
the wave angular frequency, the time and the cylindri-
cal Bessel function of order l. The spatial window func-
tion, A(s), is used to limit the infinite lateral extension
of Bessel function. The phase of such vortex is given by
φ = lθ + kzz − ωt, yielding to helicoidal equiphase sur-
faces as shown in figure 1.a. We introduce the shorthand
notation s = Kr, and by analogy s1 = Kr1, s0 = Kr0,
with K the transversal component of the wave vector.
It is defined by the dispersion relation of a Bessel beam:
K2 + k2z = ω2/c2, with c the sound speed. We also in-
troduce the variable α measuring the helicoidal nature
of the flow and defined by tan (α) = kz/K. The radial
dependence in equation (1) is based on Bessel functions,
which are plotted in figure (1.b). Provided that l > 1,
these functions cancel at s = 0, where destructive inter-
ference between the wavelets from opposite sides of the

vortex occurs. Consequently, the core of the vortex is not
solely a phase singularity, but also a shadow-area.

Following Eckart [25], acoustic streaming can be calcu-
lated by decomposing the flow into a first order compress-
ible and irrotational flow (corresponding to the propagat-
ing acoustical wave) and a second order incompressible
vortical flow (describing the bulk acoustic streaming).
The insertion of this decomposition into Navier-Stokes
compressible equations yields Eckart’s diffusion equation

for the second order vorticity field ~Ω2 = ~∇× ~u2, with ~u2

the second order velocity field. This diffusion is forced
by a nonlinear combination of first order terms and sim-
plifies at steady-state into:

∆ ~Ω2 = − b

ρ20
~∇ρ1 × ~∇∂ρ1

∂t
, (3)

with b = 4/3 + µ′/µ, µ′ the bulk viscosity, µ the shear
viscosity, ρ0 the density of the fluid at rest and ρ1 the
first order density variation. Since the streaming flow
is incompressible, we can introduce the vector potential
~Ψ2 such that ~u2 = ~∇ × ~Ψ2, with Coulomb gauge fix-

ing condition: ~∇.~Ψ2 = 0. The resolution of equation
(3) thus amounts to the resolution of the inhomogeneous

biharmonic equation: ∆2~Ψ2 = − b
ρ2
0

~∇ρ1 × ~∇∂ρ1

∂t
. Orig-

inally, this equation was integrated by Eckart for trun-
cated plane waves. In the present work, we solve it in
the case of Bessel beams, whose expression is given by
equations (1) to (2). Owing to the linear nature of this
partial differential equation, we consider only solutions
verifying the symmetries imposed by the forcing term
and the boundary conditions: no-slip condition on the
walls, infinite cylinder in the z direction and no net flow
along the channel. In this case, the problem reduces to
a set of two linear ordinary differential equations, which
were integrated with standard methods. The complete
procedure is detailed in appendix.

Results are given by equations (4) to (11):

uz
2 = 2

Ω⋆
θ

K

[(

1− s2

s20

)

f(s0) (4)

+
1

2

(

s2

s02
Λl
z(s0)− Λl

z(s)

)]

,

uθ
2 =

Ω⋆
z

K

(

s

s02
Λl
θ(s0)−

1

s
Λl
θ(s)

)

, (5)
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with f(s) = −1

2
Λl
z(s) +

2

s2

∫ s

0

x1Λ
l
z(x1)dx1, (6)

Λl
θ(s) =

∫ s

0

x2

∫ x2

0

B2(x1)

x1
dx1dx2, (7)

Λl
z(s) =

∫ s

0

1

x2

∫ x2

0

x1B
2(x1)dx1dx2, (8)

Ω⋆
θ =

1

2

ωb tan (α)

ρ0c2
E1, (9)

Ω⋆
z =

1

2

ωbl

ρ0c2
E1, (10)

E1 = c2
(ρ̂1)

2

ρ0
. (11)

In these expressions, we see that the ratio between the
axial and azimuthal velocities uz

