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Abstract

We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i =

1, . . . , N , defined by a stochastic differential equation with diffusion co-

efficients depending on a random variable φi. The distribution of the

random effect φi depends on unknown population parameters which are

to be estimated from a discrete observation of the processes (Xi). The

likelihood generally does not have any closed form expression. Two es-

timation methods are proposed: one based on the Euler approximation

of the likelihood and another based on estimations of the random effects.

When the distribution of the random effects is Gamma, the asymptotic

properties of the estimators are derived when both N and the number of

observations per subject tend to infinity. The estimators are computed

on simulated data for several models and show good performances.
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1 Introduction

Stochastic differential equations (SDEs) with random effects have been the sub-

ject of several recent contributions, with various applications such as pharma-

cokinetic/pharmacodynamic, neuronal modeling (Picchini et al., 2010; Delattre

and Lavielle, 2013; Donnet and Samson, 2013). Several estimation methods

have been proposed to provide estimators in these complex models. The exact

maximum likelihood can be studied theoretically (Nie, 2006) but the likelihood

has no explicit expression except in some special cases. In Delattre et al. (2013),

the case of a linear random effect in the drift together with a specific distribu-

tion for the random effects is investigated. In this case, the exact maximum

likelihood estimator is explicit and studied. In the general case, Picchini et al.

(2010); Picchini and Ditlevsen (2011) propose approximations of the likelihood

based on Hermite expansion and Gaussian quadrature. All these references work

with random effects in the drift, and not in the diffusion coefficient, except De-

lattre and Lavielle (2013) who incorporate measurement error and propose an

approximation of the likelihood with the extended Kalman filter.

Here, we focus on discretely observed SDEs with a random effect in the dif-

fusion coefficient. The distribution of the random effect depends on unknown

parameters to be estimated. For simplicity, we assume that the drift is zero and

that there is a linear random effect in the diffusion coefficient. Extensions are

discussed in Sections 4 and 5, in particular the case of non null drift and of a

more general diffusion coefficient.

Statistical inference for discretely observed SDEs with no random effects has

been widely studied (see Kessler et al., 2012, and references therein). In Genon-

Catalot and Jacod (1993) the estimation of unknown fixed parameters in the

diffusion coefficient is studied with discrete observations of a single trajectory

when the sampling interval tends to zero. The likelihood of these observations is

not explicit, therefore estimating equations are built based on the Euler approx-

imation of the SDE with drift set to zero. One of the strategies described below

follows the same idea, but here the parameters are random. This complicates

the definition and the theoretical study of the estimator.

More precisely, we consider N real valued stochastic processes (Xi(t), t ≥ 0),

i = 1, . . . , N , with dynamics ruled by the following SDEs:

dXi(t) = φi σ(Xi(t)) dWi(t), Xi(0) = x0i , i = 1, . . . , N, (1)
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where (Wi)1≤i≤N are N independent Wiener processes, (φi)1≤i≤N are N i.i.d.

random variables taking values in (0,+∞), (φi)1≤i≤N and (Wi)1≤i≤N are in-

dependent. The function σ(x) is known and real-valued. Each process (Xi(t))

represents an individual, the variable φi represents the random effect of indi-

vidual i. The variables (φi)1≤i≤N have a common distribution g(ϕ, θ)dν(ϕ)

on (0,+∞) where ν is a dominating measure and θ is a vector of unknown

parameters called population parameters, belonging to a set Θ ⊂ R
p.

Our aim is to estimate θ from discrete observations {Xi(ti,j), j = 1, . . . , n, i =

1, . . . , N}. In the case of a linear random effect in the diffusion coefficient (1),

choosing an inverse Gamma distribution leads to explicit estimators. Therefore,

we consider the specific case

φi =
1

Γ
1/2
i

with Γi ∼ G(a, λ), a > 0, λ > 0, θ = (a, λ). (2)

We study the exact maximum likelihood estimator in the case σ(.) ≡ 1. When

σ(.) 6≡ 1, we build estimating equations based on the Euler approximation of the

fixed effect diffusion model. The difficulty of these estimating equations is that

the Euler approximation has to be integrated out with respect to the distribution

of the random effects. Moreover, we build another type of estimating equations,

corresponding to the ideal likelihood of directly observed random effects where

estimators of the random effects are plugged in. This second approach has the

advantage to be easily generalized to any distribution for the random effects.

The paper is organized as follows. Section 2 introduces some assumptions and

gives the exact likelihood and its approximation obtained by Euler scheme. Our

asymptotic framework is when the number N of subjects tends to infinity. In

Section 3, we study the asymptotic properties of the estimators. When σ(.) ≡ 1,

the exact maximum likelihood estimator of θ is asymptotically Gaussian with

rate
√
N both for fixed number of measurements per subject n and for n tending

to infinity. When σ(.) 6≡ 1, we must assume that n depends on N and satisfies

the constraint N/n → 0 for the first method,
√
N/n → 0 for the second. Our

estimators are asymptotically Gaussian with rate
√
N . Simulations illustrate

the behavior of the estimators and results are presented in Section 4. Section 5

concludes the paper with some extensions. Proofs are gathered in Appendix.
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2 Exact and approximate likelihoods

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with

dynamics ruled by (1). The processes (Wi)1≤i≤N and the r.v.’s (φi)1≤i≤N are

defined on a common probability space (Ω,F ,P). Consider the filtration (Ft, t ≥
0) defined by Ft = σ(φi,Wi(s), s ≤ t, i = 1, . . . , N). As Ft = σ(Wi(s), s ≤
t)∨F i

t , with F i
t = σ(φi, φj ,Wj(s), s ≤ t, j 6= i) independent of Wi, each process

Wi is a (Ft, t ≥ 0)-Brownian motion. Moreover, the random variables φi are

F0-measurable. In what follows, we assume that

(H1) The function σ belongs to C2(R) and for all x ∈ R, 0 < σ2
0 ≤ σ2(x) ≤ σ2

1 ,

|σ′(x)|+ |σ′′(x)| ≤ K.

Under (H1), the process (Xi(t)) is well-defined and (φi, Xi(t)) is strong Markov

adapted to the filtration (Ft, t ≥ 0). The N processes (φi, Xi(.))1≤i≤N are

independent. For all ϕ, and all x0i ∈ R, the fixed effect SDE

dX
ϕ,x0

i

i (t) = ϕσ(X
ϕ,x0

i

i (t)) dWi(t), X
ϕ,x0

i

i (0) = x0i (3)

admits a unique strong solution process (X
ϕ,x0

i

i (t), t ≥ 0) adapted to the filtra-

tion (Ft, t ≥ 0). From the Markov property of (φi, Xi(t)), we deduce that the

conditional distribution of Xi given φi = ϕ is identical to the distribution of

X
ϕ,x0

i

i (for more details, see Delattre et al., 2013).

For i = 1, . . . , N , the process (Xi(t), t ∈ [0, Ti]) is discretely observed at times

ti,j = jTi/n, j = 0, . . . , n and we set

∆i =
Ti
n
, Xi = (Xi(ti,j), j = 1, . . . , n), with Ti ≤ T, i = 1, . . . , N, (4)

where T1, . . . , TN , T are fixed. The number of observations per subject is the

same for all subjects but the sampling intervals may be distinct.

We start by the exact likelihood of (4). The distribution of the observations

(Xi)1≤i≤N on
∏N

i=1 R
n has the form Pθ = ⊗N

i=1P
i
θ where P i

θ is the distribution

ofXi on R
n. IfQi

ϕ,x0

i

denotes the distribution ofXϕ
i = (X

ϕ,x0

i

i (ti,j), j = 1, . . . , n)

and pt(x, y, ϕ) the transition density of (3), then Qi
ϕ,x0

i

admits the density∏n
j=1 p∆i

(xi,j−1, xi,j , ϕ) w.r.t. the Lebesgue measure of R
n (with xi,0 = x0i ).

