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Abstract. In this work, we propose new bounding techniques that enable to derive
accurate and strict error bounds on outputs of interest computed from numerical ap-
proximation methods such as the finite element method. These techniques are based
on Saint-Venant’s principle and exploit specific homotheticity properties in order to im-
prove the quality of the bounds computed from the classical bounding technique. The
capabilities of the proposed approaches are illustrated through two-dimensional numerical
experiments carried out on a linear elasticity problem.

1 INTRODUCTION

In the context of finite element (FE) model verification, research and engineering activ-
ities focus on the development of robust goal-oriented error estimation methods designed
to achieve strict and high-quality error bounds associated to specific quantities of interest.
A general method [1] consists in using extraction techniques as well as robust global error
estimation methods, and involves the global solution of an auxiliary problem, also known
as dual or adjoint problem. The derivation of accurate local error bounds entails a fine
resolution of this auxiliary problem. Nevertheless, the classical bounding technique may
provide low-quality error bounds on specific quantities of interest, particularly when the
global estimated errors related to both reference (primal) and adjoint (dual) problems are
mainly concentrated in disjoint regions. The main source of overestimation presumably
stems form the Cauchy-Schwarz inequality, especially when the zone of interest is located
far from the predominant contributions of the global estimate associated to reference
problem. This observation has spurred the development of new bounding techniques able
to circumvent, or at least alleviate, this serious drawback by optimizing the sharpness and
practical relevance of the classical computed bounds. In this work, we propose and ana-
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lyze new improved bounding techniques based on non-classical and innovative tools, such
as homotheticity properties [2]. These techniques are carefully tailored for the derivation
of inequalities between appropriate quantities over two homothetic domains contained in
the whole structure. Such relations are based on Saint-Venant’s principle and seem to be
limited to solely linear problems. The classical and enhanced techniques can be combined
with an intrusive approach (local refinement techniques) or a non-intrusive one (handbook
techniques [3]) to get a reliable solution of the adjoint problem.

The paper is organized as follows. Section 2 presents both reference and adjoint prob-
lems and defines the discretization error. Section 3 recalls basics on goal-oriented error
estimation using extraction (or adjoint-based) techniques and the concept of constitutive
relation error through the construction of admissible solutions. Section 4 describes the
main features of the improved bounding techniques, while Section 5 provides some nu-
merical experiments conducted on a linear elasticity problem with comparative results
between conventional and alternative bounding techniques.

2 REFERENCE AND ADJOINT PROBLEMS

2.1 Reference problem and discretization error

Let us consider a mechanical structure occupying an open bounded domain Ω ⊂ R
d (d

being the space dimension), with Lipschitz boundary ∂Ω. The prescribed loading acting
on Ω consists of: a displacement field Ud on part ∂uΩ ⊂ ∂Ω (∂uΩ 6= ∅); a traction
force density F d on the complementary part ∂fΩ of ∂Ω such that ∂uΩ ∪ ∂fΩ = ∂Ω,
∂uΩ∩ ∂fΩ = ∅; a body force field f

d
within Ω. Structure Ω is assumed to be made of an

isotropic, homogeneous material with linear and elastic behavior characterized by Hooke’s
tensor K. Assuming a quasi-static loading, an isothermal case and a small perturbations
state, the reference problem consists of finding a displacement/stress pair (u,✛) in the
space domain Ω, which verifies:

• the kinematic conditions:

u ∈ U ; u = Ud on ∂uΩ; ✧(u) =
1

2

(

➎u+➎Tu
)

in Ω; (1a)

• the weak form of equilibrium equations:

✛ ∈ S; ∀ u∗ ∈ U0,

∫

Ω

Tr
[

✛ ✧(u∗)
]

dΩ =

∫

Ω

f
d
· u∗ dΩ +

∫

∂fΩ

F d · u
∗ dS; (1b)

• the constitutive relation:

✛ = K ✧

(

u
)

in Ω, (1c)

where ✧(u) represents the classical linearized strain tensor corresponding to the symmetric
part of the gradient of displacement field u. Affine spaces U =

{

u ∈ [H1(Ω)]d
}

and

S =
{

✛ ∈ Ms(d) ∩ [L2(Ω)]d
2

}

guarantee the existence of finite-energy solutions, Ms(d)
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representing the space of symmetric square matrices of order d. Lastly, U0 ⊂ U denotes
the vectorial space associated to U .

