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SUMMARY

The paper deals with the accuracy of guaranteed error bounds on outputs of interest computed from
approximate methods such as the finite element method. A considerable improvement is introduced for linear
problems thanks to new bounding techniques based on Saint-Venant’s principle. The main breakthrough
of these optimized bounding techniques is the use of properties of homothetic domains which enables
to cleverly derive guaranteed and accurate boundings of contributions to the global error estimate over
a local region of the domain. Performances of these techniques are illustrated through several numerical
experiments.
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1. INTRODUCTION

In the context of finite element model verification, research works currently focus on the evaluation

of the numerical quality of specific quantities of practical interest. Such worthwhile methods,

known as goal-oriented error estimation methods, have been emerging for about twenty years

[1, 2, 3, 4, 5, 6, 7, 8] and have been recently extended to a wide range of mechanical problems

[9, 10, 11, 12, 13, 14, 15, 16]. Nevertheless, among all of them, only a few actually lead to robust

and relevant estimates ensuring the recovery of strict and high-quality error bounds.

In order to achieve robust goal-oriented error estimation, a general method, initially introduced

in [13], has been prone to considerable developments. It is based on classical and powerful tools,

such as the concept of constitutive relation error (CRE), and more recently handbook techniques

[12, 17] and projection procedures [16]. First, methods based on the CRE enable to set up a

guaranteed global error estimate through the construction of an admissible pair, which constitutes

the key technical point. Various techniques enable to construct such an admissible solution from

the prescribed data of the reference problem and the approximate finite element (FE) solution (see

[18, 19, 20, 21, 22, 23, 24, 25] for further information). Then, a measure of the non-verification

of the constitutive relation by this admissible pair (with respect to an energy norm) leads to an

upper bound of the global discretization error. The goal-oriented error estimator considered in this

work is based on extraction (or adjoint-based) techniques and involves the solution of an auxiliary

problem, often referred to as dual (or adjoint in the linear case, or mirror in the non-linear case [13])
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2 P. LADEVÈZE, F. PLED AND L. CHAMOIN

problem. An accurate solution of this auxiliary problem is required to achieve sharp local error

bounds. A natural but intrusive way to properly solve this problem merely consists of performing a

local space(-time) refinement of the mesh being considered. Alternatively, handbook techniques,

initially proposed in [26], rely on a local enrichment of the solution of the auxiliary problem

introduced through a partition of unity method (PUM). The enrichment functions correspond to

(quasi-)exact local solutions of the auxiliary problem calculated either analytically or numerically

in (semi-)infinite domains. This enrichment is particularly well-suited to handle truly pointwise

quantities of interest without resorting to any regularization of the quantity of interest being studied.

In practice, this technique preserves the non-intrusive nature offered by the FE framework as it

circumvents the need to perform local refinement of the auxiliary problem to provide precise error

bounds. Lastly, projection procedures allow the treatment of non-linear quantities of interest without

having recourse to any classical linearization techniques and keeping intact the strict nature of the

resulting bounds.

However, among those various tools, only the use of handbook techniques leads to the derivation

of outstandingly accurate local error bounds, provided that appropriate enrichment functions are

available in a library of pre-computed handbooks functions. Indeed, without additional techniques,

the classical bounding technique may achieve low-quality guaranteed error bounds even with an

extremely refined mesh. The reason why such error estimates are crude comes from the basic

bounding technique, i.e. the Cauchy-Schwarz inequality, which is only efficient if terms involved in

this inequality are close to be collinear, i.e. when the main contributions to the discretization errors

related to both reference and auxiliary problems are located in the same regions. In other words,

when the zone of interest does not coincide with the most concentrated error regions associated to

the reference problem, the classical bounding technique yields inaccurate and sometimes useless

bounds.

