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Abstract. Nowadays, a major interest in research activities concerns methods that aim
at providing a reliable mean to control and assess the numerical quality of specific quanti-
ties, i.e. strict and accurate local error bounds. A general method for robust goal-oriented
error estimation relies on the concept of constitutive relation error (CRE), associated to
admissible stress fields and classical extraction techniques. This paper first deals with the
comparison between different techniques used for constructing admissible stress fields,
which are usually required in methods providing for robust global/goal-oriented error
estimation. In this work, a new hybrid technique, called the element equilibration +

star-patch technique (EESPT), is compared with the two other main existing techniques,
namely the element equilibration technique (EET), and the star-patch equilibration tech-

nique (SPET) in terms of quality of associated error estimates, computational cost and
simplicity of practical implementation into existing finite element codes. Besides, an en-
hanced version of the EESPT method has been revisited and demonstrates its relevance
to produce sharper estimators. In a second part, we analyze goal-oriented error estimators
constructed from the CRE. Two- and three-dimensional numerical experiments are car-
ried out to investigate the performance of each estimator for the calculation of guaranteed
error bounds on specific quantities of interest.

1 INTRODUCTION

The growing interest in the use of numerical simulation has intensively spurred the
development of practical and efficient tools allowing to assess the quality of numerical
approximate solutions obtained through the finite element method (FEM). First research
works dealt with the development of effective global error estimation methods, providing
an appraisal of the global measure of the discretization error by means of global energy
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norms [1]. From now on, both researchers and engineers are motivated by the desire to
evaluate numerical quality of specific quantities of practical interest, which are relevant
for industrial decision making and certification. Various goal-oriented error estimation
methods have been emerging for few years, applied to both linear and non-linear problems.

Nevertheless, only a few error estimators lead to robust and relevant error estimates
ensuring the recovery of strict upper bounds of the exact error both for global or goal-
oriented estimation. Such error estimators are currently based on the post-processing
of the FE solution to build an admissible one. More precisely, a complex and key task
concerns the derivation of a statically admissible stress field, whose construction relies
on recovery techniques. A first technique relies on a dual formulation of the reference
problem, which can be brought back to the calculation of another global solution of the
reference problem leading straightforwardly to an admissible stress field. Despite its re-
markable accuracy, this technique is not appropriate for error estimation, as it requires
the use of a completely different formulation involving a costly global computation. A
second technique, called the element equilibration techniques (EET) [1, 2], is based on the
computation of equilibrated tractions through the use of an energetic relation, called pro-
longation condition, prior to the calculation of a statically admissible stress field through
the fine resolution of problems defined at the element scale. Despite its affordable com-
putational cost, this method is reckoned to be difficult to implement into a standard FE
framework. A third technique, called the star-patch equilibration technique (SPET) [3],
alleviates this difficulty since it relies on the partition of unity concept and, hence, leads
to the fine resolution of self-balanced problems defined over stars or patches of elements,
resulting in a higher computational cost. However, the practical implementation of this
flux-free method is facilitated, as it does not require any flux-equilibration procedure.
Eventually, the recently introduced and last technique, called the element equilibration

+ star-patch technique (EESPT) [2, 4], is an hybrid technique, as it benefits from com-
ponents of both EET and SPET methods. Hence, this technique tends to be a fairly
good trade-off between easiness of implementation, computational cost and quality of the
error estimate. In this work, we aim at comparing performances of those classical bal-
ance techniques on industrial numerical examples. Besides, an enhanced version of the
construction of equilibrated tractions involved in the EET and EESPT methods extends
ideas first tackled in [5] in order to improve the set of balanced tractions in local regions.
It consists in the local minimization of the complementary energy through a weakened
prolongation condition in order to improve the quality of equilibrated tractions. The
major breakthrough is the introduction of geometric and error criteria to define specific
zones for optimizing the tractions, with the objective to obtain sharper bounds without
noticeably increasing the computational cost.