In practical applications, the exact solution of the reference problem, hereafter denoted
(uex,✛ex), remains usually out of reach and only an approximate solution, referred to as
(uh,✛h), can be obtained through numerical approximation methods (such as the FE
method (FEM) associated with a space mesh Ωh mapping Ω). Such a numerical approx-
imation is searched in a discretized space Uh×Sh ⊂ U×S. A displacement-type FEM
leads to a displacement field uh verifying kinematic constraints (1a) and a stress field ✛h

computed a posteriori from constitutive relation (1c).
The resulting discretization error, denoted eh = uex − uh, can be assessed in terms of:

• a global measure defined with respect to the classical energy norm ‖•‖u,Ω =
(∫

Ω
Tr

[

K ✧(•) ✧(•)
]

dΩ
)1/2

, providing a global discretization error eΩ = ‖eh‖u,Ω;

• a local measure defined with respect to a specific output of interest I(u) of the
problem, providing a local error eI = I(uex) − I(uh). Under the assumption of a
linear quantity of interest with respect to displacement u, it merely reads: eI =
I(eh).

2.2 Adjoint problem

The quantity of interest, hereafter denoted I, is a goal-oriented output, such as the
mean value of a stress component over a local region or the displacement value at a
specific point, for instance. These meaningful quantities of practical interest to engineers
are usually defined by means of extraction techniques, i.e. by expressing the local quantity
I being considered in the global form involving global extraction operators, also called
extractors. In this work, for the sake of simplicity, the quantity of interest is represented
as a linear functional L of displacement field u on a finite support under the following
global form:

I = L(u) =

∫

Ω

(

Tr
[

✛̃Σ ✧(u)
]

+ f̃
Σ
· u

)

dΩ, (2)

where so-called extractors ✛̃Σ and f̃
Σ
, known analytically, can be mechanically viewed as

a prestress field and a body force field, respectively. In the following, let Iex = L(uex) and
Ih = L(uh) be the unknown exact value of the quantity of interest I being studied and
its approximate value obtained through the FEM, respectively.

Once the quantity of interest has been put into such a global form, the classical ap-
proach then consists of introducing an auxiliary problem, also called adjoint problem,
which is similar to the reference problem, except that the external mechanical loading
(F d, fd

) is replaced by the extractors on the one hand, and the non-homogeneous Dirich-
let boundary conditions are changed to homogeneous kinematic constraints on the other
hand. The adjoint problem consists of finding a displacement/stress pair (ũ, ✛̃), in the
space domain Ω, which verifies:
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• the kinematic conditions:

ũ ∈ U0; (3a)

• the weak form of equilibrium equations:

✛̃ ∈ S; ∀u∗ ∈ U0,

∫

Ω

Tr
[

✛̃✧(u∗)
]

dΩ = L(u∗) =

∫

Ω

(

Tr
[

✛̃Σ ✧(u∗)
]

+ f̃
Σ
· u∗

)

dΩ;

(3b)

• the constitutive relation:

✛̃ = K ✧

(

ũ
)

in Ω. (3c)

For similar reasons to the reference problem, the exact solution (ũex, ✛̃ex) of the adjoint
problem remains out of reach in most practical applications, and one can only obtain an
approximate solution, denoted (ũh, ✛̃h). This last solution lies in a discretized FE space
associated with a space mesh Ω̃h, mapping the physical domain Ω.