The present work sheds some light on this crucial question. In this paper, we revisit the classical

bounding technique based on global error estimation methods applied to both reference and

auxiliary problems, and introduce two new bounding techniques to alleviate problems related to the

classical bounding technique. These improved techniques are based on both classical and innovative

tools; they lean on Saint-Venant’s principle and are therefore restricted to linear problems. Basic

extraction techniques and specific homotheticity properties are employed to get guaranteed and

relevant bounds of better quality than the classical bounding technique. More precisely, the main

idea consists of considering separately the zone of interest and the remainder of the structure. Both

enhanced techniques use homothetic domains properties to cleverly derive accurate bounds over

a local region surrounding the zone of interest. In this work, we examine only the case of linear

quantities of interest with respect to the displacement field associated to linear elasticity problems.

Finally, these new basic bounding techniques are combined with handbook techniques to solve in a

very accurate manner the adjoint problem, thus resulting in efficient error bounds. 2D applications

are performed and show the important resulting gain on the quality of the computed bounds using

the two new basic bounding techniques.

The paper is organized as follows: after this introduction, Section 2 presents both reference

and adjoint problems and defines the discretization error; Section 3 recalls basics on goal-

oriented error estimation using the concept of admissible solutions and associated constitutive

relation error; Sections 4 and 5 provide a detailed description of the first and second improved

bounding techniques, respectively, both based on homothetic domains properties; several numerical

experiments are presented in Section 6 to demonstrate the effectivity and relevance of the two

proposed techniques; eventually, Section 7 draws some conclusions and may provide road maps

to future developments.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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NEW BOUNDING TECHNIQUES FOR GOAL-ORIENTED ERROR ESTIMATION 3

2. REFERENCE AND ADJOINT PROBLEMS

2.1. Reference problem and discretization error

Let us consider a mechanical structure occupying an open bounded domain Ω, with Lipschitz

boundary ∂Ω. The prescribed loading acting on Ω consists of: a displacement field Ud on part

∂1Ω ⊂ ∂Ω (∂1Ω 6= ∅); a traction force density F d on the complementary part ∂2Ω of ∂Ω such

that ∂1Ω ∪ ∂2Ω = ∂Ω, ∂1Ω ∩ ∂2Ω = ∅; a body force field f
d

within Ω. Structure Ω is assumed to

be made of a material with isotropic, homogeneous, linear and elastic behavior characterized by

Hooke’s tensor K. Assuming a quasi-static loading as well as isothermal and small perturbations

state, the reference problem which describes the behavior of the structure consists of finding a

displacement/stress pair (u,œ) in the space domain Ω, which verifies:

• the kinematic conditions:

u ∈ U ; u|∂1Ω
= Ud; ”(u) =

1

2

(

∇u+∇Tu
)

; (1)

• the weak form of equilibrium equations:

œ ∈ S; ∀ u∗ ∈ U0,

∫

Ω

Tr
[

œ ”(u∗)
]

dΩ =

∫

Ω

f
d
· u∗ dΩ +

∫

∂2Ω

F d · u∗ dS; (2)

• the constitutive relation:

œ(M) = K ”
(

u(M)
)

∀M ∈ Ω, (3)

where ”(u) represents the classical linearized strain tensor corresponding to the symmetric

part of the gradient of displacement field u. Affine spaces U =
{

u ∈ [H1(Ω)]3
}

and S =
{

œ ∈ Ms(3) ∩ [L2(Ω)]6
}

guarantee the existence of finite-energy solutions, Ms(n) representing

the space of symmetric square matrices of order n. Lastly, U0 ⊂ U denotes the vectorial space

associated to U , i.e. containing the functions subjected to homogeneous kinematic boundary

conditions over ∂1Ω.

In practical applications, the exact solution of the reference problem, hereafter denoted (u,œ),
remains usually out of reach and only an approximate solution, referred to as (uh,œh), can be

obtained through numerical approximation methods (such as the finite element method (FEM)

associated with a space mesh Mh mapping Ω). Such a numerical approximation is searched in

a discretized space Uh×Sh ⊂ U×S. A displacement-type FEM leads to a displacement field uh

verifying kinematic constraints (1) and a stress field œh computed a posteriori from constitutive

relation (3).