Therefore, the density of P i
θ w.r.t. the Lebesgue measure of Rn is given by:

λi(θ, xi) =

∫ +∞

0

g(ϕ, θ)

n∏

j=1

p∆i
(xi,j−1, xi,j , ϕ)dν(ϕ).
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The exact likelihood is ΛN (θ) =
∏N

i=1 λi(θ,Xi). Here, we are faced with two

problems. First, the transition densities of (3) are generally not explicit. Sec-

ond, and this is specific to SDE with random effect, even if these transition

densities were explicit, the density of (φi, Xi) would be explicit but it is gen-

erally not possible to get a closed-form expression for the marginal density of

Xi, which corresponds to the integral λi(θ, xi). Therefore the exact likelihood

is not explicit and difficult to study theoretically and numerically.

Instead of using the exact transition densities of(3), it is now standard to use

the approximation given by the transition densities of the corresponding Euler

scheme, i.e. the one-step discretisation of (3) (see e.g. Genon-Catalot and Jacod,

1993; Donnet and Samson, 2008; Kessler et al., 2012). Therefore, we introduce

L̃i(Xi, ϕ) =
1

ϕn
∏n

j=1 σ(Xi(ti,j))
exp (− Si

2ϕ2
) ∝ 1

ϕn
exp (− Si

2ϕ2
),

with, for i = 1, . . . , N ,

Si =
1

∆i

n∑

j=1

(Xi(ti,j)−Xi(ti,j−1))
2

σ2(Xi(ti,j−1))
(5)

To estimate θ, instead of the exact likelihood, we introduce the approximate

likelihood, corresponding to the Euler scheme integrated with respect to the

random effects distribution:

Λ̃N (θ) =

N∏

i=1

∫ +∞

0

ϕ−n exp

(
− Si

2ϕ2

)
g(ϕ, θ)dν(ϕ). (6)

A theoretical study of the estimators based on Λ̃N (θ) could be possible using

the approach developed by Nie (2006) but his assumptions are generally difficult

to verify. Below, as in Delattre et al. (2013), we rather introduce a specific

distribution for the random effects allowing to obtain an explicit formula for

(6). In Section 3, we are able to directly study the corresponding estimators.

Remark 1. Except in the case σ(.) ≡ 1 where (6) is the exact likelihood, our

approach based on an approximate likelihood imposes a double asymptotic frame-

work where both N and n tend to infinity. As n → ∞, note that the statistic

Si based on the i-th trajectory provides an estimator of the random effect φi.
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Indeed, let Mi(t) =

∫ t

0

σ(Xi(s))dWi(s), and

Ri =

n∑

j=1

(Mi(ti,j)−Mi(ti,j−1))
2/σ2(Xi(ti,j−1)). (7)

By standard properties of quadratic variations, Ri/Ti → 1 in probability as

n→ ∞. Thus, Si/n = φ2iRi/Ti tends to φ2i .

3 A specific distribution for the random effect

For a general distribution g(ϕ, θ)dν(ϕ) of the random effect φi, the integral in (6)

has no explicit expression. However, for the conjugate distribution, namely the

inverse Gamma (2), an explicit expression is obtained. The unknown parameter

is then θ = (a, λ) ∈ Θ = R
+ × R

+. The true value is denoted by θ0.

Let us start with the ideal case of directly observed random effects φi (or Γi).

Then, the exact log-likelihood of (Γ1, . . . ,ΓN ) is given by:

ℓN (θ) = Na log λ−N log Γ(a) + (a− 1)

N∑

i=1

log Γi − λ

N∑

i=1

Γi (8)

with associated score function SN (θ) =
(

∂
∂λℓN (θ) ∂

∂aℓN (θ)
)′

where

∂

∂λ
ℓN (θ) =

N∑

i=1

(a
λ
− Γi

)
,
∂

∂a
ℓN (θ) =

N∑

i=1

(−ψ(a) + log λ+ log Γi) ,

where ψ(z) = Γ′(z)
Γ(z) is the di-gamma function. By standard properties of

Gamma distributions, we have, under the true value θ0, (1/
√
N)SN (θ0) →D

N2(0, I(θ0)), where I(θ) is

I(θ) =
(

a
λ2 − 1

λ

− 1
λ ψ′(a)

)
. (9)

Note that using properties of the di-gamma function (see Section 7), I(θ) is

invertible for all θ ∈ (0,+∞)2. The maximum likelihood estimator based on

the observation of Γ1, . . . ,ΓN , denoted θN = θN (Γ1, . . . ,ΓN ) is consistent and

satisfies
√
N(θN − θ0) →D N2(0, I−1(θ0)) as N tends to infinity.

But the Γi’s are not observed. Two different strategies are studied. Following
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Remark 1, a natural idea consists in plugging in ℓN (θ) the estimator n/Si of

Γi. This reveals to be more complex than expected (Section 3.2) and we will

need to truncate the estimator n/Si. The other strategy (Section 3.1) is based

on (6). We provide asymptotic results when n is fixed and N → ∞ in the case

σ(.) ≡ 1, and when both n,N → ∞ for a general σ(.).

3.1 Estimation based on the Euler approximation of the

likelihood.

Let L̃N (θ) = log Λ̃N (θ) be the log contrast Euler (see (6)).

Proposition 1. Under (H1) and (2), we have:

L̃N (θ) =

N∑

i=1

log

(
Γ(a+ n/2)

Γ(a)

)
+ aN log λ−

N∑

i=1

(a+ n/2) log (λ+
1

2
Si). (10)

The associated gradient vector (pseudo-score function)

GN (θ) =

(
∂

∂λ
L̃N (θ)

∂

∂a
L̃N (θ)

)′

(11)

is given by ∂
∂λ L̃N (θ) =

∑N
i=1

(
a
λ − a+n/2

λ+Si/2

)
and ∂

∂a L̃N (θ) =
∑N

i=1 (ψ(a+ n/2)− ψ(a))+
∑N

i=1 log
(

λ
λ+Si/2

)
. For the Hessian matrix (pseudo Fisher information matrix)

ĨN (θ) = −
(

∂2

∂λ2 L̃N (θ) ∂2

∂λ∂a L̃N (θ)
∂2

∂λ∂a L̃N (θ) ∂2

∂a2 L̃N (θ)

)
, (12)

we get ∂2

∂λ2 L̃N (θ) = −∑N
i=1

(
a
λ2 − a+n/2

(λ+Si/2)2

)
, ∂2

∂λ∂a L̃N (θ) =
∑N

i=1

(
1
λ − 1

λ+Si/2

)

and ∂2

∂a2 L̃N (θ) = −∑N
i=1 (ψ

′(a)− ψ′(a+ n/2)). We study the estimators de-

fined by the estimating equation:

GN (θ̃N ) = 0. (13)

We consider two asymptotics: n fixed (section 3.1.1) and n→ ∞ (section 3.1.2).

3.1.1 Fixed number of observations per subject

We assume that the number n of observations per subject is fixed and that

the number of subjects N tends to infinity. The only model that enters this
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asymptotic is the special case σ(.) ≡ 1. We denote by the upper index 1 all the

quantities associated to this model: dX1
i (t) = φidWi(t), and the statistic is

S1
i =

n∑

j=1

(X1
i (ti,j)−X1

i (ti,j−1))
2/∆i. (14)

The distribution of S1
i can be explicitly computed.

Proposition 2. Under Pθ, the random variables β1
i (λ) =

λ
λ+S1

i
/2
, i = 1, . . . , N,

are independent and β1
i (λ) has distribution beta of the first kind on (0, 1) with

parameters (a, n/2). The random variables S1
i /(2λ) are independent with dis-

tribution on (0,+∞) beta of the second kind with parameters (n/2, a).

Then, L̃N (θ) = L̃1
N (θ) where Si is replaced by S1

i is the exact log-likelihood.

Define the associated exact maximum likelihood estimator as any solution of:

θ̂1N = Argsupθ L̃1
N (θ). (15)

The asymptotic study of θ̂1N when n is fixed and N tends to infinity is standard:

inference on θ is simply based of the i.i.d. sample (S1
i , i = 1, . . . , N).

Proposition 3. Assume that n is fixed. Then, the maximum likelihood estima-

tor θ̂1N (15) is consistent. Let

In(θ) =
(

a(n/2)
λ2(a+1+n/2) − n/2

λ(a+n/2)

− n/2
λ(a+n/2) ψ′(a)− ψ′(a+ n/2)

)
(16)

Then, the matrix In(θ0) is invertible and under Pθ0

√
N(θ̂1N−θ0) →D N2(0, I−1

n (θ0)).