2/u
θ
2 is proportional to

the ratio Ω⋆
θ/Ω

⋆
z = tan (α)/l, indicating that as α de-

cays or l grows up (increasing the gradients along r and
θ directions respectively), the azimuthal velocity tends
to dominate over its axial counterpart. Both speeds are
proportional to the acoustic energy rather than the am-
plitude, emphasizing the fundamental nonlinear nature of
acoustic streaming. Furthermore, both terms are linearly
proportional to ω such that its product with the elastic
potential energy (11) refers to the power flux carried by
the wave.
Equations (4) to (11) were integrated numerically to

compute the velocity field. A square spatial window func-
tion for A(s) (whose expression is given in appendix B1)
is chosen to simplify the algebra. In the following, we in-
vestigate the case l = 1, tan (α) = 1.21 and Kr1 = 1.84
to get an overview of the flow pattern when the geometric
ratio r0/r1 is tuned. Resulting velocity profiles and the
associated streamlines are presented in figure (2). They
show a combination of axial and azimuthal vortical struc-
tures whose topology depends on the ratio r0/r1.

III. REPELLER AND ATTRACTOR VORTICES

It is commonly accepted that Eckart’s streaming is
the result of pseudo-momentum transfer from the sound
wave to the fluid [26]. Consequently, the acoustic beam
(r < r1) should push the fluid away from the transducer.
This is what actually occurs in weakly confined geome-
try, that is to say for the largest ratios r0/r1 (see Fig. 2
C to E). In these cases, confinement and mass conserva-
tion impose a back-flow at the periphery of the acoustic
beam, resulting in azimuthal vorticity similar to the one
observed by Eckart. But Bessel beams also carry an an-
gular momentum, which is transmitted to the fluid and
results in axial vorticity [45]. Since for l > 0 the wave is
rotating in the positive direction (when time increases,
equiphase is obtained for growing θ), the azimuthal ve-
locity is also positive.
However, this analysis doesn’t hold when applied to

very confined geometries such as A and B, where the
beam covers almost all the cylindrical channel. Under
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FIG. 2. Top: Non-dimensional velocities for l = 1,
tan (α) = 1.21 and Kr1 = 1.84 for progressively increased
cavity geometrical proportions r0/r1 = [1(A) 1.44(B)
1.89(C) 2.33(D) 2.78(E)]. Axial velocity is represented by
solid lines and the azimuthal component by the dashed ones.
Bottom: Flow streamlines. Colors are indicative of the speed
magnitude along uz

2: extrema are represented by the most in-
tense colors, red for positive and blue for negative.

these conditions, radial variations of the beam intensity
must be considered. Indeed, in figure (1) we clearly see
that the Bessel beam offers a shadow-area in the neigh-
borhood of its axis, where the wave amplitude cancels.
This holds for all non-zero orders vortices. The back-
flow generally appears where the wave forcing is weaker.
Hence, the fluid recirculation can either occur near the
walls or at the core of the beam, which becomes the only
option as the free-space at the periphery of the vortex
shrinks to 0, as in case A. Let’s call these vortices at-

tractor vortices since they tend to drive fluid particles
towards the sound source, and their opposite repeller vor-
tices, since they push fluid particles away from the source.
Although streaming pushing the fluid away from a trans-
ducer is common, (i) it is not usually associated with
axial vorticity and (ii) the vorticity topology depends on
the boundary conditions. Furthermore Bessel beams en-
able for the first time the synthesis of attractive vortices,
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offering original prospects for flow control and particle
sorting in confined geometries.
Intrigued by this reverse-flow motion, we performed a

systematic investigation on the conditions of its appear-
ance. Looking at the expression of the velocity, we no-
tice that the sign of uz

2(r = 0) is independent of tan(α),
such that the set of parameters reduces to the topological
charge l, the typical dimension Kr1 and the geometrical
ratio r0/r1. All these parameters were gathered in fig-
ure (3) to give an overview of the streaming induced by
Bessel beams in confined space. Looking at the flow map

l=
3

l=4

l=5

7

9
10

l

K
 r

1

3

5
Repeller

Vor�ces

l=
1

l=
2

r
0
 / r

1
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1

A ractor

Vor�ces

FIG. 3. Contour plot of uz

2(r = 0) = 0 at various topological
charge l, typical dimension Kr1 and geometrical ratio r0/r1.
Parameters plane is partitioned into two areas, one close to
the origin corresponding to attractor vortices with negative
axial velocities at r = 0 and the other one corresponding to
repeller vortices. The dashed line at r0/r1 ∼ 2.218 indicates
an asymptotic limit obtained for large l values.