The resulting discretization error, denoted eh = u− uh, can be evaluated by means of:

• a global measure, such as the classical energy norm ‖•‖u,Ω =
(∫

Ω
Tr

[

K ”(•) ”(•)
]

dΩ
)1/2

,

providing a global discretization error eglobh = ‖eh‖u,Ω.

• a local measure defined with respect to a specified output of interest I(u) of the problem,

providing a local error eloch = I(u)− I(uh). Under the assumption of a linear quantity of

interest with respect to displacement u, it merely reads: eloch = I(eh).

2.2. Adjoint problem

The quantity of interest, hereafter denoted I , is a goal-oriented output, such as the mean value of a

stress component over a local region or the displacement value at a specific point, for instance. These

meaningful quantities of engineering interest are usually defined by means of extraction techniques

[2, 7, 27], i.e. by expressing the local quantity I being considered in the global form involving global

extraction operators, also called extractors. In this work, for the sake of simplicity, the quantity of

interest is represented as a linear functional L of displacement field u on a finite support under the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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4 P. LADEVÈZE, F. PLED AND L. CHAMOIN

following global form:

I = L(u) =
∫

Ω

(

Tr
[

œ̃Σ ”(u)
]

+ f̃
Σ
· u

)

dΩ, (4)

where so-called extractors œ̃Σ and f̃
Σ

, known analytically, can be mechanically viewed as a

prestress field and a body force field, respectively. These extractors can be defined explicitly or

implicitly depending on the selected output of interest. Let us note that the extraction technique

provides a natural framework to handle a wide range of local quantities. In the following, let

Iex = L(u) and Ih = L(uh) be the unknown exact value of the quantity of interest I being studied

and its approximate value obtained through the FEM, respectively.

Once the quantity of interest has been put into such a global form, the classical approach then

consists of introducing an auxiliary problem, also called adjoint problem, which is similar to

the reference problem, except that the external mechanical loading (F d, fd
) is replaced by the

extractors on the one hand, and the non-homogeneous Dirichlet boundary conditions are changed

to homogeneous kinematic constraints on the other hand. The adjoint problem consists of finding a

displacement/stress pair (ũ, œ̃), in the space domain Ω, which verifies:

• the kinematic conditions:

ũ ∈ U0; (5)

• the weak form of equilibrium equations:

œ̃ ∈ S; ∀ u∗ ∈ U0,

∫

Ω

Tr
[

œ̃ ”(u∗)
]

dΩ = L(u∗) =

∫

Ω

(

Tr
[

œ̃Σ ”(u∗)
]

+ f̃
Σ
· u∗

)

dΩ;

(6)

• the constitutive relation:

œ̃(M) = K ”
(

ũ(M)
)

∀M ∈ Ω. (7)

Under the assumption of a linear functional L, the following equality holds:

Iex − Ih = L(u)− L(uh) = L(eh) =
∫

Ω

Tr
[

K ”(ũ) ”(eh)
]

dΩ = Rh(ũ). (8)

The solution ũ of the adjoint problem can thus be viewed as an influence function [5] indicating

how the weak residual functional Rh (with respect to the discretization error eh) affects the local

discretization error L(eh) (with respect to the specific measure L). Let us note that solutions u and

ũ of reference and adjoint problems, respectively, are mutually adjoint to each other [8] insofar as

L(u) =
∫

Ω

Tr
[

”(u) K ”(ũ)
]

dΩ = F(ũ), (9)

where

F(ũ) =

∫

Ω

f
d
· ũ dΩ +

∫

∂2Ω

F d · ũ dS. (10)

As for the reference problem, the exact solution (ũ, œ̃) of the adjoint problem remains out of reach

in most practical applications, and one can only obtain an approximate solution, denoted (ũh, œ̃h).
This last solution lies in discretized FE spaces associated with a space mesh M̃h, mapping the

physical domain Ω, regardless of the FE mesh Mh used to solve the reference problem.