Remark that In(θ) = I(θ) +O( 1n ).

3.1.2 Number of observations per subject goes to infinity

Now, we assume that both n and N tend to infinity with all Ti’s fixed and

Ti ≤ T for some fixed T . The strategy consists in studying the case σ(.) ≡ 1

where computations can all be done explicitely and then studying the difference

between the general case and the case σ(.) ≡ 1. Some preliminary results are

needed. For these results, we do not assume that the φ2i ’s have inverse Gamma

distribution. As already said before, Si/n = φ2iRi/Ti tends to φ2i as n tends to

infinity (see (7) for the definition of Ri). Let us define the equivalent of Ri for

the model σ(.) ≡ 1: R1
i =

∑n
j=1(Wi(ti,j)−Wi(ti,j−1))

2.
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We denote by Pθ = ⊗i≥1P
i
θ the distribution of the sequence of processes (φi, (Xi(t), t ∈

[0, Ti])), i ≥ 1 on (0,+∞) ×∏i≥1 C([0, Ti]), by Eθ the corresponding expecta-

tion. Note that Pθ is the marginal distribution of (Xi, i = 1, . . . , N) under Pθ.

Both Ri/Ti and R1
i /Ti tend to 1 in probability as n→ ∞. Furthermore:

Proposition 4. Under (H1), for all θ, we have Eθ

(
R1

i

Ti
− 1|φi

)
= 0, |Eθ

(
Ri

Ti
− 1|φi

)
| ≤

C Ti

n φ
2
i , and |Eθ

(
Ri

Ti
− R1

i

Ti
|φi
)
| ≤ C Ti

n φ
2
i , and for all p ≥ 1, Eθ

(
(Ri

Ti
− 1)2p|φi

)
≤

C(
Tp
i

np +
T 2p
i

n2p (φ
2p
i + φ4pi )) and Eθ

(
(Ri

Ti
− R1

i

Ti
)2p|φi

)
≤ C

T 2p
i

n2p (φ
2p
i + φ4pi ).

We now study the score function (11) and the Fisher information matrix (12).

Proposition 5. Recall GN (θ0) defined by (11) and I(θ0) given in (9).

For σ(.) ≡ 1, as N,n tend to infinity, under Pθ0 , GN (θ0)/
√
N converges in

distribution to N2(0, I(θ0)).
In the general case, if Eθ0φ

8
i < +∞, i.e. if a0 > 4, n > 8 and N,n tend to

infinity in such a way that N/n tends to 0, the same result holds.

The convergence of the Fisher information matrix is as follows:

Proposition 6. In the case σ(.) ≡ 1 and the general case, the Fisher informa-

tion matrix given in (12), ĨN (θ0)/N , converges in probability to I(θ0) as N,n

tend to infinity, under Pθ0 .

Now we study the estimator θ̃N defined by (13).

Proposition 7. Assume that n,N → +∞ in such a way that N/n tends to 0.

Then, an estimator θ̃N which solves (13) exists with probability tending to one

as N tends to infinity under Pθ0 and is weakly consistent. The matrix I(θ0) is

invertible and under Pθ0 ,
√
N(θ̃N − θ0) →D N2(0, I−1(θ0)).

Moreover, the estimator θ̃N is asymptotically equivalent to the MLE θN =

θN (Γ1, . . . ,ΓN ) based on the direct observation of (Γ1, . . . ,ΓN ).

The constraint N/n = o(1) is the same than what would be required with N

observed trajectories of a fixed effect SDE but the rate of convergence would be√
Nn while it is only

√
N with a random effect SDE. This rate is equivalent to

the one obtained when the random effects Γi are directly observed, but in the

latter case, the constraint N/n = o(1) is not needed.

3.2 Approach based on estimators of the random effects.

In this section, we exploit directly the fact that the random effect φ2i = Γ−1
i can

be estimated using the trajectory Xi(t), t ≤ Ti by Si/n. The idea is simply to

9



replace the random variables Γi by their estimator n/Si in the likelihood (8) of

(Γ1, . . . ,ΓN ). But this works only when σ(.) ≡ 1, otherwise we need to truncate

the estimators. More precisely, let us set, in the case σ(.) ≡ 1:

UN (θ) = Na log λ−N log Γ(a) + (a− 1)
N∑

i=1

log (n/S1
i )− λ

N∑

i=1

(n/S1
i ).

and consider the estimators θ∗N given by

∇UN (θ∗N ) = 0. (17)

Otherwise, we define truncated estimators of log Γi and Γi as follows:

l̃ogΓi = log (n/Si)1(Si/n≥k/
√
n), Γ̃i = (n/Si)1(Si/n≥k/

√
n).

where k is a constant. Note that, by the above definitions, l̃ogΓi and Γ̃i are

set to 0 outside the set (Si/n ≥ k/
√
n) where Si/n is not bounded from below.

Then we consider the function

VN (θ) = Na log λ−N log Γ(a) + (a− 1)

N∑

i=1

l̃ogΓi − λ

N∑

i=1

Γ̃i,

and the associated estimator θ∗∗N defined by the estimating equation:

∇VN (θ∗∗N ) = 0. (18)

Proposition 8. Assume that σ(.) ≡ 1. If N,n tend to infinity in such a way

that
√
N/n tends to 0, then an estimator θ∗N which solves (17) exists with prob-

ability tending to 1 under Pθ0 and is weakly consistent. Moreover,
√
N(θ∗N −θ0)

converges in distribution to N2(0, I−1(θ0)) and θ∗N is asymptotically equivalent

to the exact MLE θN associated to (Γ1, . . . ,ΓN ), i.e.
√
N(θ∗N − θN ) = oPθ0

(1).

When σ(.) is not equal to 1, the same result holds for θ∗∗N under the condition

Eθ0φ
8
i < +∞, i.e. a0 > 4 .

Note that in this approach, even when σ(.) ≡ 1, the constraint
√
N/n → 0 is

required.
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4 Numerical simulation results.

We compare the performances of both estimation methods on simulated data for

several models. Two sets of population parameters θ0 are used: (a0 = 6, λ0 = 1)

and (a0 = 5, λ0 = 3). In each case, 100 datasets are generated with an Euler

scheme with sampling interval δ = 10−4T on time interval [0, T ], with T = 5,

and N = 50, 100 subjects, n = 500, 1000, 10000. The parameter θ0 is estimated

via θ̃N (method 1) and via either θ∗N or θ∗∗N (method 2). The empirical mean

and standard deviation are computed from the 100 datasets. We consider:

Example 1. dXi(t) = φidWi(t) , Xi(0) = 0.

Example 2. dXi(t) = φi
√

1 +X2
i (t)dWi(t) , Xi(0) = 0.

For Example 1, estimation method 1 leads to the exact MLE of θ0. For Example

2, the volatility function does not match the whole conditions from Section 2

(σ(x) not bounded above). Nevertheless, considering models where the volatility

is a sub-linear function does not change the results stated above.

A SDE with drift dXi(t) = b(Xi(t))dt+ φiσ(Xi(t))dWi(t) , Xi(0) = 0, can also

be considered as if b(.) ≡ 0 using the same inferential strategies (this is done in

the case of fixed-effects in Genon-Catalot and Jacod (1993)). As the statistic

Si only depends on the volatility function, the estimation methods 1 and 2 do

not require to know the expression of the drift function. We consider:

Example 3. dXi(t) = −ρXi(t)dt+ φidWi(t) , Xi(0) = 0.

Example 4. dXi(t) = −ρXi(t)dt+ φi
√

1 +X2
i (t)dWi(t) , Xi(0) = 0.

Note that for method 1, numerical difficulties may appear due to the term

Γ(a + n/2) in (10). To avoid these, we use the approximation for all (a, a′):

log Γ(a+ n
2 )− log Γ(a′ + n

2 ) = (a− a′) log n
2 +O( 1n ). Thus, we have

1

N
(L̃N (θ)− L̃N ((1, 1))) = a log λ− (a+

n

2
)
1

N

N∑

i=1

log
n−1λ+ (n−1/2)Si

n−1 + (n−1/2)Si

−(a− 1)
1

N

N∑

i=1

log (2n−1 + n−1Si)− log Γ(a) +O(
1

n
).

