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Abstract

Active Noise Control aims at reducing the noise at a set of error sensors, but

is is often designed by minimizing an error index which also includes a weighted

penalty on the actuator inputs. In this way the control tends to be more robust

and the effort-weighting parameter allows to monitor the maximum voltages

which are applied to the control sources. Two similar effort-weighting techniques

have been widely implemented in active control studies: optimal control can be

computed using Tikhonov regularization in frequency-domain simulations and

using the leaky Filtered-reference least mean square algorithm for real-time feed-

forward control. This paper introduces the relationship between the two effort-

weighting parameters which lead, in the case of a single-tone noise, to exactly

the same error index both in the time and in the frequency domain; the best

real-time leakage factor can then be computed from frequency-domain optimiza-

tion. The paper also discusses numerical simulations of a single-channel set-up

which show that, with these two related parameters, the control performances

are indeed very close except for the case of a control filter with a very short



impulse response when control is slightly more conservative in the time domain

than in the frequency-domain simulations.

1 Introduction

Loudspeakers or shakers can be destroyed when they are driven by a high voltage. To

prevent this risk, when the primary noise to be reduced requires high voltages at the

secondary actuators, the active noise control is usually designed so as to minimize an

error index which combines a norm ot the control signals (the actuator inputs) with

a norm of the error signals (the residual noise at the error sensors) (cf. [1], [2], [3]).

Adjusting a weighting coefficient in the error index allows to optimize the the trade-off

between control performances and voltage limitation.

From a theoretical point of view, including an effort-weighting parameter in the mini-

mization index also allows to regularizes an ill-posed control problems (e.g. in the cases

with more actuators than error sensors) [4]. It is also reported in [1] that effort weight-

ing in active control may enlarge the area where noise is reduced because it makes noise

minimization at a discrete set of sensors match better an underlying continuous-space

global control problem. Last, but not least, leakage has the virtue of increasing the

robustness of real-time adaptive algorithm to errors in the secondary path estimate

which is required for on-line computations (see [2], section 3.4.7). Therefore, besides

the monitoring of the control inputs in the case of a loud primary noise, it is generally

a good idea to include an effort weighting parameter in the design of an active control

set-up.



Most active control studies address the weighting of the control inputs using two dif-

ferent techniques:

1. at the design stage, the control signals and performance are usually computed

off-line in the frequency domain. In this case the actuator inputs can be limited

by minimizing, at each frequency, a quadratic index which weights the norm of

the sensor signal vector and the norm of the actuator input vector (see [2], section

4.2.6). The optimal control can then be determined in practice by performing

the regularized inversion of the theoretical or the measured actuator-to-sensor

response matrix [4].

2. For effective real-time control, the actuator inputs are usually computed on-line in

the time domain using an adaptive algorithm such as the Filtered Reference Least

Mean Square algorithm (FxLMS). The FxLMS constantly adapts the coefficients

of transverse Finite Impulse Response (FIR) control filters which generate the

control signals. In this case, effort weighting is easily taken into account by

including the norm of the FIR filter coefficients in the error index, which leads to

the introduction of a so-called leakage factor (cf. [2], section 3.4.7) in the FxLMS

updating formula.

These approaches are similar since they both include a quadratic vector norm in the

error index which must be minimized by the active control. In the time domain the

leakage factor drives the trade-off between control inputs and performance, as does the

regularization parameter in the frequency domain. In the case of a single-tone noise,

these approaches are exactly equivalent because a change in magnitude in the control



filter coefficients leads to the same change in the control signals. However no obvious

relationship had been established between the two approaches even though it would

be interesting to be able to deduce the leakage factor that has to be implemented

in real-time from preliminary frequency-domain simulations. Indeed a trial-and-error

procedure can be used in the frequency domain simulations to determine which effort

weighting parameter is best, but optimizing the leakage factor in the time domain

cannot be performed without taking the risk of damaging the actuators.

This paper gives, in the case of a single-tone noise, the theoretical relationship between

the regularization parameter, in the frequency domain, and the leakage factor, in the

time domain, which lead to the minimization of the same error index. Using this

relationship, the leakage factor which has to be used on-line can be computed from a

regularization parameter selected using frequency-domain simulations.

The paper also presents numerical simulations of FxLMS control for a simple acoustic

set-up in which the leakage coefficient has been computed from the frequency-domain

regularization parameter. The simulations show that the real-time control leads to

slightly lower control signals and performance than predicted in the frequency domain.

The gap between the respective control results narrows as the length of the control

FIR is increased.