for l = 1, we first notice that there is a bounded set of
parameters leading to attractor vortices. Indeed, these
vortices are squeezed by two restrictions: the beam must
be confined enough (ratio r0/r1 close to one) as previ-
ously explained, and the value of Kr1 has to be small.
Looking back at figure (1.b), we notice that as Kr1 in-
creases, the Bessel function amplitude decreases on the
periphery which facilitates the flow recirculation close to
the channel walls. This trend is reinforced by the appari-
tion of new nodes of the Bessel function for higher values
of Kr1 and the quadratic dependence of the streaming
flow. In addition, as the beam gets wider, the envelope
of the beam weakens for increasing r and hence, the re-
circulation preferentially flows towards the periphery.
Introducing the topological order l as a free parame-

ter, we notice the progressive broadening of the attractor
domain. Referring to figure (1.b), it appears that Bessel
functions of higher order roughly translate towards in-

creased Kr1, or reciprocally need a higher Kr1 to reach
the analog extremum. This explains the Kr1 part of
the broadening, whereas the r0/r1 is due to the pro-
gressive flattening of Bessel functions, which nonethe-
less rapidly saturates. Using the asymptotic forms of
Bessel development, we computed this limit in the ap-
pendix. The extreme value is given solving the equation
ln(x) = 1 − 1/x2, with x = r0/r1. The existence of
this upper bound highlights the essential condition of the
confined nature of the channel.
To compute these last results, we use a window func-

tion, A(s), with a sharp cut-off to ease the compari-
son with Eckart results. If we relax this condition, no
change is expected in the case of weakly confined beams,
Kr1 >> 1. For such beam, the flow will recirculate pref-
erentially at the periphery due to the radial decreasing of
the Bessel function. The strictly confined case r0/r1 = 1
is possible since Bessel beams are the modes of cylindrical
wave guides for discrete values of the radial wave num-
ber K = s/r, i.e no window A(s) is required. Hence
flow reversal at the vortex core should be observable.
The intermediate situation of strongly confined beam,
1 < r0/r1 = 1 < 2, is more challenging to carry out
experimentally due to diffraction spreading. However,
this problem is mitigated since truncated Bessel beam
are weakly diffracting [38].

IV. CONCLUSION

In this paper, we derive the streaming flow induced
by Bessel beams (acoustical vortices). The resulting flow
topology is reminiscent of cyclones with both axial and
azimuthal vorticity. The axial component is solely con-
trolled by the acoustic field. Regarding the azimuthal
vorticity, two categories of flow pattern should be distin-
guished: repeller and attractor vortices. The first cat-
egory exhibits a positive velocity at the center of the
beam, and appears when the beam radius is small com-
pared to the fluid cavity; whereas the latter needs a very
confined geometry, and develops negative velocity in its
core. To the best of our knowledge, streaming-based at-

tractor beams have never been described before and are
due to the specific radial dependence of the sound wave
intensity in Bessel beams. This work opens prospects for
vorticity control, which is an essential feature in many
fluidic systems [46–49]. Moreover, the combination of at-
tractive streaming and radiation pressure [50–52] induced
by acoustical vortices could provide an efficient method
for particles sorting. Indeed, large particles are known to
be more sensitive to radiation pressure and small parti-
cles to the streaming [53]. Large particles would therefore
be pushed away from the sound source by the radiation
pressure while small particles would be attracted by the
flow toward it. Compared to existing techniques rely-
ing on radiation pressure generated by standing waves
[54, 55], the advantage would be that a resonant cavity
is not mandatory to sort particles with acoustical vortices
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since progressive waves can be used.
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Appendix A: Resolution of Eckart equation for