The results for Examples 1 to 4 are displayed in Tables 1 to 4 respectively.

The results are satisfactory overall and similar for the 4 models, even when

the model includes a drift. Method 1 estimators are biased for n = 500, 1000.

When σ(.) 6≡ 1, this is expected due to the Euler approximation of the likeli-

hood. Nevertheless, for fixed N , we observe the convergence of the estimators

to the true value when n increases. Even though method 1 estimators seem

11



N = 50 N = 100
n = 500 n = 1000 n = 10000 n = 500 n = 1000 n = 10000

(a0 = 5, λ0 = 3)
ã 4.38 (0.60) 4.67 (0.74) 5.04 (0.97) 4.38 (0.46) 4.67 (0.56) 5.03 (0.70)

λ̃ 2.63 (0.39) 2.81 (0.47) 3.03 (0.61) 2.64 (0.31) 2.82 (0.37) 3.04 (0.45)
a∗ 5.00 (0.94) 5.03 (0.96) 5.09 (1.00) 4.97 (0.70) 5.02 (0.71) 5.08 (0.72)
λ∗ 3.00 (0.59) 3.02 (0.60) 3.06 (0.63) 2.99 (0.46) 3.02 (0.46) 3.06 (0.47)

(a0 = 6, λ0 = 1)
ã 5.12 (0.74) 5.61 (0.94) 6.32 (1.34) 5.02 (0.45) 5.50 (0.59) 6.08 (0.80)

λ̃ 0.86 (0.13) 0.94 (0.16) 1.06 (0.23) 0.84 (0.08) 0.91 (0.11) 1.01 (0.14)
a∗ 6.26 (1.40) 6.32 (1.38) 6.41 (1.41) 6.00 (0.79) 6.10 (0.83) 6.16 (0.84)
λ∗ 1.04 (0.23) 1.06 (0.23) 1.07 (0.24) 1.00 (0.14) 1.01 (0.14) 1.02 (0.15)

Table 1: Example 1: σ(.) ≡ 1. Empirical mean and standard deviation (in
brackets) of θ̃ (method 1) and θ∗ (method 2) computed from 100 datasets.

slightly overestimated when n = 10000, the bias tends to vanish when N in-

creases. This clearly illustrates consistency of the estimators when both n and

N tend to infinity. The bias of method 2 estimators is much less important

than with method 1, especially for n = 500 but the precision is generally lower

(bigger standard deviation). As for method 1, we observe the convergence of

the estimators to the true values when both N and n increase. For both meth-

ods, the precision of the estimators improves when N becomes larger. Contrary

to method 1, the precision of the method 2 estimators does not depend on n.

Method 1 is numerically more difficult to implement, this may explain why the

standard deviations slightly increase with n. Finally, the implementation of the

method 2 in Examples 2, 3, 4 requires to choose a value for the threshold k.

The results are displayed for k = 0.5. Simulations with various values of k have

not shown any significant impact of k on the estimators performances.

5 Extensions and concluding remarks.

In this paper, we study the estimation of population parameters in a SDE with

a linear random effect in the diffusion coefficient from discrete observations of

N i.i.d. trajectories on a fixed length time interval (1). We especially study

the case of a null drift and of φi = 1/Γ
1/2
i with Γi ∼ G(a, λ). This leads to

estimators using two different approaches. The first method is based on an

approximation of the exact likelihood relying on the Euler scheme of the SDE.

12



N = 50 N = 100
n = 500 n = 1000 n = 10000 n = 500 n = 1000 n = 10000

(a0 = 5, λ0 = 3)
ã 4.52 (0.69) 4.89 (0.85) 5.33 (1.14) 4.38 (0.51) 4.70 (0.60) 5.07 (0.75)

λ̃ 2.75 (0.43) 2.97 (0.52) 3.23 (0.70) 2.65 (0.34) 2.84 (0.40) 3.06 (0.49)
a∗∗ 5.24 (1.15) 5.33 (1.15) 5.38 (1.19) 4.99 (0.78) 5.05 (0.77) 5.12 (0.78)
λ∗∗ 3.18 (0.70) 3.23 (0.71) 3.26 (0.73) 3.01 (0.51) 3.05 (0.50) 3.09 (0.51)

(a0 = 6, λ0 = 1)
ã 5.10 (0.69) 5.57 (0.87) 6.23 (1.19) 4.98 (0.47) 5.43 (0.59) 6.03 (0.81)

λ̃ 0.86 (0.12) 0.93 (0.15) 1.04 (0.20) 0.84 (0.09) 0.91 (0.10) 1.01 (0.14)
a∗∗ 6.19 (1.24) 6.25 (1.25) 6.32 (1.24) 5.94 (0.81) 6.02 (0.82) 6.10 (0.84)
λ∗∗ 1.03 (0.21) 1.05 (0.21) 1.06 (0.21) 0.99 (0.14) 1.01 (0.14) 1.02 (0.15)

Table 2: Example 2: σ2(x) = 1 + x2. Empirical mean and standard deviation
(in brackets) of θ̃ (method 1) and θ∗∗ (method 2) computed from 100 datasets.

The second method uses a plug-in of estimators of the random effects in the

likelihood of (φ1, . . . , φN ).

Several extensions are possible. First, assumption (H1) on the function σ(x)

can be weakened. For instance, it is enough to assume that σ, σ′, σ′′ have linear

growth (instead of bounded). But, this would lengthen considerably proofs.

Second, we can consider a SDE with drift (known or unknown): dXi(t) =

b(Xi(t))dt + φiσ(Xi(t))dWi(t), and use exactly the same estimators, ignoring

the drift. This was done in Genon-Catalot and Jacod (1993) in the case of

non random effects. Here again, this would considerably lengthen proofs, as we

would have to deal with error terms, including the drift. In simulations, models

with drifts have been implemented and the results are quite satisfactory.

Another direction for extensions is to look at other distributions for the random

effects. In particular, the plug-in method applies for any distribution provided

that we introduce appropriate truncations as is done here.

For a more general model for the diffusion coefficient including a non linear

random effect, the two approaches studied here could be extended, in particular

the second method.
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ã 5.08 (0.72) 5.57 (0.92) 6.25 (1.29) 5.06 (0.42) 5.53 (0.54) 6.13 (0.75)

λ̃ 0.85 (0.14) 0.93 (0.17) 1.05 (0.23) 0.85 (0.08) 0.93 (0.10) 1.03 (0.13)
a∗∗ 6.17 (1.32) 6.26 (1.34) 6.34 (1.36) 6.06 (0.76) 6.15 (0.77) 6.20 (0.78)
λ∗∗ 1.03 (0.23) 1.05 (0.24) 1.06 (0.24) 1.01 (0.13) 1.03 (0.13) 1.04 (0.14)

Table 4: Example 4. (ρ = 1) Empirical mean and standard deviation (in brack-
ets) of θ̃ (method 1) and θ∗∗ (method 2) computed from 100 datasets.

Nie, L. (2006). Strong consistency of the maximum likelihood estimator in

generalized linear and nonlinear mixed-effects models. Metrika, 63(2), 123–

143.

Picchini, U. and Ditlevsen, S. (2011). Practicle estimation of high dimensional

stochastic differential mixed-effects models. Computational Statistics & Data

Analysis, 55, 1426–1444.

Picchini, U., De Gaetano, A., and Ditlevsen, S. (2010). Stochastic differential

mixed-effects models. Scandinavian Journal of Statistics, 37, 67–90.

Sweeting, T. (1980). Uniform asymptotic normality of the maximum likelihood

estimator. Annals of Statistics, 8, 1179–1403.