3 BASICS ON GOAL-ORIENTED ERROR ESTIMATION BASED ON

CONSTITUTIVE RELATION ERROR

We review here the classical procedure based on the concept of constitutive relation
error (CRE) to obtain strict local error bounds on functional outputs.

3.1 Constitutive relation error

Starting from an admissible solution (ûh, ✛̂h) provided by one of the existing tech-
niques [4], one can measure the global residual on constitutive relation (1c), called the
CRE measure and denoted ecre,Ω ≡ ecre,Ω(ûh, ✛̂h) = ‖✛̂h −K ✧(ûh)‖✛,Ω, with ‖•‖

✛,Ω =
(∫

Ω
Tr

[

• K
−1 •

]

dΩ
)1/2

. Computing the CRE measure ecre,Ω provides a guaranteed
upper bound of the global discretization error ‖eh‖u,Ω, as the well-known Prager-Synge
hypercircle theorem leads to the following bounding inequality:

‖eh‖
2
u,Ω = ‖uex − ûh‖

2
u,Ω 6 ‖uex − ûh‖

2
u,Ω + ‖✛ex − ✛̂h‖

2
✛,Ω = e2cre,Ω, (4)

which conveys the guaranteed nature of the CRE measure ecre,Ω with respect to the global
discretization error.

Introducing the average admissible field ✛̂
m
h =

1

2
(✛̂h +K ✧(ûh)), one can directly de-

duce another fundamental relation, called the Prager-Synge’s equality:

‖✛ex − ✛̂
m
h ‖✛,Ω =

1

2
ecre,Ω. (5)

Equations (4) and (5) are key relations to derive guaranteed error bounds in both global
and local robust error estimation methods.
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In the same manner as for the reference problem, an admissible solution of the ad-
joint problem, hereafter referred to as (ˆ̃uh, ˆ̃✛h), can be derived from one of the existing
equilibration techniques. Then, the associated CRE measure ẽcre,Ω ≡ ecre,Ω(ˆ̃uh, ˆ̃✛h) of the
adjoint problem can be computed leading to a global estimate of the discretization error
ẽh = ũex − ũh of the adjoint problem.

Now, let us focus on the main principles of the classical bounding technique involved
in goal-oriented error estimation methods based on extraction techniques and the concept
of CRE.

3.2 Basic identity and classical bounding technique

The expression of the quantity of interest I reformulated in the global form (2) as well
as properties of both admissible solutions (ûh, ✛̂h) and (ˆ̃uh, ˆ̃✛h) lead to the following basic
identity:

Iex − Ih − Ihh = 〈✛ex − ✛̂
m
h , ˆ̃✛h −K ✧(ˆ̃uh)〉✛,Ω, (6)

where 〈•, ◦〉✛,Ω =
∫

Ω
Tr

[

•K−1◦
]

dΩ is an energetic inner product defined on the stress field
space S. Ihh can be viewed as a computable correction term involving known quantities
of both reference and adjoint problems:

Ihh = 〈ˆ̃✛m
h , ✛̂h −K ✧(ûh)〉✛,Ω + L(ûh − uh), (7)

where ˆ̃✛m
h =

1

2
(ˆ̃✛h +K ✧(ˆ̃uh)). Ih + Ihh can be interpreted as a new approximate solution

of the exact value Iex of the quantity of interest.
The fundamental equality (6), which does not call for any orthogonality property of

the FE solutions and allows to build the finite-dimensional spaces associated to reference
and adjoint problems independently, is the keystone of the classical bounding technique
as well as the improved ones described in section 4.

Subsequently, the classical bounding procedure merely consists of applying the Cauchy-
Schwarz inequality to (6) with respect to inner product 〈•, ◦〉✛,Ω and then using Prager-
Synge’s equality (5). This yields:

|Iex − Ih − Ihh| 6
1

2
ecre,Ω ẽcre,Ω. (8)

Eventually, the derivation of strict lower and upper bounds (ξinf , ξsup) of Iex (or, equiva-
lently, of the local error Iex − Ih) can be achieved straightforwardly, just having a global
error estimation procedure at hand:

ξinf 6 Iex 6 ξsup, (9)

with

ξinf = Ih + Ihh −
1

2
ecre,Ω ẽcre,Ω;

ξsup = Ih + Ihh +
1

2
ecre,Ω ẽcre,Ω.