As regards robust goal-oriented error estimation, a general method, initially developed
in [6], has been prone to considerable developments. This technique, based on classical and
powerful tools, such as extraction techniques and, more recently, handbook techniques and
projection procedures [7], provides high-quality local error bounds on specific quantities
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of interest. It also requires the resolution of an auxiliary problem, often referred to as dual
(or adjoint) problem, involving extraction operators (or extractors). The resulting bounds
are defined by means of two global error estimates with respect to the energy norm of
the (quasi-)exact discretization error of reference and adjoint problems, respectively. An
overview of the main features of this method is presented in this work.

The paper is organized as follows. Section 2 presents basics on error estimation in order
to introduce the concept of admissible solution. Section 3 describes the main features of
the three equilibration techniques which are considered to set up admissible stress fields;
it particularly focuses on the new hybrid technique EESPT. Section 4 deals with the
enhanced version of the EESPT technique, while Section 5 presents the key aspects of the
goal-oriented error estimation based on extraction techniques. Section 6 shows numerical
results on two- and three-dimensional applications.

2 BASICS ON ERROR ESTIMATION AND ADMISSIBLE SOLUTIONS

2.1 The reference problem and associated discretization error

Let us consider a mechanical structure represented by an open bounded domain Ω,
with boundary ∂Ω. The prescribed volume and surface mechanical solicitations acting on
structure Ω are: a displacement field Ud on part ∂1Ω 6= ∅; a traction force density F d on
the complementary part ∂2Ω of ∂Ω such that ∂1Ω ∪ ∂2Ω = ∂Ω, ∂1Ω ∩ ∂2Ω = ∅; a body
force field f

d
within Ω. Structure Ω is composed of an isotropic, homogeneous material

with linear and elastic behavior characterized by Hooke’s tensor K. Given a quasi-static
loading, an isothermal case and a small perturbations state, the reference mechanical
problem consists in finding a displacement/stress pair (u, ) in the space domain Ω, which
verifies:

◦ the kinematic conditions: u ∈ U ; u|∂1Ω = Ud; (u) =
1

2

(

∇(u) + ∇T (u)
)

; (1)

◦ the equilibrium equations: ∈ S;

∀ u∗ ∈ U0,

∫

Ω

Tr
[

(u∗)
]

dΩ =

∫

Ω

f
d
· u∗ dΩ +

∫

∂2Ω

F d · u
∗ dS; (2)

◦ the constitutive relation: (M) = K
(

u(M)
)

∀M ∈ Ω, (3)

where (u) represents the classical linearized strain tensor corresponding to the symmetric
part of the gradient of displacement field u. Affine spaces U = {u ∈ [H1(Ω)]3} and
S = { ∈ Ms(3) ∩ [L2(Ω)]6} guarantee the existence of finite-energy solutions, Ms(n)
representing the space of symmetric square matrices of order n. U0 ⊂ U denotes the
vectorial space associated to U .

In practical applications, the exact solution of the reference problem, hereafter de-
noted (u, ), remains usually out of reach and only an approximate solution, referred to
as (uh, h), can be obtained through numerical approximation methods (such as the finite
element method (FEM) associated with a space mesh Mh mapping physical domain Ω).
Such a numerical approximation is sought in a discretized space Uh×Sh ⊂ U×S. A
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displacement-type FEM leads to a displacement field uh verifying kinematic constraints
(1), while a stress field h can be derived from the constitutive relation (3). The resulting
discretization error, denoted eh = u − uh, can be measured by means of the classical

energy norm ‖•‖u,Ω =
(∫

Ω
Tr

[

K (•) (•)
]

dΩ
)1/2

, providing a global discretization error
‖eh‖u,Ω. Besides, local measures defined with respect to a specified quantity of interest

I(u) of the problem enable one to capture local errors eloch = I(u) − I(uh).