6 Appendix: proofs

Proof of Proposition 1 Using the fact that φ−2
i has Gamma distribution G(a, λ),

we get the result as:

λ̃i(θ,Xi) =

∫

(0,+∞)

λaγa−1+n/2

Γ(a)
exp [−γ(λ+

1

2
Si)] dγ =

λaΓ(a+ n/2)

Γ(a)
(
λ+ 1

2Si

)a+n/2
.�

Proof of Proposition 2 Let χi =
∑n

j=1(Wi(ti,j)−Wi(ti,j−1))
2/∆i = R1

i /∆i. As
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S1
i = Γ−1

i χi, (see 14) , β1
i (λ) =

λΓi

λΓi+
1

2
χi
,

S1

i

2λ = χi/2
λΓi

Under Pθ, Γi and χi are

independent, Γi is G(a, λ) and χi is χ2(n) = G(n/2, 1/2). Hence the results

using Proposition 10.�

Proof of Proposition 3 The proof is elementary using Propositions 2 and 10.�

Proof of Proposition 4 We need the following Lemma and Proposition:

Lemma 1. For all θ, Eθ((Xi(t) − Xi(s))
2p|φi) ≤ C(2p)σ2p

1 φ
2p
i |t − s|p where

C(2p) is a numerical constant.

Proposition 9. (R1
i /Ti)− 1 = T−1

i

∫ Ti

0
Hn

i,1(s)dWi(s) and

(Ri/Ti)− 1 = T−1
i (

∫ Ti

0

Hn
i (s)dWi(s) +

∫ Ti

0

Kn
i (s)dWi(s) +

∫ Ti

0

Ln
i (s)ds),

where, for j = 1, . . . , n and s ∈]ti,j−1, ti,j ], H
n
i,1(s) = 2(Wi(s)−Wi(ti,j−1)),

Hn
i (s) = 2

(Mi(s)−Mi(ti,j−1))σ(Xi(s))

σ2(Xi(ti,j−1))
, Kn

i (s) = 2φi(ti,j − s)
σ2(Xi(s))σ

′(Xi(s))

σ2(Xi(ti,j−1))
,

Ln
i (s) = φ2iκ(Xi(s))(ti,j − s)

σ2(Xi(s))

σ2(Xi(ti,j−1))
, with κ = σσ′′ + (σ′)2.

Lemma 1 and Proposition 9 yield Eθ(
R1

i

Ti
− 1|F0) = 0 and

Eθ(
Ri

Ti
− 1|F0) = Eθ(

Ri

Ti
− R1

i

Ti
|F0) =

1

Ti

∫ Ti

0

Eθ(L
n
i (s)|F0)ds.

Using (H1), we get |Ln
i (s)| ≤ Cφ2i

∑n
j=1 1]ti,j−1,ti,j ](s)(ti,j−s) ≤ Cφ2i∆i1]0,Ti](s),

for C depending on σ0, σ1,K. Thus, the first inequality of Proposition 4.

As (Ri

Ti
− 1)2p = (A1 + A2 + A3)

2p ≤ 32p−1
∑3

i=1A
2p
i , we study separately the

three terms A2p
i . We have A2p

3 =
(

1
Ti

∫ Ti

0
Ln
i (s)ds

)2p
≤ (Cφ2i∆i)

2p. Next, we

use the Burkholder-Davies-Gundy (BDG), the Hölder inequalities and (H1):

T 2p
i Eθ(A

2p
2 |F0) ≤ C(2p)Eθ(

(∫ Ti

0

(Kn
i (s))

2ds

)p

|F0) ≤ C(2p)T p−1
i Eθ(

∫ Ti

0

Eθ((K
n
i (s))

2p|F0)ds)

where (Kn
i (s))

2p ≤ Cφ2pi ∆2p
i 1]0,Ti](s). Finally, for T 2p

i Eθ(A
2p
1 |F0) we study
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(∫ Ti

0
(Hn

i (s))
2ds
)p

. By the Holder inequality, we have,

(∫ Ti

0

(Hn
i (s))

2ds

)p

≤ Cpnp−1
n∑

j=1

∆p−1
i

∫ ti,j

ti,j−1

(Mi(s)−Mi(ti,j−1))
2pds.

Consequently, for constants C depending on σ0, σ1,K,

Eθ(

(∫ Ti

0

(Hn
i (s))

2ds

)p

|F0) ≤ C

n∑

j=1

∫ ti,j

ti,j−1

Eθ(

(∫ s

ti,j−1

σ2(Xi(u))du

)p

|F0)ds ≤ C∆p
i .

Finally, to study the difference Ri − R1
i , we only need to study the term:∫ Ti

0
(Hn

i (s)−Hn
i,1(s))dWi(s) =

∫ Ti

0
2
∑3

k=1

∑n
j=1 1]ti,j−1,ti,j ](s)Z

k
i,j(s)dWi(s) with

Z1
i,j(s) =

σ(Xi(s))− σ(Xi(ti,j−1))

σ2(Xi(ti,j−1))

∫ s

ti,j−1

(σ(Xi(u))− σ(Xi(ti,j−1)))dWi(u),

Z2
i,j(s) =

σ(Xi(s))− σ(Xi(ti,j−1))

σ(Xi(ti,j−1))

∫ s

ti,j−1

dWi(u),

Z3
i,j(s) =

1

σ(Xi(ti,j−1))

∫ s

ti,j−1

(σ(Xi(u))− σ(Xi(ti,j−1)))dWi(u),

These terms are studied analogously using the BDG and Cauchy-Schwarz in-

equalities. �

Proof of Lemma 1 Recall that φi is F0-measurable and when dealing with the

process (Xi(t)), conditioning on φi is equal to conditioning on F0. We have

Eθ((Xi(t)−Xi(s))
2p|F0) = φ2pi Eθ((Mi(t)−Mi(s))

2p|F0). By the BDG inequality

and (H1), for s ≤ t,

Eθ((Mi(t)−Mi(s))
2p|F0) ≤ C(2p)E

(
(

∫ t

s

σ2(Xi(u))du)
p|F0

)
≤ C(2p)σ2p

1 (t−s)2p.�

Proof of Proposition 9 By the Ito formula, we have:

(Mi(ti,j)−Mi(ti,j−1))
2 = 2

∫ ti,j

ti,j−1

(Mi(s)−Mi(ti,j−1))σ(Xi(s))dWi(s)+

∫ ti,j

ti,j−1

σ2(Xi(s))ds.

We split: σ2(Xi(s)) = σ2(Xi(ti,j−1))+σ
2(Xi(s))−σ2(Xi(ti,j−1)) and use the Ito

formula: σ2(Xi(s)) − σ2(Xi(ti,j−1)) = φi
∫ s

ti,j−1

(σ2)′(Xi(u))σ(Xi(u))dWi(u) +
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1
2φ

2
i

∫ s

ti,j−1

(σ2)′′(Xi(u))σ
2(Xi(u))du. Integrating, Fubini formula yields:

∫ ti,j

ti,j−1

(σ2(Xi(s))−σ2(Xi(ti,j−1)))ds = φi

∫ ti,j

ti,j−1

(ti,j−u)(σ2)′(Xi(u))σ(Xi(u))dWi(u)

+
1

2
φ2i

∫ ti,j

ti,j−1

(ti,j − u)(σ2)′′(Xi(u))σ
2(Xi(u))du.

The result for R1
i corresponds to σ(.) ≡ 1. Hence the results. �

Proof of Proposition 5 Recall that Si = nΓ−1
i Ri/Ti. We have by (11) GN (θ0) =

SN (θ0)+

(
N∑

i=1

Yi(θ0)

N∑

i=1

Zi(θ0)

)′

where Yi(θ0) = Γi−
(a0 +

n
2 )Γi

λ0Γi + Ci
and Zi(θ0) =

ψ(a0 +
n
2 )− log (λ0Γi + Ci).

Therefore, we have to prove that 1√
N

(∑N
i=1 Yi(θ0)

∑N
i=1 Zi(θ0)

)′
tends to 0 in

Pθ0 -probability as n,N tend to infinity. To distinguish the two cases σ(.) ≡ 1 and

σ(.) 6= 1, we introduce the random variables Y 1
i (θ0), Z

1
i (θ0) where we replaced

Si by S1
i . We proceed on two steps:

(1) 1√
N

(∑N
i=1 Y

1
i (θ0)

∑N
i=1 Z

1
i (θ0)

)′
= oPθ0

(1) as N,n→ ∞.