(10)
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Besides, owing to the independent natures of spatial discretizations associated to ref-
erence and adjoint problems, a convenient way to achieve accurate and sharp bounds of
Iex is to perform a local space refinement of the adjoint mesh Ω̃h alone around the zone
of interest ω in order to properly solve the adjoint problem while keeping a reasonable
computational cost. In most common situations, the discretization error related to the
adjoint problem is concentrated in the vicinity of the zone of interest, whereas that related
to the reference problem may be scattered around zones which present some singularities
or other error sources. However, when the error related to the reference problem is mostly
located outside and far from the zone of interest, the classical bounding technique may
yield large and low-quality local error bounds and thus makes useless bounding result (9).
This is the point that we are revisiting here.

The proposed bounding techniques we present in the following section are intended to
get around this serious drawback proper to the classical technique in order to sharpen the
local error bounds.

4 IMPROVED BOUNDING TECHNIQUES

4.1 Homotheticity transfromation

Let us consider a reference subdomain, denoted ω1 and included in Ω, defined by a
point O and a geometric shape. The set of homothetic domains ωλ associated to ω1 is
defined as:

ωλ = H[O,λ](ω1) (11)

where H[O;λ] stands for the homothetic transformation operator centered in point O,
called homothetic center, and parameterized by a nonzero positive scalar λ ∈ ]0 , λmax],
also called magnification ratio, scale factor or similitude ratio, such that ωλ ⊂ Ω (see
Figure 1). The geometric shape defining the set of homothetic domains ωλ can be chosen
arbitrarily. Nevertheless, these physical domains are supposed to be basic in practice,
such as a circle or a rectangle in 2D, and a sphere or a rectangular cuboid (also called
rectangular parallelepiped or right rectangular prism) in 3D, for instance.

For a given pair (ωλ, ωλ̄) of homothetic domains included in Ω, represented in Figure 1
and parameterized by (λ, λ̄), such that ωλ ⊂ ωλ̄ ⊂ Ω, i.e. λ ∈ ]0 , λ̄], the position vλ of a
point Mλ along boundary ∂ωλ can be defined from the position vλ̄ of the corresponding
point M λ̄ along boundary ∂ωλ̄ by the following relation:

vλ =











λ

λ̄
vλ̄(s̄) parameterized by (λ, s̄) in 2D;

λ

λ̄
vλ̄(s̄1, s̄2) parameterized by (λ, s̄1, s̄2) in 3D,

(12)

where s̄ (resp. s̄1 and s̄2) represent the curvilinear abscissa along boundary ∂ωλ̄ in 2D
(resp. 3D).

Such a parameterization leads to various homotheticity properties [2] that are at the
root of fundamental inequalities such as the one introduced in Section 4.3.
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Figure 1: Examples of rectangular (a) and circular (b) homothetic domains in 2D.

4.2 Principle

First, let us recall the expression of quantity q involved in basic identity (6) for building
local error bounds :

q = 〈✛ex − ✛̂
m
h , ˆ̃✛h −K ✧(ˆ̃uh)〉✛,Ω, (13)

where ✛̂m
h and ˆ̃✛h −K ✧(ˆ̃uh) are given quantities coming from reference and adjoint prob-

lems, respectively, and ✛ex is the unknown exact stress solution of the reference problem.
By considering a subdomain ωλ of domain Ω and its complementary part Ω \ ωλ, the

approach consists in splitting quantity q into two distinct contributions qωλ
and qΩ\ωλ