2.2 The construction of an admissible solution

Verification research activities focus on the setting up of robust error estimation meth-
ods. The construction of what is called an “admissible solution” is currently an essential
and key step in order to obtain guaranteed error bounds. An admissible pair (ûh ,̂ h) verifies
all the equations of the reference problem, apart from constitutive relation (3). On the one
hand, a kinematically admissible displacement field is generally obtained by taking merely
ûh equal to uh. On the other hand, the derivation of a statically admissible stress field can
be achieved by using various techniques. Such an admissible stress field ĥ can be deduced
from the data and the FE stress field h alone. Section 3 focuses on the key points of the
three existing techniques suitable to error estimation, namely the element equilibration

technique (EET), the star-patch element technique (SPET) and the element-equilibration

+ star-patch technique (EESPT). Starting from an admissible solution (ûh ,̂ h) provided
by one of the previously mentioned balance techniques, one can measure the residual
on constitutive relation (3), called the constitutive relation error (CRE) and hereafter

referred to as ecre(ûh ,̂ h) = ‖̂h −K (ûh)‖,Ω, with ‖•‖,Ω =
(∫

Ω
Tr

[

• K
−1 •

]

dΩ
)1/2

. As-
sessing the CRE ecre(ûh ,̂ h) provides a guaranteed upper bound of the global discretization
error ‖eh‖u,Ω, as the well-known Prager-Synge theorem leads to the following bounding
inequality:

‖eh‖
2
u,Ω = ‖u− ûh‖

2
u,Ω 6 ‖u− ûh‖

2
u,Ω + ‖ − ĥ‖

2
,Ω = e2cre(ûh ,̂ h), (4)

which conveys the guaranteed nature of the CRE ecre(ûh ,̂ h). Now, let us focus on the
principles of the EET and SPET methods and the main aspects of the EESPT method.

3 TECHNIQUES FOR CONSTRUCTING ADMISSIBLE STRESS FIELDS

Let us define E , N , I, N \ I and J the set of elements, nodes, vertices, non-vertex
nodes and edges of the FE mesh Mh, respectively. EJ

Γ ⊂ E represents the set of elements
connected to edge Γ, respectively. J I

i ⊂ J represents the set of edges connected to vertex
i. N E

E ⊂ N and N J
Γ ⊂ N stand for the set of nodes associated with element E and edge

Γ, respectively. IE
E ⊂ I and IJ

Γ ⊂ I designate the set of vertices connected to element E

and edge Γ. N E
E \IE

E ⊂ N \I denotes the set of non-vertex nodes connected to element E.
Finally, the FE displacement field uh is assumed to belong to the FE interpolation space
U

p
h of degree less than or equal to p. Up

h corresponds to its one-dimensional correspondent.
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3.1 The element equilibration technique EET - standard method

The first technique, called the element equilibration technique (EET ), initially intro-
duced by Ladevèze [1], uses the FE properties of the stress field h through an energy
relation, called prolongation condition, connecting the searched admissible stress field ĥ

to the FE stress field h under the form:
∫

E

(̂h − h) ∇ϕi dΩ = 0 ∀ E ∈ E , ∀ i ∈ N E
E , (5)

where ϕi ∈ Up
h is the FE shape function associated with node i.

Classically, the EET can be decomposed into two stages: first, construction of tractions
F̂ h in equilibrium with the external loading (F d, fd

) on element boundaries ∂E of the
spatial mesh Mh; second, calculation of an admissible stress field ĥ in equilibrium with
these equilibrated tractions F̂ h and body force field f

d
at the element level:

ĥ|E ∈ S F̂
h

⇐⇒











ĥ|E ∈ S

div ĥ|E + f
d

= 0 in E

ĥ|E nE = ηE F̂ h on ∂E

(6)

Tractions F̂ h are intended to reproduce the stress vectors ĥ|EnE on edges ∂E of element

E ∈ E : ĥ|E nE = ηE F̂ h on∂E, where nE is the outgoing normal vector to element E and
ηE = ±1 are functions ensuring the continuity of the stress vector across ∂E. Besides,
these tractions F̂ h are built in equilibrium with the external loading (F d, fd

).