acoustical vortices

Eckart acoustic streaming [25] is adequately described
by a set of non-linear partial differential equations. Al-
though exact analytical solutions have not been found in
the general case, the problem can be solved with a pertur-
bation analysis, as long as the acoustic wave propagation
is weakly nonlinear (weak acoustical Mach Number) and
the flow remains laminar (weak Reynolds number). Fol-
lowing Eckart, the flow generated by a transducer can
be decomposed into a first order compressible and irro-
tational flow (corresponding to the propagating acoustic
wave) and a second order incompressible vortical flow
(corresponding to the acoustic streaming) [56]:

ρ = ρ0 + ρ1 + ρ2 + ... (A1)

~u = ~u1 + ~u2 + ... (A2)

with ρ2 ≪ ρ1 ≪ ρ0 and ‖ ~u2‖ ≪ ‖ ~u1‖. Basically the or-
der of magnitude of the ratio between first order and sec-
ond order fields is given by the acoustical Mach number.
In this development, we have considered a homogeneous
fluid at rest in the absence of the acoustic field. Thus the
density ρ0 is constant in space and time, and the velocity
~u0 = ~0.
By replacing this decomposition into Navier-Stokes

compressible equations, Eckart showed that the first
order field is solution of D’Alembert (wave) equation.
Acoustical vortices are solution of this equation in cylin-
drical coordinates [57] and their expression calculated
by Hefner and Marston [39] takes the following form for
weakly attenuated waves :

ρ1(r, θ, z, t) = ρ̂1A(Kr)Jl(Kr) sin(lθ + kzz − ωt) (A3)

In this equation, φ = lθ + kzz − ωt is the phase of the
acoustical vortex, l the topological charge of the vortex,
θ the angular coordinate, kz the projection of the wave
vector on z-axis, z the height, ω the wave frequency, t
the time. Finally, ρ̂1 is the amplitude of the first order
density fluctuation, which is related to its pressure coun-
terpart P̂1 according to ρ̂1 = P̂1/c

2 andK the transversal
component of the wave vector. It is defined by the disper-
sion relation of an acoustical vortex: K2 + k2z = ω2/c2,
with c the sound speed.
Eckart obtained in his paper a diffusion equation for

the second order vorticity field ~Ω2 = ~∇×~u2, which can be
used to compute the acoustic streaming. In the following,

we consider steady streaming generated by a monochro-
matic acoustic wave with constant amplitude and there-
fore Eckart equations reduces to:

∆ ~Ω2 = − b

ρ20
~∇ρ1 × ~∇∂ρ1

∂t
(A4)

b = 4/3 + µ′/µ (A5)

with µ the shear viscosity and µ′ the bulk viscosity. From
now on, we will use the shorthand notation s = Kr, and
s1 = Kr1, s0 = Kr0. Besides, we introduce B to gather
the radial dependence of the beam:

B(s) = A(s)Jl(s) (A6)

where the function, A(s), is introduced to limit the in-
finite lateral extension of Bessel function.The derivation
of ρ1 in equation (A3) in cylindrical coordinates, and the
replacement of the result into equation (A4) gives a in-
homogeneous Poisson equation with the first order field
playing the role of the streaming source term:

1

K2
∆ ~Ω2(r, θ, z) = Ω⋆

θ

dB2(s)

ds
~eθ −

Ω⋆
z

s

dB2(s)

ds
~ez(A7)

Ω⋆
θ =

1

2

kzωb

Kρ0c2
E1 (A8)

Ω⋆
z =

1

2

ωbl

ρ0c2
E1 (A9)

E1 = c2
ρ̂21
ρ0

(A10)

The beam is assumed to be of infinite extent along z and

invariant by rotation θ around this axis, therefore ~Ω2

has only a radial dependence. Besides, the conservative
nature of vorticity allows us to drop-off the ~er component.