:

q = qωλ
+ qΩ\ωλ

,

where

qωλ
= 〈✛ex − ✛̂

m
h , ˆ̃✛h −K ✧(ˆ̃uh)〉✛,ωλ

; (14a)

qΩ\ωλ
= 〈✛ex − ✛̂

m
h , ˆ̃✛h −K ✧(ˆ̃uh)〉✛,Ω\ωλ

. (14b)

When quantity ˆ̃✛h − K ✧(ˆ̃uh) involved in the CRE measure of the adjoint problem is
mostly concentrated over part ωλ, i.e. by choosing a subdomain ωλ surrounding the zone
of interest ω, part qΩ\ωλ

can be accurately bounded by simply using the Cauchy-Schwarz
inequality with respect to inner product 〈•, ◦〉u,Ω\ωλ

and the Prager-Synge’s equality (5):

∣

∣qΩ\ωλ

∣

∣ 6 ‖✛ex − ✛̂
m
h ‖✛,Ω\ωλ

ẽcre,Ω\ωλ
6

1

2
ecre,Ω ẽcre,Ω\ωλ

. (15)

Given that the discretization error associated to the adjoint problem is mainly located
around the zone of interest ω ⊂ ωλ, ẽcre,Ω\ωλ

is a relatively small computable term. It
follows that the main contribution to the local error comes from part qωλ

. Consequently,
quantity qωλ

has to be bounded with a particular care in order to derive accurate local
error bounds while preserving the guaranteed nature of the error estimate.
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4.3 Fundamental inequality

Let us consider the space V of functions satisfying homogeneous equilibrium conditions:

V = {v ∈ U such that div(K ✧(v)) = 0 in Ω} , (16)

and let us introduce the Steklov constant, or Steklov eigenvalue, h defined in [5] as:

h = max
v∈V |ω1

S1(v), (17)

with

S1(v) =

∥

∥

∥
K (v ⊗ n)sym

∥

∥

∥

2

✛,∂ω1

‖v‖2u,ω1

, (18)

where (•)sym represents the symmetric part of tensor of order 2 (or matrix) •. Then,
for any homothetic domain ωλ ⊂ Ω parametrized by λ > 0, one can derive a relation
involving the product of constant h and parameter λ:

hλ = max
v∈V |ωλ

Sλ(v), (19)

with

Sλ(v) =

∥

∥

∥
K (v ⊗ n)sym

∥

∥

∥

2

✛,∂ωλ

‖v‖2u,ωλ

. (20)

Let (ωλ, ωλ̄) be a pair of homothetic domains such that λ ∈ ]0 , λ̄], i.e. ωλ ⊂ ωλ̄. The
following key inequality holds [2]:

‖✛ex − ✛̂h‖
2
✛,ωλ

6

(

λ

λ̄

)1/h

‖✛ex − ✛̂h‖
2
✛,ωλ̄

+ γλ,λ̄, (21)

where

γλ,λ̄ ≡ γλ,λ̄(ûh, ✛̂h) =

∫ λ̄

λ′=λ

[

(

λ′

λ

)−1/h
1

hλ′
e2cre,ωλ′

]

dλ′. (22)

Let us note that, using Prager-Synge’s equality (5), unknown term ‖✛ex − ✛̂h‖✛,ωλ̄

involved in the right-hand side term of fundamental inequality (21) is readily bounded as:

‖✛ex − ✛̂h‖
2
✛,ωλ̄

6

(

‖✛ex − ✛̂
m
h ‖✛,ωλ̄

+ ‖✛̂m
h − ✛̂h‖✛,ωλ̄

)2

6
1

4

(

ecre,Ω + ecre,ωλ̄

)2
(23)

It follows that fundamental result (21) can be rewritten in terms of perfectly known
quantities as:

‖✛ex − ✛̂h‖
2
✛,ωλ

6

(

λ

λ̄

)1/h
1

4

(

ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄. (24)

This last inequality is the key point to derive sharp bounds for part qωλ
.
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4.4 Final bounding result