The procedure for calculating tractions F̂ h on the element edges of the mesh Mh is
quasi-explicit in the following sense: first, prescribed constraints ηE F̂ h = F d are enforced
on ∂E ⊂ ∂2Ω; second, prolongation condition (5) leads to local problems PN

i associated
with each node i ∈ N . Problem PN

i is a linear system, whose unknown quantities over

edges Γ ∈ J I
i are projections b̂

(i)

|Γ of traction F̂ h|Γ over the FE shape function ϕi. The

existence of solutions to problem PN
i follows from the FE equilibrium properties. In

the case of multiple solutions of local problems PN
i , the least-squares minimization of a

cost function J(b̂
(i)

) involving known quantities b
(i)
|Γ , which are the projections of the FE

stress vector h n, over edges Γ ∈ J I
i , on the FE shape function ϕi, is performed to ensure

uniqueness of the solution. Eventually, force fluxes F̂ h|Γ are sought along each edge Γ ∈ J

in the FE space U
p
h|Γ and are recovered from the projections b̂

(i)

|Γ associated to each node

i ∈ N J
Γ by merely solving a set of linear local problems defined over each edge Γ ∈ J .

Afterwards, the construction of such balanced tractions allows to seek the local re-
striction ĥ|E of an admissible stress field ĥ to each element E ∈ E as the solution of a

self-equilibrated local problem PE
E (6), for which the pre-computed tractions F̂ h|∂E and

body force field f
d|E

act as prescribed external loading over each element E ∈ E . Al-

though the resolution of problem (6) was originally performed analytically by searching
the admissible stress field in a piecewise polynomial basis [1], numerical methods, such as
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the displacement-type FEM combined with a p-refinement or h-refinement technique, are
henceforth employed to achieve an accurate approximation of the exact strictly admis-
sible stress field. The p-approach with an additional degree k = 3 is commonly favored
to solve numerically local problems (6), as it commonly provides quasi-admissible stress
fields leading to accurate error bounds.

In spite of its affordable computational cost, the EET faces a major drawback related
to its difficult and complex implementation inherent to the construction of equilibrated
tractions.

3.2 The star-patch equilibration technique SPET - flux-free method

The second technique, called the star-patch equilibration technique (SPET ), originally
introduced in the field of fluid mechanics, has been adapted to solid mechanics by Parés,
Dı́ez and Huerta [3] under the name flux-free technique. This technique gets around the
need of flux-equilibration procedure, resulting in an implementation easier than the first
technique. Its specificity is the introduction of a partition of unity leading to the resolution
of self-equilibrated local problems defined on sets of elements, also called patches or stars.

Starting from equilibrium equations (2) and replacing u by eh + uh, one obtains the
global problem defining the discretization error eh = u − uh that reads: Find eh ∈ U0

such that:
∫

Ω

Tr
[

K (eh) (u∗)
]

dΩ = −

∫

Ω

Tr
[

K (uh) (u∗)
]

dΩ +

∫

Ω

f
d
· u∗ dΩ +

∫

∂2Ω

F d · u
∗ dS

= Rh(u∗) ∀ u∗ ∈ U0, (7)

where Rh represents the weak residual functional associated with the FE approximation.
This residual equation expresses the extent to which a numerical solution fails to verify
the the FE equilibrium equations.