In section 2 of the paper, the usual two techniques for effort weighting in active noise

control are briefly recalled. Notations are introduced for the subsequent derivation of

the correspondance between the two techniques. The relationship between the regu-

larization parameter and the leakage factor is derived in section 3. Section 4 presents



numerical simulations of a simple control set-up which show that, using corresponding

minimization indexes, control with a leaky FxLMS algorithm is slightly more conserva-

tive regarding control input limitations than the direct frequency domain optimization.

2 Weighted error indexes and optimal control

Figure 1 sketches a typical feedforward active noise control set-up. Reference signal x,

which is correlated with the which active control has to reduce, drives a set of linear

filters whose w(ω) is the vector of Frequency Response Functions (FRFs) at angular

frequency ω. u(ω) is the vector of the control filter outputs, which are the actuators

inputs, and e is the vector of the noise at the set of error sensors. ep is the so-called

primary noise at the sensors, i.e. the noise without control. Matrix H(ω) denotes the

so-called secondary path matrix of FRFs between the actuator inputs and the error

sensors at angular frequency ω. In a similar way, vector f(ω) denotes the primary path

between the reference signal x and the primary noise ep.
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Figure 1: A feeforward active noise control set-up



2.1 Optimal control in the frequency domain

Active control at angular frequency ω can easily take effort weighting into account by

using the minimization index (see [2], section 4.2):

Jω = ‖e(ω)‖2 + γ2‖u(ω)|2 (1)

where ‖ • ‖ is the usual vector 2-norm and γ2 is the effort-weighting parameter. Index

1 can be expanded as:

Jω = ‖H(ω)u(ω) + ep(ω)‖2 + γ2‖u(ω)‖2 (2)

The vector of input signals which minimizes this index is then given by (cf. [4]):

û(ω) = H†ep(ω) (3)

where H† is the so-called Tikhonov-regularized pseudo-inverse of matrix H(ω). H† can

be computed by inverting matrix H(ω) through Singular Value Decomposition and by

substituting σi

σ2

i
+γ2

to every singular value 1
σi

of the matrix H inverse. The Matlabr

function pinv directly performs such a regularized inversion.

2.2 Optimal control in the time-domain

Following [2], section 3.4.7, effort weighting can be taken into account in FxLMS control

by minimizing the error index:

Jn = ‖e(n)‖2n + ν‖w(n)‖2n (4)

where



• e(n) is the vector of the instantaneous error signals at discrete time n and ‖e(n)‖t

its mean square value over time,

• w(n) is the stacked vector of all the control FIR at time n,

• ν is an arbitrary effort weighting coefficient.

The filter responses which minimize index Jt can be computed using the adaptive form:

w(n+ 1) = (1− νβ)w(n)− βR(n)e(n) (5)

where

• β is a proper convergence coefficient

• R(n) is the so-called filtered reference, filtering of the reference signal x(n) through

FIR estimates of the secondary path.

The updating formula 5 is constitutive of the so-called leaky FxLMS algorithm.

3 Linking the effort-weighting parameters

In this section, the error indexes 1 and 4 are manipulated in order to determine which

weighting parameters γ and ν lead to the same minimization problem.

At first, because of Parseval’s theorem, the error signal contributions have the same

form in the two indexes as soon as the FxLMS has converged to the steadys-state

optimal control. Therefore the minization index in the time domain can be rewritten:

Jn = ‖e(ω)‖2 + ν‖w(n)‖2n = ‖e(ω)‖2 + ν
‖w(n)‖2n
‖u(ω)‖2 ‖u(ω)‖

2 (6)



Comparing equations 4 and 6 shows that both minization indexes will lead to the same

solution if and only if:

ν =
γ2‖û(ω)‖2

‖ŵ‖2 (7)

where ŵ is the stacked vector of the optimal control filters FIRs.

Equation 7 formally connects the two effort weighting factor, but the computation of

optimal control in the frequency domain does not directly provide the ‖ŵ‖ factor in

it. However in the frequency domain the FRFs ŵ(ω) of the optimal filters are easy to

compute because the optimal control inputs û are the filtering of the reference signal:

‖ŵ(omega)‖ =
‖û(ω)‖

√

(2)‖x(n)‖n
(8)

(take notice of the
√

(2) factor in this formula which arises from the definition of

‖x(n)‖n as the quadratic mean square value of the reference signal x(n)).

The FIRs of the optimal control filters can now be determined from the FRFs by using

the fact that, amongst all the FIR filters with frequency responses ŵ(ω), the optimal

control FIR vector has minimun vector 2-norm because it minimizes index 4.

In the single actuator case, optimal FRF ŵ(ω) is a single complex number and ŵ is as

a single FIR [ŵ0 ŵ1 . . .&ŵN−1]
t, where N is the FIR length, such as:

ŵ(ω) = ŵ0 + ŵ1e
−iω/fs + . . .+ ŵN−1e

−i(N−1)ω/fs =
[

1 e−iω/fe . . . e−i(N−1)ω/fs
]t
ŵ (9)

where fs is the sampling frequency of the real-time control. Vector ŵ is theferore the

least square solution of the linear equation:
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whose solution e.g. in Matlabr code is simply given by a matrix division using symbol

\.