Applying the Cauchy-Schwarz inequality with respect to scalar product 〈•, ◦〉✛,ωλ
and

then using the key inequality (24) introduced in the previous section leads to the following
bounding result:

|qωλ
− Ihhh,λ| 6

[

(

λ

λ̄

)1/h
1

4

(

ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄

]1/2

ẽcre,ωλ
. (25)

Collecting both inequalities (25) and (15) for parts qωλ
and qΩ\ωλ

, respectively, one
obtains:

|Iex − Ih − Ihh − Ihhh,λ| 6 ẽcre,ωλ
δλ,λ̄ +

1

2
ecre,Ω ẽcre,Ω\ωλ

, (26)

where

δλ,λ̄ ≡ δλ,λ̄(ûh, ✛̂h) =

[

(

λ

λ̄

)1/h
1

4

(

ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄

]1/2

(27)

and

Ihhh,λ =
1

2
〈✛̂h −K ✧(ûh), ˆ̃✛h −K ✧(ˆ̃uh)〉✛,ωλ

(28)

are fully calculable from the computed approximate solutions of both reference and adjoint
problems.

Thus, this improved technique provides the following guaranteed lower and upper
bounds (χinf , χsup) of Iex:

χinf 6 Iex 6 χsup, (29)

with

χinf = Ih + Ihh + Ihhh,λ −

∣

∣

∣

∣

ẽcre,ωλ
δλ,λ̄ +

1

2
ecre,Ω ẽcre,Ω\ωλ

∣

∣

∣

∣

; (30a)

χsup = Ih + Ihh + Ihhh,λ +

∣

∣

∣

∣

ẽcre,ωλ
δλ,λ̄ +

1

2
ecre,Ω ẽcre,Ω\ωλ

∣

∣

∣

∣

. (30b)

These bounds depend on both parameters λ and λ̄ associated to subdomains ωλ and
ωλ̄, respectively. In order to get a practical minimizer, one seeks to reduce ratio λ/λ̄ as
much as possible by choosing: the smallest parameter λ such that domain ωλ surrounds
the zone of interest ω; the largest parameter λ̄ such that domain ωλ̄ remains a homothetic
mapping of ωλ (preserving its geometric shape) contained in Ω, and leading to sharp error
bounds.

A second improved technique has been introduced and relies on similar homotheticity
arguments, but differs from the first one presented in this paper in the way of bounding
part qωλ

, which involves another fundamental inequality. The interested reader can refer
to [2] for more information. This alternative bounding technique leads to guaranteed

9
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lower and upper bounds (ζinf , ζsup) of Iex. Those bounds involve only one parameter λ̄,
which can be chosen such that subdomain ωλ̄ recovers the zone where the solution of
adjoint problem has stiff gradients.

5 NUMERICAL RESULTS

All numerical experiments have been performed assuming that the material remains
isotropic, homogeneous, linear and elastic with Young’s modulus E = 1 and Poisson’s
ratio ν = 0.3. Furthermore, the two-dimensional examples are assumed to satisfy the
plane-stress approximation. The balance technique used to derive a statically admissible
stress field is the element equilibration technique (EET) combined with a p-refinement
technique consisting of a p+ k discretization, p being the FE interpolation degree and k
an additional degree equal to 3 (see [4]).

Performances of the proposed bounding techniques are illustrated through the two-
dimensional cracked structure of Figure 2, which presents two round cavities. A homoge-
neous Dirichlet boundary condition is imposed to the bigger circular hole, whereas a unit
internal constant pressure p0 is applied to the smaller one. Furthermore, the top-left edge
is subjected to a unit normal traction force density t = +n. Besides, a single edge crack
emanates from the bottom of the smaller cavity. The two lips of this crack as well as
the remaining sides are traction-free boundaries. The FE mesh Ωh consists of 7 751 linear
triangular elements and 4 122 nodes (i.e. 8 244 d.o.f.), see Figure 2. The reference mesh
Ωh̄ used to compute an “overkill” solution and to define a “quasi-exact” value, denoted
Iex for convenience, of the quantity of interest is built up by dividing each element into
256 elements; thereby, it is made of 1 984 256 linear triangular elements and 996 080 nodes
(i.e. 1 992 160 d.o.f.).