Introducing the partition of unity, defined by the linear FE shape functions λi ∈ U1
h

based on vertices i ∈ I, into (7) leads to the definition of a set of local problems defined
over patches Ωi of elements surrounding each vertex i ∈ I: Find ei ∈ U0|Ωi

such that:
∫

Ωi

Tr
[

K (ei) (u∗)
]

dΩ = Rh(λi u
∗) ∀ u∗ ∈ U0|Ωi

, (8)

where U0|Ωi
is the restriction of U0 to patch Ωi: U0|Ωi

=
{

u∗ ∈ U |Ωi
, u∗

|∂1Ω∩Ωi
= 0

}

.

Solvability and well-posedness of problems (8) is ensured by the introduction of pro-
jector Π : U0 → U

1
h,0 onto linear FE space U

1
h,0 into the right-hand side term of (8),

especially for an interpolation degree p = 1 (see [2] for full details). Replacing the r.h.s
term by Rh(λi (u∗ − Πu∗)) into (8) before using the well-known Galerkin orthogonality
property leads to a new set of local problems PI

i over each patch Ωi in the form: Find
ei ∈ U0|Ωi

such that:
∫

Ωi

Tr
[

K (ei) (u∗)
]

dΩ = Rh(λi (u∗ − Πu∗)) ∀ u∗ ∈ U0|Ωi
. (9)
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Such local problems (9) defined at the patch scale are self-equilibrated, which consti-
tutes a serious advantage for implementation purposes. In practice, the fine resolution
of local problems (9) is performed using a classical displacement FEM along with a p-
approach, i.e. using the original FE mesh Mh with a p+ 3 discretization over each patch
Ωi. Numerical solutions ei of problems (9) allow to obtain both a global error estimate,
which is a guaranteed upper bound of the energy norm of the discretization error, and an
admissible stress field over each element E ∈ E :

‖eh‖u,Ω 6







∑

E∈E

∥

∥

∥

∥

∥

∥

∑

i∈IE
E

ei|E

∥

∥

∥

∥

∥

∥

2

u,E







1/2

; ĥ|E = h|E + K





∑

i∈IE
E

ei|E



 , (10)

with ‖•‖u,E =

(∫

E

Tr
[

K (•|E) (•|E)
]

dΩ

)1/2

. Though rather accurate and simple, the

SPET may present a serious drawback inherent to the high calculation cost of problem
PI

i (9) for three-dimensional computations, as problems PI
i (9) are defined at the patch

scale, contrary to problems PE
E (6) defined at the element scale.

3.3 The element equilibration and star-patch technique EESPT - hybrid

method

This last technique, formerly studied in Ladevèze et al [2, 4], is a hybrid and appealing
method in the sense that it takes advantage of the ingredients of both EET and SPET
methods introduced in Section 1, namely the prolongation condition and partition of
unity concept. Similarly to the EET method, the procedure to construct an admissible
stress field is carried out in two main steps: first, construction of a set of tractions F̂ h in
equilibrium with the external loading (F d, fd

) on element edges ∂E of the spatial mesh
Mh; second, calculation of an admissible stress field ĥ solution of static local problems
PE

E (6) over each element E ∈ E where the equilibrated tractions F̂ h act as Neumann
boundary conditions. The second stage is similar to that involved in the EET method.
Therefore, we now focus on the key points related to the traction recovering step.

Given that the restriction of prolongation condition (5) to linear FE shape function
λi ∈ U1

h is sufficient to satisfy equilibrium condition between tractions and body force field,
it can be reformulated in the global form; using then the weak form of the equilibrium
equations satisfied by ĥ leads to:

∑

E∈E

[∫

∂E

ηE F̂ h · v
∗
h dS −

∫

E

(

Tr [h (v∗h)] − f
d
· v∗h

)

dΩ

]

= 0 ∀ v∗h ∈ V
1
h. (11)

where V
1
h represents the space of piecewise linear polynomial functions which are con-

tinuous over each element E ∈ E and possibly discontinuous across the inter-element
edges.
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By using the partition of unity defined by the linear FE shape functions λi ∈ U1
h , let

us now consider the following set of local problems PI
i defined over patch Ωi of elements