(2) 1√
N

(∑N
i=1(Yi(θ0)− Y 1

i (θ0))
∑N

i=1(Zi(θ0)− Z1
i (θ0))

)′
= oPθ0

(1) asN,n→
∞ under the constraints N/n→ 0 and Eθ0φ

8
i < +∞.

Proof of (1): Let C1
i = nR1

i /(2Ti) = ΓiS
1
i /2 and G0

i = λ0Γi. We have Y 1
i (θ0) =

Γi − a0+n/2
λ0

G0

i

G0

i
+C1

i

. In what follows, we use repeatedly the fact that G0
i and C1

i

are independent, that G0
i ∼ G(a0, 1) and C1

i ∼ G(n/2, 1). Hence, G0
i + C1

i and

G0
i /(G

0
i +C1

i ) are independent, the latter with distribution β(1)(a0, (n/2)), the

former with distribution G(a0 + (n/2), 1).

The r.v. Y 1
i (θ0), i = 1, . . . , N are i.i.d. with Eθ0(Y

1
i (θ0)) = 0, Eθ0(Y

1
i (θ0)

2) =
a0(a0+1)

λ2

0
(a0+1+n/2)

. Therefore, N−1/2
∑N

i=1 Y
1
i (θ0) = oPθ0

(1).

Analogously, Z1
i (θ0) = ψ(a0 + n/2) − log (G0

i + C1
i ) satisfies Eθ0(Z

1
i (θ0)) =

0,Eθ0(Z
1
i (θ0))

2 = 1/(a0 + n/2) + o(1/n). Thus, N−1/2
N∑

i=1

Z1
i (θ0) = oPθ0

(1).

Proof of (2): We introduce Ci = nRi/(2Ti). We have Yi(θ0)−Y 1
i (θ0) =

(a0 +
n
2 )Γi

G0
i + C1

i

−
(a0 +

n
2 )Γi

G0
i + Ci

, and Zi(θ0)− Z1
i (θ0) = log (G0

i + C1
i )− log (G0

i + Ci). Thus,

Yi(θ0)− Y 1
i (θ0) =

a0 +
n
2

λ0

G0
i

(G0
i + Ci)(G0

i + C1
i )

n

2
(
Ri

Ti
− R1

i

Ti
)
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We introduce the set Ωi = {|(Ri/Ti)−1| ≤ 1/2}. On Ωi, we use G0
i+Ci ≥ (n/4).

So

Eθ0 |Yi(θ0)− Y 1
i (θ0)|1Ωi

≤ 2
a0 +

n
2

λ0
Eθ0

(
G0

i

G0
i + C1

i

|Ri

Ti
− R1

i

Ti
|
)
.

Then, if Eθ0φ
4
i < +∞, we have by proposition 4

Eθ0

(
G0

i

G0
i + C1

i

)2

= O(
1

n2
) and Eθ0

(
Ri

Ti
− R1

i

Ti

)2

≤ (Ti/n)
2
Eθ0φ

4
i .

Therefore, using the Cauchy-Schwarz inequality, Eθ0 |Yi(θ0) − Y 1
i (θ0)|1Ωi

≤
Cn
(

C
n4

)1/2 ≤ C
n .

On Ωc
i , we use G0

i /(G
0
i + Ci) ≤ 1. Therefore,

|Yi(θ0)− Y 1
i (θ0)|1Ωc

i
≤

n
2 (a0 +

n
2 )

λ0

1

G0
i + C1

i

|Ri

Ti
− R1

i

Ti
|1Ωc

i
.

We have if Eθ0φ
8
i < +∞, by Proposition 4, Eθ0

(
1

G0

i
+C1

i

)4
= O( 1

n4 ), Eθ0

(
Ri

Ti
− R1

i

Ti

)4
≤

(Ti/n)
4
Eθ0(φ

4
i +φ

8
i ), and Pθ0(Ω

c
i ) ≤ 22pEθ0 |Ri

Ti
−1|2p. Using the Cauchy-Schwarz

inequality twice, the above inequality with p = 2 and Proposition 4 with the

condition Eθ0φ
8
i < +∞, we get:

Eθ0 |Yi(θ0)− Y 1
i (θ0)|1Ωc

i
≤ Cn2(C/n4)1/4(C/n4)1/4 (Pθ0(Ω

c
i ))

1/2 ≤ C/n.

We can conclude that under the condition Eθ0φ
8
i < +∞,

Eθ0 |
1√
N

N∑

i=1

(Yi(θ0)− Y 1
i (θ0))| ≤ C

√
N/n. (19)

We now turn to the other difference. We have by the Taylor formula

Zi(θ0)− Z1
i (θ0) =

n

2

1

G0
i + n/2

(
R1

i

Ti
− Ri

Ti
) +

n

2
(
R1

i

Ti
− Ri

Ti
)

∫ 1

0

fi(s)ds,

where fi(s) = − sn
2
(
R1

i
Ti

−1)+(1−s)n
2
(
Ri
Ti

−1)

(G0

i
+n/2)(G0

i
+sn

2

R1
i

Ti
+(1−s)n

2

Ri
Ti

)
. We use that:

∣∣∣∣Eθ0

n

2

1

G0
i + n/2

(
R1

i

Ti
− R1

i

Ti
)|F0

∣∣∣∣ ≤
n

2

C

n

1

G0
i + n/2

φ2i = C
1

Γ2
i (G

0
i + n/2)

and if Eθ0φ
4
i < +∞, Eθ0

1
Γ2

i
(G0

i
+n/2)

≤ C( 1
(a0+n/2−1)(a0+n/2−2) )

1/2, to obtain
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that ,

1√
N

N∑

i=1

Eθ0

∣∣∣∣Eθ0

n

2

1

G0
i + n/2

(
R1

i

Ti
− Ri

Ti
)|F0

∣∣∣∣ ≤
C
√
N

n

On the other hand, noticing that for s ∈ [0, 1]: |fi(s)| ≤ n/2
(G0

i
+n/2)G0

i

(
|R

1

i

Ti
− 1|+ |Ri

Ti
− 1|

)
,

if Eθ0φ
8
i < +∞,

Eθ0

(∫ 1

0

fi(s)ds

)2

≤
(
Eθ0

1

(G0
i )

4
Eθ0

(
|R

1
i

Ti
− 1|4 + |Ri

Ti
− 1|4

))1/2

≤ C(
Ti
n
).

Finally, we have Eθ0
n
2 |(

R1

i

Ti
−Ri

Ti
)
∫ 1

0
fi(s)ds| ≤ (Cn )

1/2. Therefore, Eθ0 | 1√
N

∑N
i=1(Zi(θ0)−

Z1
i (θ0))| ≤ C

√
N(1/n+ 1/n1/2). �

Proof of Proposition 6: To obtain ĨN (θ0)/N = I(θ0)+oPθ0
(1), we have to prove

that 1
N

∑N
i=1Ai(θ0) → 0, and 1

N

∑N
i=1Bi(θ0) → 0, in Pθ0 − probability where

Ai(θ0) =
a0 + n/2

(λ0 + Si/2)2
=
a0 + n/2

λ20

(G0
i )

2

(G0
i + Ci)2

, Bi(θ0) =
1

λ0 + Si/2
=

Γi

G0
i + Ci

.

(20)

As in the previous proposition, we separate the cases σ(.) ≡ 1 and σ(.) 6= 1 and

define the random variables A1
i (θ0), B

1
i (θ0) where Si is replaced by S1

i :

A1
i (θ0) =

a0 + n/2

λ20

(G0
i )

2

(G0
i + C1

i )
2
, B1

i (θ0) =
Γi

G0
i + C1

i

.

Recall that C1
i ∼ G(n/2, 1) and is independent of Γi. Thus,

Eθ0A
1
i (θ0) =

a0(a0 + 1)

λ20(a0 + n/2 + 1)
= O(

1

n
), Eθ0B

1
i (θ0) =

a0
λ0(a0 + n/2)

= O(
1

n
).