The resulting solution candidate for ~Ω2 is:

~Ω2 = Ωθ
2(s)~eθ +Ωz

2 (s)~ez (A11)

Plugging it into equation (A7) gives two linear ODEs:

s2
d2

ds2
Ωθ

2 + s
d

ds
Ωθ

2 −Ωθ
2 = s2Ω⋆

θ

dB2(s)

ds
(A12)

s
d2

ds2
Ωz

2 +
d

ds
Ωz

2 = −Ω⋆
z

dB2(s)

ds
(A13)

Using standard methods, the homogeneous (H) and par-
ticular (P ) solutions are determined:

Ωθ
2 |H = Mθ

1 s+
Nθ

1

s
(A14)

Ωθ
2 |P =

1

s
Ω⋆

θ

∫ s

0

x1B
2(x1)dx1 (A15)

(A16)

The equation along z is treated by introducing g = d
ds
Ωz

2

g|H =
M1

z

s
(A17)

g|P = −Ω⋆
z

B2(s)

s
(A18)

Ωz
2 = Nz

1 +M1
z ln(s)−Ω⋆

z

∫ s

0

B2(x1)

x1
dx1 (A19)



6

Removing the terms diverging at s = 0, we have:

~Ω2 =

[

Mθ
1 s+

1

s
Ω⋆

θ

∫ s

0

x1B
2(x1)dx1

]

~eθ (A20)

+

[

Nz
1 −Ω⋆

z

∫ s

0

B2(x1)

x1
dx1

]

~ez (A21)

Since the second order flow (streaming) is incompressible,

we can introduce the vector potential ~Ψ2 verifying ~u2 =
~∇× ~Ψ2 with the gauge ~∇.~Ψ2 = 0 to compute the velocity
field from the vorticity field:

∆~Ψ2 = − ~Ω2 (A22)

For symmetry reasons, the flow is assumed to be invari-
ant by rotation θ around z and translation along the
propagation axis z, and due to the conservative nature
of ~u2, the radial component is dropped off. Consequently,
the velocity field is of the form: ~u2 = uθ

2(s)~eθ + uz
2(s)~ez.

Computing the curl of ~Ψ in order to get ~u2, we notice

that ~Ψ2 = Ψθ(s)~eθ + Ψz(s)~ez. Equation (A22) is very
similar to (A4), except the source term:

s2Ψ′′

θ + sΨ′

θ −Ψθ = − 1

K2

(

Mθ
1 s

3 + sΩ⋆
θ

∫ s

0

x1B
2(x1)dx1

)

sΨ′′

z +Ψ′

z =
s

K2

(

−Nz
1 +Ω⋆

z

∫ s

0

B2(x1)

x1
dx1

)

Using the same procedure as for ~Ω2 we get the general
solution:

Ψθ = M2
θ s−

1

K2

(

Mθ
1

8
s3 +

Ω⋆
θIθ(s)

s

)

(A23)

Ψz = N2
z +

1

K2

(

−Nz
1

s2

4
+Ω⋆

z Iz(s)

)

(A24)

Iθ =

∫ s

0

x3

∫ x3

0

1

x2

∫ x2

0

x1B
2(x1)dx1dx2dx3(A25)

Iz =

∫ s

0

1

x3

∫ x3

0

x2

∫ x2

0

B2(x1)

x1
dx1dx2dx3 (A26)

The resulting velocity field can now be simply obtained

by taking the curl of ~Ψ2:

uθ
2 =

1

K

(

1

2
Nz

1 s−
1

s
Ω⋆

zΛ
l
θ(s)

)

(A27)

u(2)
z = 2M2

θK − 1

K

(

Mθ
1

2
s2 +Ω⋆

θΛ
l
z(s)

)

(A28)

Λl
θ(s) =

∫ s

0

x2

∫ x2

0

B2(x1)

x1
dx1dx2 (A29)

Λl
z(s) =

∫ s

0

1

x2

∫ x2

0

x1B
2(x1)dx1dx2 (A30)

This velocity field must satisfy the adherence boundary
condition at the wall of the channel s = s0:

uθ
2(s0) = 0 (A31)

uz
2(s0) = 0 (A32)

Besides, the steady and incompressible nature of the flow
must not violate mass conservation, such that a closure
condition is enforced:

∫ 2π

0

∫ r0

0
ρ0u

z
2(r)rdrdθ = 0

⇔
∫ s0

0
x1uz(x1)dx1 = 0

(A33)

The determinant of the system is equal to
s40
8K , such that

it always admits a unique solution. Solving this linear
system of equations, we get:

Nz
1 =

2Ω⋆
z

s02
Λl
θ(s0) (A34)

M1
θ =

4Ω⋆
θ

s02

(

f(s0)−
1

2
Λl
z(s0)

)

(A35)

M2
θ =

Ω⋆
θ

K2
f(s0) (A36)

f(s) = −1

2
Λl
z(s) +

2

s2

∫ s

0

x1Λ
l
z(x1)dx1 (A37)

Including these boundary conditions in the expressions
of the velocity field, we finally obtain:

uθ
2 =

Ω⋆
z

K

(

s

s02
Λl
θ(s0)−

1

s
Λl
θ(s)

)

u(2)
z = 2

Ω⋆
θ

K

((

1− s2

s02

)

f(s0) +
1

2

(

s2

s02
Λl
z(s0)− Λl

z(s)

))

Appendix B: Asymptotic development when

Kr0 << 2
√
l + 1

In this section, we compute an asymptotic develop-
ment of our final expression when Kr0 << 2

√
l + 1. We

show that Eckart’s result obtained for plane wave can
be recovered as an asymptotic limit of our more general
expression. Recovering, the Eckart result dictates the
choice of the function A(s):

A(s) =

{

1, if s < s1
0, if s > s1

(B1)

1. Asymptotic development

For all s < s0 = Kr0, we have:
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Jl(s) ∼
1

l!

(s

2

)l

(B2)

Λl
z(s) ∼

{

s2 l+2

(2 l+2)2 22 l l!2
, if s < s1

s1
2 l+2 1+(2l+2)ln(s/s1)

(2 l+2)2 22 l l!2
, if s > s1

(B3)

f ∼























s2 l+2

(2 l+2)2 (2 l+4) 22 l l!2
(2− 2l+4

2 ), if s < s1

Cl

[

(s1/s)
2
(

l (1− (s/s1)
2 ) + 1

l+2

)

+((l + 1)ln (s/ s1)− (1/2))

]

, if s > s1

(B4)

withCl =
s1

2 l+2

(2 l+ 2)
2
22 l l!2

(B5)

2. Recovering Eckart’s streaming with l = 0 and

Kr0 << 1

The case of plane wave can be recovered from our ex-
pression by considering a topological charge equal to zero
and a radius r0 ≪ 1/K:

Λl
z(s) ∼

{

s2/4, if s < s1
(s21/4)(1 + 2ln (s/ s1)), if s > s1

(B6)

f ∼











0, if s < s1

(s21/8)
[

(s1/s)
2 + 2ln (s/ s1)− 1

]

, if s > s1

(B7)

In the original paper [25], Eckart introduces the notation
x = s/s0 and y = s1/s0

uz
2 ∼ 2

Ω⋆
θ

K











s21/4
[

(1/2)(1− (x/y)2)− (1− y2/2)(1− x2)− ln(y)
]

, if s < s1

−s21/4
[

(1− y2/2)(1− x2) + ln(x)
]

, if s > s1
(B8)

Equation (B8) is exactly the expression of the acoustic
streaming obtained by Eckart [25] for plane waves.

3. Asymptotic limit for large values of l and
Kr0 << 2

√
l + 1

Λl
z(s) ∼

{

s2 l+2

(2 l)2 22 l l!2
, if s < s1

s1
2 l+2 ln(s/s1)

(2 l) 22 l l!2
, if s > s1

(B9)

f ∼











− s2 l+2

2(2 l)2 22 l l!2
, if s < s1

Cl

[

(s1/s)
2(1− (s/s1)

2)

+ln (s/ s1)

]

, if s > s1
(B10)

Cl =
s1

2 l+2

4l 22 l l!2
(B11)

uz
2(s = 0) = 2

Ω⋆
θ

K
f(s0) (B12)

(B13)

Using Eckart [25] notation y = s1/s0:

uz
2(s = 0) = 2

Ω⋆
θCl

K

(

y2 − 1− ln(y)
)

(B14)

We highlight here that in equation (B14) Cl is decreas-
ing extremely fast such that increasing l dramatically de-
creases the magnitude of uz

2(0).
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P. Hänggi, and A. Wixforth, Phys. Rev. Lett. 100,
034502 (2008).