E ∈ EI
i associated to each vertex i ∈ I: Find λi F̂

(i)

h such that:

a(λi F̂
(i)

h , v∗h) = QΩi
(λi v

∗
h) ∀ v∗h ∈ V

1
h, (12)

where a(λi F̂
(i)

h , v∗h) =
∑

Γ∈J I
i

∫

Γ

λi F̂
(i)

h ·





∑

E∈EJ
Γ

ηE v∗h|E



 dS

and QΩi
(λi v

∗
h) =

∫

Ωi

(

Tr [h (λi v
∗
h)] − f

d
· λi v

∗
h

)

dΩ.

The specificity of problems PI
i (12) is that the kernel of bilinear operator a(•, •) is

known beforehand, as it corresponds to the space Ū
1
h,0|Ωi

=
{

v∗h ∈ V̄
1
h, v

∗
h|Γ∈J I

i
∩∂Ω = 0

}

,

where V̄
1
h defines the set of piecewise linear polynomial functions v∗h ∈ V

1
h which are

continuous over the whole patch Ωi and a fortiori across edges Γ ∈ J I
i . The a priori

knowledge of this kernel makes this technique practical and readily implementable. Thus,
solvability of problems (12) is ensured for a FE interpolation degree p > 2 by considering

Ū
1
h,0|Ωi

along with FE properties. A special treatment is required in the case p = 1,
for which the r.h.s term of problems (12) is replaced by QΩi

(λi v
∗
h(xi)), thus ensuring

well-posedness (see [2] for more details).
Uniqueness of the solution of such problems is guaranteed by means of the minimization

of a cost function of the form [2]: JΩi
(λi F̂

(i)

h ) = 1
2

∑

Γ∈J I
i

(λi F̂
(i)

h − λi F
(i)
h )2|Γ, where the

known quantity λi F
(i)
h|Γ depends on the projection of the FE stress field h over the edge

Γ ∈ J I
i and the traction force density F d.

Eventually, searching λi F̂
(i)

h in U
p
h|Γ leads to equilibrated tractions F̂ h along each edge

Γ ∈ J merely defined as F̂ h|Γ =
∑

i∈IJ
Γ

(λi F̂
(i)

h )|Γ. Let us recall that such tractions

naturally satisfy (11). Furthermore, enforcement of conditions ηE F̂ h = F d over edges
Γ ⊂ ∂2Ω can be achieved by adding these constraints in the constrained minimization
problem. In the following, we focus on the main points dealing with the enhanced version.

4 IMPROVEMENT IN THE CONSTRUCTION OF EQUILIBRATED

TRACTIONS

The principle, inspired from an idea developed in [5], is to optimize the quality of the
computed admissible stress field by improving the recovering strategy for the construction
of equilibrated tractions without impairing the corresponding computational cost too
much. To do so, the original prolongation condition involved in the EET and EESPT
has been weakened with the objective to confer a greater flexibility in the construction of
balanced tractions, thus leading to the following energetic relation:

8
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∫

E

(̂h − h) ∇ϕi dΩ = 0 ∀ i ∈ N E
E \ IE

E, ∀ E ∈ Ee, (13)

where ϕi is the FE shape function associated with non-vertex node i and Ee ⊂ E (similarly,
Je ⊂ J ) is the set of elements (respectively edges) involved in the enhanced procedure.
Various criteria, such as geometric or error estimate criteria, can be considered to a priori

select part Ωe, i.e. the set Ee of elements. Hence, the construction of balanced tractions
along edges Γ ∈ Je involved in the EET and EESPT methods needs to be adapted to this
weakened prolongation. Densities F̂ h along edges Γ ∈ Je are still sought in U

p
h|Γ, but are

henceforth decomposed in the form:

F̂ h = Ĥh + R̂h on Γ ∈ Je, with

∫

Γ

Ĥh ϕi = 0 ∀ i ∈ IJe

Γ , (14)
∫

Γ

R̂h ϕi = 0 ∀ i ∈ N Je

Γ \ IJe

Γ . (15)