This implies 1
N

∑N
i=1 Eθ0A

1
i (θ0) = O( 1n ),

1
N

∑N
i=1 Eθ0B

1
i (θ0) = O( 1n ). Next, we

study the differences Ai(θ0)−A1
i (θ0), Bi(θ0)−B1

i (θ0).

Ai(θ0)−A1
i (θ0) =

a0 + n/2

λ20
(Ci − C1

i )

(
(G0

i )
2

(G0
i + Ci)(G0

i + C1
i )

2
+

(G0
i )

2

(G0
i + Ci)2(G0

i + C1
i )

)

Thus: |Ai(θ0)−A1
i (θ0)| ≤ a0+n/2

λ2

0

|C1
i − Ci| 2G0

i

(G0

i
+Ci)(G0

i
+C1

i
)
. We introduce again

the set Ωi = {|(Ri/Ti)− 1| ≤ 1/2}. On Ωi, using G0
i + Ci ≥ (n/4), we have

Eθ0 |Ai(θ0)−A1
i (θ0)|1Ωi

≤ 2
a0 + n/2

λ20(n/4)

[
Eθ0

(
G0

i

G0
i + C1

i

)2

Eθ0

(
C1

i − Ci

)2
]1/2

≤ C/n.
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Next, usingG0
i /(G

0
i+Ci) ≤ 1 on Ωc

i , we have |Ai(θ0)−A1
i (θ0)|1Ωc

i
≤ a0+n/2

λ2

0

|C1
i −

Ci| 2
(G0

i
+C1

i
)
. Thus, using the same arguments than in proof of proposition 5

Eθ0(|Ai(θ0)−A1
i (θ0)|1Ωc

i
) ≤ C (Pθ0(Ω

c
i ))

1/2 ≤ C

n
.

Analogously, Bi(θ0) − B1
i (θ0) = 1

λ0

(C1
i − Ci)

G0

i

(G0

i
+Ci)(G0

i
+C1

i
)
. Introducing the

set Ωi again, we obtain |Bi(θ0) − B1
i (θ0)| ≤ C

(
G0

i

G0

i
+C1

i

+ 1Ωc
i

n
G0

i
+C1

i

)
|Ri/Ti −

R1
i /Ti|. We conclude Eθ0 |Bi(θ0)− B1

i (θ0)| ≤ C
n + (Pθ0(Ω

c
i ))

1/2
. So the proof is

complete.�

Proof of Proposition 7: To obtain the weak consistency of θ̃N and its asymptotic

normality, we follow the scheme described in Barndorff-Nielsen and Sorensen

(1991) (Theorem 3.4 and Lemma 3.5) and Genon-Catalot et al. (1999) (Theorem

4.1), see also Sweeting (1980). We must prove that:

(1) Under Pθ0 , GN (θ0)/
√
N →D N2(0, I(θ0)) as N → ∞.

(2) ĨN (θ0)/N → I(θ0) in Pθ0 -probability.

(3) supθ∈Mc,N
|ĨN (θ)/N − I(θ0)| → 0 in Pθ0 -probability, where Mc,N = {θ ∈

(0,+∞)2, ‖θ − θ0‖ ≤ c/
√
N}. (Uniformity condition)

Points (1) and (2) are directly implied by Propositions 5 and 6. It remains to

prove (3). We will prove

(a) Eθ0(supθ∈Mc,N
|Ĩ1

N (θ)/N − Ĩ1
N (θ0)/N |) → 0.

(b) Eθ0(supθ∈Mc,N
|Ĩ1

N (θ)/N − ĨN (θ)/N |) → 0.

Point (a) Let ε > 0 be such that a0 − ε > 0, λ0 − ε > 0. Choose N large enough

to ensure that Mc,N = {(a, λ) ∈ (0,+∞)2, |a−a0| ≤ c/
√
N, |λ−λ0| ≤ c/

√
N} ⊂

[a0 − ε, a0 + c]× [λ0 − ε, λ0 + c] and n > 8. We have

Ĩ1
N (θ)/N − Ĩ1

N (θ0)/N = I(θ)− I(θ0) +
(
D11

N (θ, θ0) D12
N (θ, θ0)

D12
N (θ, θ0) D22

N (θ, θ0)

)

where D11
N (θ, θ0) = 1

N

∑N
i=1(A

1
i (θ) − A1

i (θ0)), D
12
N (θ, θ0) = 1

N

∑N
i=1(B

1
i (θ) −

B1
i (θ0)), D

22
N (θ, θ0) = −(ψ′(a + n/2) − ψ′(a0 + n/2)). We only study D11 and

D12 which are the most difficult. We can write D11
N (θ, θ0) = cN + dN , with
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Gi = λΓi and

cN = (λ−λ0)(a0+n/2)
1

N

N∑

i=1

Γi(Gi +G0
i + 2C1

i )

(Gi + C1
i )

2(G0
i + C1

i )
2
, dN = (a0−a)

1

N

N∑

i=1

Γi

(Gi + C1
i )

2
.

For θ ∈Mc,N , we have the bounds |dN | ≤ c
(λ0−ε)2

√
N
, and

|cN | ≤ c(a0 + n/2)√
N

[
(2λ0 + c)

(
Γi

C1
i

)4

+

(
2
Γi

C1
i

)3
]

We have, for n > 2k, Eθ0

(
Γi

2C1

i

)k
= (2λ0)

−k (a0+k−1)(a0+k−2)...a0

(n/2−1)(n/2−2)...(n/2−k) .

Thus, Eθ0 supθ∈Mc,N
|cN | ≤ C√

Nn2
. Thus Eθ0 supθ∈Mc,N

|D11
N (θ, θ0)| = O(1/

√
N).

For the other term, (a) is proved as we have

sup
θ∈Mc,N

|D12
N (θ, θ0)| ≤ |λ− λ0|

1

λ0(λ0 − ε)
= O(1/

√
N).

We now prove (b). For this, we prove the convergence to 0 of (see (20):

Eθ0 supθ∈Mc,N
|Ai(θ)−A1

i (θ)| and Eθ0 supθ∈Mc,N
|Bi(θ)−B1

i (θ)|. We have |Ai(θ)−
A1

i (θ)| ≤ a0+n/2+c
(λ0−ε)2 |C1

i − Ci| 2Gi

(Gi+Ci)(Gi+C1

i
)
. On the set Ωi = {|(Ri/Ti) − 1| ≤

1/2}, Ri/Ti ≥ 1/2 and Gi + Ci ≥ n/4. Thus, as Gi + C1
i > C1

i and Gi and C1
i

are independent, for n > 4,

Eθ0 sup
θ∈Mc,N

|Ai(θ)−A1
i (θ)|1Ωi

≤ 2
a0 + n/2 + c

(λ0 − ε)2(n/4)
(n/2)

(
Eθ0(R

1
i /Ti −Ri/Ti)

2
Eθ0((λ0 + c)Γi)

2
Eθ0(1/C

1
i )

2)
)1/2

≤ C
Ti
n

(
Eθ0(φ

2
i + φ4i )

)1/2
= O(

1

n
).

Next (n > 8, Eθ0φ
8
i < +∞)

Eθ0 sup
θ∈Mc,N

|Ai(θ)−A1
i (θ)|1Ωc

i

≤ 2(a0 + n/2 + c)n/2

(λ0 − ε)2
(Pθ0(Ω

c
i ))

1/2

(
Eθ0(R

1
i /Ti −Ri/Ti)

4
Eθ0

1

(nR1
i /Ti)

4

)1/4

= o(1)
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We have Bi(θ)−B1
i (θ) =

Γi

(λΓi+
nRi
2Ti

)(λΓi+
nR1

i
2Ti

)
(
nR1

i

2Ti
− nRi

2Ti
). Using that λ ≥ λ0−ε,

Eθ0 sup
θ∈Mc,N

|Bi(θ)−B1
i (θ)| ≤ C

n

2(λ0 − ε)

Ti
n

(
1

(n/2− 1)(n/2− 2)
Eθ0(φ

2
i + φ4i )

)1/2

= O(
1

n
).

Therefore, the proof of the first part of Proposition 7 is complete.