[20] R. Beyer, Nonlinear Acoustics (Acoust. Soc. Am., 1997).



8

[21] N. Riley, Ann. Rev. Fluid Mech. 33, 43 (2001).
[22] M. Hamilton, J. Acoust. Soc. Am. 113, 153 (2003).
[23] H. Schlichting, Phys. Zeitung 33, 327 (1932).
[24] L. Rayleigh, Ph. Trans. Roy Soc. London 175, 1 (1884).
[25] C. Eckart, Phys. Rev. 73, 68 (1948).
[26] J. Piercy and J. Lamb, Proc. Roy. Soc. London. A 226,

43 (1954).
[27] M. Sato and T. Fujii, Phys. Rev. E 64, 026311 (2001).
[28] O. Rudenko and S. Soluyan, Akust. Zh. 17, 122 (1971).
[29] O. Rudenko and A. Sukhorukov, Acoustical Physics 44,

565 (1998).
[30] I. Sou, J. Allen, C. Layman, and C. Ray, Exp. Fluids

51, 1201 (2011).
[31] E. Romanenko, Sov. Phys. Acoustics (1960).
[32] Y. Statnikov, Sov. Phys. Acoustics 13, 122 (1967).
[33] L. Menguy and J. Gilbert, J. Acoust. Soc. Am. 105, 958

(1999).
[34] R. I., V. Daru, H. Baillet, S. Moreau, J. Valiere,

D. Baltean-Carles, and C. Weisman, J. Acoust. Soc. Am.
134, 1791 (2013).

[35] W. Nyborg, “Nonlinear acoustics,” (Academic Press,
1998) Chap. 7.

[36] J.-L. Thomas, T. Brunet, and F. Coulouvrat, Phys. Rev.
E 81, 016601 (2010).

[37] L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerd-
man, Phys. Rev. A 45, 8185 (1992).

[38] J. Durnin, M. J.J., and J. Eberly, Phys. Rev. Lett. 58,
1499 (1987).

[39] B. Hefner and P. Marston, J. Acoust. Soc. Am. 106, 3313
(1999).

[40] J.-L. Thomas and R. Marchiano, Phys. Rev. Lett. 91,
244302 (2003).

[41] R. Marchiano and J.-L. Thomas, Phys. Rev. Lett. 101,
064301 (2008).

[42] T. Brunet, J.-L. Thomas, R. Marchiano, and F. Coulou-
vrat, New J. Phys. , 013002 (2009).

[43] H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-
Dunlop, Phys. Rev. Lett. 75, 826 (1995).

[44] J. Volke-Sepulveda, A. Santillan, and R. R. Boullosa,
Phys. Rev. Lett. 100, 024302 (2008).

[45] A. Anhauser, R. Wunenburger, and E. Brasselet, Phys.
Rev. Lett. 109, 034301 (2012).

[46] J. Ottino, The kinematics of mixing: stretching, chaos,
and transport (Cambridge Texts in Applied Mathemat-
ics, 1989).

[47] A. Chorin, Vorticity and turbulence, Vol. 103 (Springer,
1994).

[48] C. Gmelin and U. Rist, Phys. Fluids 13 (2001).
[49] Q. Zhu, M. Wolfgang, D. Yue, and M. Triantafyllou, J.

Fluid Mech. 468, 1 (2002).
[50] D. Baresh, J.-L. Thomas, and R. Marchiano, J. Acoust.

Soc. Am. 133, 25 (2013).
[51] M. Settnes and H. Bruus, Phys. Rev. E 85, 016327

(2012).
[52] L. Zhang and P. Marston, Phys. Rev. E 84, 035601(R)

(2011).
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