First, part Ĥh on Γ ∈ Je can be determined in the same way as for the original
construction, but using both weak prolongation condition (13) and relation (14) instead of
strong prolongation condition (5). Second, calculation of part R̂h on Γ ∈ Je is performed
by minimizing the complementary energy (or, equivalently, the constitutive relation error)
locally on part Ωe ⊂ Ω containing elements E ∈ Ee under the following constraints:
Neumann boundary conditions over edges Γ ∈ Je∩∂2Ω; equilibrium conditions of tractions
Ĥh + R̂h with body force field f

d
over each element E ∈ Ee; equilibrium conditions of

tractions Ĥh + R̂h with body force field f
d

and standard tractions F̂
Std

h over each element

E ∈ Ēe \ Ee, where Ēe ⊂ E denotes the set of elements E connected to at least one edge
Γ ∈ Je; therefore, Ēe \ Ee contains all the elements connected to one and only one edge

Γ ∈ Je; F̂
Std

h are pre-calculated tractions over edges Γ ∈ ∂E\Je coming from the standard
construction over element E ∈ Ēe \ Ee. The yielded tractions are optimized so that the
resulting estimate is sharper than the one obtained by original version of the construction
of balanced tractions.

5 GOAL-ORIENTED ERROR ESTIMATION

5.1 The extraction technique and associated adjoint problem

Let us now outline the main aspects of the general method dealing with goal-oriented
error estimation. The objective consists in evaluating the discretization error in a specific
quantity of interest I by means of extraction techniques, i.e. by expressing the local
quantity I in the global form involving extraction operators or extractors. Let us consider
a quantity of interest I represented by a linear functional  L of displacement field u, defined
on space U , written in the following global form:

I =  L(u) =

∫

Ω

(

Tr
[

Σ̃ (u)
]

+ f̃
Σ
· u

)

dΩ, (16)

9
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where Σ̃ and f̃
Σ

are known quantities, called extractors, homogeneous to a stress field
and a body force field, respectively. Then, the approach consists in introducing an ad-
joint problem, similar to the reference problem, but with a different mechanical loading
involving not (F d, fd

) either, but extractors. The adjoint problem consists in finding a
displacement/stress pair (ũ,̃ ) in the space domain Ω, which verifies:

◦ the kinematic conditions: ũ ∈ U0; (17)

◦ the equilibrium equations: ˜∈ S; ∀ u∗ ∈ U0,

∫

Ω

Tr
[

˜(u∗)
]

dΩ =  L(u∗); (18)

◦ the constitutive relation: (̃M) = K
(

ũ(M)
)

∀M ∈ Ω. (19)

As seen earlier in Section 2.1, one can compute an approximate solution, denoted
(ũh ,̃ h), using a FEM associated with a space mesh M̃h which may differ from FE mesh
Mh used to solve the reference problem. Subsequently, an admissible solution (ˆ̃uh ,̂̃ h) of
the adjoint problem can be derived from one of the equilibration techniques presented in
Sections 3 and 4. Eventually, one can compute the associated CRE ecre(ˆ̃uh ,̂̃ h).

5.2 The resulting bounds

Let Iex and Ih be the unknown exact value of the quantity of interest I and its associated
approximate value obtained through the FEM, respectively. Owing to the linearity of  L,
the discretization error in I reads Iex− Ih =  L(u−uh). Given admissible solutions (ûh ,̂ h)
and (ˆ̃uh ,̂̃ h) of reference and adjoint problems, respectively, the procedure described in [8]
leads to the following bounding inequality:

|Iex − Ih − Ihh| 6
1

2
ecre(ûh ,̂ h) ecre(ˆ̃uh ,̂̃ h), (20)

where Ihh =
1

2

∫

Ω

Tr
[

(̂h −K (ûh)) K−1 (̂̃h + K (ˆ̃uh))
]

dΩ +  L(ûh − uh) can be viewed as a

correction term related to the independent nature of the spatial discretization associated
to the reference and adjoint problems.