It must be noted that the FIRs ŵ and therefore the computed leakage factor ν depend

strongly, but not in an simple way, on the length N of the control filter FIRs. Therefore

in real-time a change in the control filter length requires a change in the leakage factor

if effort weighting has to be maintained at the same level.

In the multiple-actuator case, the stacked vector ŵ of optimal FIRs is obtained in the

same way by stacking the optimal control FRFs in the left hand side of equation 10.

In summary, the leakage factor corresponding to a given regularization parameter γ

can be computed with the following procedure:

• compute the optimal control inputs û(ω) using a pseudo-inversion, as discussed

in section 2.1

• compute the FRFs of the optimal filters ŵ(ω) using equation 9

• compute the FIRs of the optimal filters ŵ using least-square inversion (equation

10)

• compute the leakage factor from equation 7:

ν =
γ2‖û(ω)‖2

‖ŵ‖2 (11)

4 Time-domain vs. frequency-domain simulations

The above procedure was implemented for the numerical simulation of a very simple

single-channel control case.



The primary noise was a 300Hz pure-tone ep(t) = π sin(2π300t). The reference signal

was taken as x = 3
√
2 sin(2π300t), which was perfectly correlated with the primary

noise. FxLMS was simulated at the sampling frequency fs = 1000Hz. The secondary

path was chosen as a pure two-sample delay with FIR h = [0 0 1].

For the results given below, the FxLMS convergence coefficient (β in equation 5),

normalized by the control filter FRF length and the mean square value of the reference

(cf. [2], section 3.4.4), was assigned to 0.4. The mean-square value of the error and

control signals were computed over 2 seconds after running the FxLMS for 8 seconds,

which was much longer than the apparent control convergence time.

Table 1 shows the control performances for a various set of regularization parameters

γ and of control FIR lengths N . uω and un are the mean-square value of the control

signal, respectively in the frequency and in the time domain, and Aω and An are the

corresponding noise attenuation.

At first table 1 shows that, as expected, the regularization factor and the leakage factor

monitor the control signal; the larger the effort weighting, the smaller the control signal

and the noise attenuation.

Secondly table 1 shows that the regularization parameter γ and the leakage factor ν,

computed as discussed in section 3, lead to a control signal magnitude and a noise

attenuation that are very close. This result confirms, if necessary, that the procedure

discussed in section 3 gives effort-weighting parameters that lead to the minimization

problem. However, the control in the time-domain is slightly more conservative when

the control filter FIR is very short length. This is probably due to the lack of accuracy



γ nw ufreq utemp Aω (dB) An (dB)

0 2 0.7405 0.7407 +∞ 223

0.05 2 0.7386 0.7099 52.1 27.2

0.05 10 0.7386 0.7385 52.1 50.7

0.05 50 0.7386 0.7385 52.1 52.1

0.2 2 0.7120 0.4357 28.3 7.20

0.2 10 0.712 0.7076 28.3 27.0

0.5 2 0.5924 0.1818 14.0 1.1

0.5 10 0.5924 0.5666 14.0 12.6

1 10 0.3702 0.2920 6.0 4.3

of the FxLMS when the selected control filter FIR length is too short.

5 Concluding remarks

In the case of a single-tone primary noise, Tykhonov regularization in the frequency

domain and leaky-FxLMS active control are exactly equivalent. A simple numerical

procedure has been introduced in this paper to compute the leakage factor correspond-

ing to a given regularization parameter; simple numerical simulations have confirmed

that the two effort-weighting approaches lead to almost the same control results.

In the case of a primary noise involving several tones, the convergence of the FxLMS

algorithm can be considered independently at each frequency. Therefore one leakage



factor ν(ωk) could be computed for each frequency from the regularization parameters

γ(ωk), but, because equation 10 is frequency dependent, a single global leakage factor

cannot be computed even if the frequency-domain parameter is the same for all fre-

quencies. In the case of a broadband noise, control cannot be computed independently

at each frequency because of the causality constraint (cf. [2]); in this case even optimal

control in the frequency domain cannot be computed as discussed in section 2.1.

Finally, although this paper has focused on active noise control, real-time effort-

weighting is of interest for other problems in Acoustics. For example the so-called

Adaptive Wave-Field Synthesis, which has been introduced for 3D sound field gener-

ation, involves in the on-line minimization of an index including a quadratic penalty

[5]. In this case the time-domain regularization parameter can also be computed from

the frequency-domain parameter, as discussed in section 2, in the case of single-tone

synthesis.
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