The fact that
√
N(θ̃n − θN ) = oPθ0

(1) can be deduced from the above proof. �

Proof of Proposition 8: We first consider the case σ(.) ≡ 1 and the estimating

function ∇UN (θ). To get the result, it is enough to prove that:

1√
N

N∑

i=1

(
n

S1
i

− Γi) = oPθ0
(1),

1√
N

N∑

i=1

(log
n

S1
i

− log Γi) = oPθ0
(1), (21)

where we recall that S1
i /n = Γ−1

i R1
i /Ti and nR1

i /Ti is independent of Γi and

has distribution χ2(n). Using results recalled in Section 7, for n > 2, we have

Eθ0(
n
S1

i

−Γi) = Eθ0ΓiEθ0(
n/2
C1

i

−1) = a0

λ0

O(n−1). Analogously, for n > 4, Eθ0(
n
S1

i

−
Γi)

2 = Eθ0Γ
2
iEθ0(

n/2
C1

i

−1)2 = O(n−1). This implies: Eθ0(
1√
N

∑N
i=1(

n
S1

i

−Γi))
2 =

O(n−1) + N−1
2 (O(n−1))2.

Hence, the first part of (21) holds provided that
√
N/n = o(1).

For the second assertion, we compute Eθ0(log
n
S1

i

−log Γi) = −ψ(n/2)+log (n/2) =

O(n−1), and Varθ0(log
n
S1

i

− log Γi) = Eθ0(− logC1
i +ψ(n/2))

2 = O(n−1). There-

fore, the second part of (21) also holds for
√
N/n = o(1).

Next, the result on θ∗N will follow analogously from the fact that TN = (
√
N)−1

∑N
i=1(l̃ogΓi−

log Γi) and τN = (
√
N)−1

∑N
i=1(Γ̃i−Γi) both tend to 0 in probability. The result

follows from the first part of the proof and the following lemma.

Lemma 2. Assume that Eθ0φ
8
i < +∞, i.e. a0 > 4 and that n > 4. Then,

Eθ0

(
n

Si
1(Si/n≥k/

√
n) −

n

S1
i

)2

+ Eθ0

(
log

Si

n
1(Si/n≥k/

√
n) − log

S1
i

n

)2

≤ C

n2

Proof of Lemma 2 We write: Γ̃i − n
S1

i

= n
Si

1(Si/n≥k/
√
n) − n

S1

i

= νi + ν′i with

νi = (
n

Si
− n

S1
i

) 1(Si/n≥k/
√
n), ν′i = − n

S1
i

1(Si/n<k/
√
n). (22)
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And analogously log Si

n 1(Si/n≥k/
√
n) − log

S1

i

n = τi + τ ′i with

τi = (log
Si

n
− log

S1
i

n
) 1(Si/n≥k/

√
n), τ ′i = − log

S1
i

n
1(Si/n<k/

√
n). (23)

For n > 4 and Eθ0φ
8
i < +∞, using explicit computations, Eθ0(

n
S1

i

)2 = O(1),

Eθ0 log
2 S1

i

n = O(1). To obtain that Eθ0(ν
′
i + τ ′i)

2 = O(n−2), we now prove that:

Pθ0(Si/n < k/
√
n) ≤ C/n2. (24)

Proof of (24): We remark:

(
Si

n
<

k√
n
) ⊂ (|φ2i −

Si

n
| > φ2i −

k√
n
, φ2i ≥ 2

k√
n
) ∪ (φ2i < 2

k√
n
)

⊂ (|φ2i −
Si

n
| > φ2i

2
) ∪ (φ−2

i >

√
n

2k
) = (|1− Ri

Ti
| > 1

2
) ∪ (φ−2

i >

√
n

2k
).

Consequently, using the Markov inequality and Proposition 4 yields:

Pθ0(Si/n < k/
√
n) ≤ C

(
24(

Ti
n
)2(1 + Eθ0(φ

4
i + φ8i ) +

(2k)4

n2
Eθ0φ

−4
i

)
≤ c′/n2.

So the proof of (24) is complete. �

It remains to study the terms νi, τi. We have on (Si/n ≥ k/
√
n):

|νi| = | 1

S1
i /n

(S1
i /n− Si/n)(

1

Si/n
− Γi + Γi)|

≤ 1

R1
i /Ti

|(R
1
i

Ti
− Ri

Ti
)(1− Ri

Ti
)|Γ−1

i

√
n

k
+

Γi

R1
i /Ti

|R
1
i

Ti
− Ri

Ti
|.

We use Proposition 4, the Cauchy-Schwarz inequality and the exact distribution

of Γi and 1
R1

i
/Ti

to obtain, for n > 4 and Eθ0φ
8
i < +∞:

Eθ0ν
2
i ≤ C

[
n

k2

(
Eθ0(

R1
i

Ti
− Ri

Ti
)4Eθ0(1−

Ri

Ti
)4
)1/2

+

(
Eθ0(

R1
i

Ti
− Ri

Ti
)2
)]

≤ C ′

n2
.

For the term τi, we use the Taylor formula and get:

τi = (Si/n− S1
i /n)

∫ 1

0

ds

s(Si/n) + (1− s)(S1
i /n)

.
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Then, we split the integral:

∫ 1

0

ds

s(Si/n) + (1− s)(S1
i /n)

=
1

S1
i /n

+

∫ 1

0

s(S1
i /n− Si/n)

(s(Si/n) + (1− s)(S1
i /n))S

1
i /n

ds.

Thus, on (Si/n ≥ k/
√
n), we obtain, after simplifications:

|τi| ≤
1

R1
i /Ti

|Ri/Ti −R1
i /Ti|+

√
n

k

1

R1
i /Ti

Γ−1
i (Ri/Ti −R1

i /Ti)
2.

This yields Eθ0τ
2
i ≤ C/n2. The proof of Lemma 2 is now complete. �

Applying Lemma 2, we obtain the result of Proposition 8.�

7 Auxiliary results

We recall some properties of Gamma and related distributions. The Gamma dis-

tribution with parameters (a, λ) (a > 0, λ > 0) , G(a, λ), has density γa,λ(x) =

(λa/Γ(a))xa−1e−x
1(0,+∞)(x), where Γ(a) is the Gamma fonction. The digamma

function ψ(a) = Γ′(a)/Γ(a) admits the following integral representation: ψ(z) =

−γ +
∫ 1

0
(1 − tz−1)/(1 − t)dt. (where γ = ψ(1) = Γ′(1)). For all positive a, we

have ψ′(a) = −
∫ 1

0
log t
1−t t

a−1dt. The following asymptotic expansions as a tends

to infinity hold:

log Γ(a) = (a− 1

2
) log a− a+

1

2
log 2π +O(

1

a
), (25)

ψ(a) = log a− 1

2a
+O(

1

a2
), ψ′(a) =

1

a
+O(

1

a2
). (26)

The following results are classical.

Proposition 10. If X has distribution G(a, λ), then λX has distribution G(a, 1).

For all integer k, E(λX)k = Γ(a+k)
Γ(a) . For a > k, E(λX)−k = Γ(a−k)

Γ(a) . Moreover,

E log (λX) = ψ(a), Var [log (λX)] = ψ′(a).

If X,Y are independent, X having distribution G(a, 1) and Y having distribution

G(b, 1) (a, b > 0), then, X + Y and X/(X + Y ) are independent, X + Y has

distribution G(a + b, 1), T = X
X+Y has distribution beta of the first kind with

parameters (a, b), denoted by β(1)(a, b), and density

fT (t) =
1

B(a, b)
ta−1(1− t)b−1

1(0,1)(t),
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with B(a, b) = Γ(a)Γ(b)
Γ(a+b) and Z = X/Y has distribution beta of the second kind

with parameters (a, b), denoted by β(2)(a, b), and density

fZ(z) =
1

B(a, b)

za−1

(1 + z)a+b
1(0,+∞)(z).

We have E(T ) = a
a+b , E(T 2) = a(a+1)

(a+b)(a+b+1) , Var(T ) = ab
(a+b)2(a+b+1) , E log T =

ψ(a)− ψ(a+ b), Var(log T ) = ψ′(a)− ψ′(a+ b), Cov(T, log T ) = b
(a+b)2 .
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