The resulting bound on the local error Iex−Ih is expressed as not only the product of two
global error estimates, namely ecre(ûh ,̂ h) and ecre(ˆ̃uh ,̂̃ h), related to reference and adjoint
problems, respectively, but also using a calculable correction term Ihh. Hence, quantity
Ih+Ihh can be considered as a new approximate value of Iex. Note also that the derivation
of bounding relation (20) requires no orthogonality property of the FE solutions, contrary
to classical procedures. A detailed description and proofs of the bound properties can be
found in [8, 7].

6 NUMERICAL RESULTS

Performances of the proposed robust global estimators are illustrated through a
two-dimensional weight sensor under bending, represented in Figure 1. The FE mesh,
containing 11 807 linear triangular elements and 6 320 nodes (i.e. 12 640 d.o.f.), is

10
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given in Figure 1. The mesh density increases toward the top and bottom regions
of the two holes, which constitute the highest stress zones. The reference solution
is obtained from a very fine mesh made of 3 326 963 linear triangular elements and
1 668 711 nodes (i.e. 3 337 422 d.o.f.) (“overkill solution”). The quasi-exact value of the
energy norm ‖eh‖u,Ω of the discretization error (i.e. the reference error) is equal to 347.997.

f

x

y

Figure 1: Weight sensor model problem (left) and associated finite element mesh (right).

Capabilities of the different techniques for global error estimation are reported in Ta-
ble 1 and compared in terms of numerical quality and computational cost. It is observed
that the SPET method gives better numerical accuracy, while EET and EESPT meth-
ods require lower computational cost, at least 4 times less expensive than that needed
for the SPET method. Eventually, the EESPT method seems to be a fairly good trade-
off, as it provides slightly better accuracy than the EET at similar CPU cost, and its
implementation has been made simpler than that of the EET.

Table 1: Comparison of the error estimators given by the EET, the SPET, and the EESPT.

Methods Estimate ecre Effectivity index ecre/ ‖eh‖u,Ω Normalized CPU time

EET 812.999 2.3362 1.000
SPET 556.629 1.5995 4.218
EESPT 812.801 2.3357 1.156

Figure 2 shows maps of the elementary contributions to the global reference error and
that of the global estimates, obtained by the EET and SPET and EESPT methods,
respectively. The largest contributions to the global reference error/estimate are located
in the neighborhood of the highly-loaded zone.

(a) (b) (c) (d)

Figure 2: Maps of local contributions to the global reference error (a), the error estimates computed
using the EET (b), the SPET (c), and the EESPT (d), and zoom around the highly-loaded region.
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7 CONCLUSIONS

Assessment of the performances of various techniques to reconstruct admissible fields
has been performed. Numerical results show that the hybrid EESPT method is a worth-
while technique allowing to obtain accurate error bounds at reasonable computing time
with little effort, as the practical implementation is simpler than the EET method. How-
ever the EESPT, as well as the EET, gives less accurate estimate than the SPET, since
the latter presents sharper upper bounds than the former. Nevertheless, the computa-
tional cost needed to compute the EESPT is much smaller than that required for the
SPET. In addition, one can prove that the enhanced procedure applied to the EESPT (or
EET) enables to recover better effectivity indices, i.e. sharper estimates, than the original
construction, while keeping an affordable CPU time in the case of error estimate criteria.
Those results confirm that accuracy of the yielded estimate is driven by the quality of the
associated balanced tractions, especially in specific regions where the local contributions
to the error are predominant. Besides, when willing to deal with goal-oriented error esti-
mation, this improved procedure can be fairly used to obtain high-quality bounds on the
local error on a given quantity of interest.
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