(b)(a)

x

y

t

p0

U
d
= 0

ω

Figure 2: Cracked structure model problem (a) and associated finite element mesh (b).

The quantity of interest being considered in this work is a linear function of displace-
ment field u associated to reference problem. It is the average value of the component
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σxx of the stress field ✛ in a local zone ω ⊂ Ω:

I = 〈σxx〉ω =
1

|ω|

∫

ω

σxx dΩ, (31)

where extraction domain ω corresponds to an element of FE mesh Ωh illustrated in Fig-
ure 2 and |ω| represents its measure. The loading of the the adjoint problem involves an
extractor corresponding to a uniform prestress field ✛̃Σ = K ✧̃Σ over element ω, where

✧̃Σ =
1

|ω|
x⊗ x.

The main contributions to the error estimate ecre,Ω associated to reference problem are
by a majority located near the crack tip, while that to the error estimate ẽcre,Ω associated
to adjoint problem are concentrated around the zone of interest ω. Therefore, the error
estimates for both reference and adjoint problems are localized in disjoint regions.

The homothetic center O coincides with the center of the circle Cω circumscribed by
element ω and the values of parameters λ and λ̄ involved in the first improved technique
are set to 2 rCω and 14 rCω , respectively, where rCω corresponds to the radius of Cω. The
value of parameter λ̄opt involved in the second improved technique is set to 9 rCω , which
enables to achieve the sharpest bounds for quantity of interest I.

The results obtained for classical bounding technique as well as first and second im-
proved variants are presented in terms of the normalized bounds (ξ̄inf , ξ̄sup), (χ̄inf , χ̄sup),
(ζ̄inf , ζ̄sup), respectively, with respect to Iex. Figure 3 shows the evolutions of the normal-
ized lower and upper bounds of Iex for quantity of interest I as functions of the number of
elements Ñe contained in the FE mesh Ωh̃ associated to adjoint problem for the classical
bounding technique as well as the two improved ones. The adjoint mesh Ωh̃ has been
locally refined near the zone of interest ω, since the loading and the contributions to
the global error estimate of the adjoint problem are highly localized in this region. One
can see a slight improvement in the bounds obtained with the first improved technique
compared to the classical one. As regards the second improved technique, a very clear
improvement is observed allowing to achieve sharp local error bounds without refining
too much the adjoint problem, thus keeping an affordable computing time.

6 CONCLUSION AND PROSPECTS

In this paper, we introduced new approaches related to the general framework of robust
goal-oriented error estimation dealing with extraction techniques. These techniques are
based on mathematical tools which are not classical in model verification. Various linear
quantities of interest (such as the local average of a stress component, the pointwise value
of a displacement component or a stress intensity factor) are considered in [2] to illustrate
the effectivity of the proposed techniques. Those numerical experiments clearly demon-
strate the efficiency of these methods to produce strict and relevant bounds on the errors
in linear local quantities of interest compared to the classical bounding technique, espe-
cially when the discretization error related to the reference problem is not concentrated in
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Figure 3: Evolutions of the lower and upper normalized bounds of Iex for local quantity I1, obtained using
the classical bounding technique as well as first and second improvements, with respect to the number of
elements Ñe associated to the discretization of the adjoint problem.

the local zone of interest. Nevertheless, the second proposed technique seems to achieve
sharper local error estimates than the first one. Finally, such powerful methods may
open up opportunities and help widen the field of robust goal-oriented error estimation
methods. Both techniques could be easily extended to other quantities of interest but are
restricted to linear problems, i.e. cases where Saint-Venant’s principle is well established.
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