3. BASICS ON GOAL-ORIENTED ERROR ESTIMATION BASED ON CONSTITUTIVE

RELATION ERROR

We review here the classical procedure to get guaranteed local error bounds on functional outputs

which constitute valuable and relevant information in standard engineering practice.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme



NEW BOUNDING TECHNIQUES FOR GOAL-ORIENTED ERROR ESTIMATION 5

3.1. Constitutive relation error

In verification research activities, setting up robust error estimation methods has become an

overriding concern. The construction of what is called an admissible pair is currently an essential

and crucial step in order to obtain guaranteed error bounds. An admissible pair (ûh, œ̂h) verifies

all the equations of the reference problem, apart from constitutive relation (3). On the one hand,

a kinematically admissible displacement field is generally obtained by merely taking ûh equal to

uh (apart from the case of incompressible materials, see [28]). On the other hand, the derivation of

a statically admissible stress field can be achieved by using various balance techniques suitable

to error estimation [18, 19, 20, 21, 22, 23, 24, 25]. Such an admissible stress field œ̂h can be

recovered from the data and the FE stress field œh alone. Starting from an admissible solution

(ûh, œ̂h) provided by one of the existing techniques, one can measure the global residual on

constitutive relation (3), called the constitutive relation error (CRE) and hereafter referred to as

ecre ≡ ecre(ûh, œ̂h) = ‖œ̂h − K ”(ûh)‖œ,Ω, with ‖•‖œ,Ω =
(∫

Ω
Tr

[

• K
−1 •

]

dΩ
)1/2

. Computing

the CRE ecre(ûh, œ̂h) provides a guaranteed upper bound of the global discretization error

‖eh‖u,Ω, as the well-known Prager-Synge hypercircle theorem [29] leads to the following bounding

inequality:

‖eh‖
2
u,Ω = ‖u− ûh‖

2
u,Ω 6 ‖u− ûh‖

2
u,Ω + ‖œ− œ̂h‖2œ,Ω = e2cre, (11)

which conveys the guaranteed nature of the CRE ecre.
Introducing the average admissible field:

œ̂m
h =

1

2
(œ̂h + K ”(ûh)) , (12)

one can directly deduce another fundamental relation, called the Prager-Synge’s equality:

‖œ− œ̂m
h ‖œ,Ω =

1

2
ecre. (13)

Equations (11) and (13) are key relations to derive guaranteed error bounds in both global and local

robust error estimation methods.

In the same way as for the reference problem, an admissible solution of the adjoint problem,

hereafter referred to as (ˆ̃uh, ˆ̃œh), can be derived from one of the existing equilibration techniques.

Then, the associated CRE ẽcre ≡ ecre(ˆ̃uh, ˆ̃œh) of the adjoint problem can be computed leading to a

global estimate of the discretization error ẽh = ũ− ũh of the adjoint problem.

Now, let us focus on the main principles of the classical bounding technique involved in goal-

oriented error estimation method based on extraction techniques and CRE.

3.2. Basic identity and classical bounding technique

The definition of the quantity of interest I recast in the global form (4) and properties of both

admissible solutions (ûh, œ̂h) and (ˆ̃uh, ˆ̃œh) lead to the following basic identity:

Iex − Ih − Ihh =

∫

Ω

Tr
[

(œ− œ̂m
h ) K

−1 ( ˆ̃œh − K ”(ˆ̃uh))
]

dΩ

=
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,Ω
, (14)

with œ̂m
h =

1

2
(œ̂h + K ”(ûh)); 〈•, ◦〉œ,Ω denotes an energetic inner product defined on the stress

field space over Ω. Ihh can be viewed as a computable correction term involving known quantities

of both reference and adjoint problems:

Ihh =

∫

Ω

Tr
[

ˆ̃œm
h K

−1 (œ̂h − K ”(ûh))
]

dΩ + L(ûh − uh)

=
〈

ˆ̃œm
h , œ̂h − K ”(ûh)

〉

œ,Ω
+ L(ûh − uh), (15)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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6 P. LADEVÈZE, F. PLED AND L. CHAMOIN

with ˆ̃œm
h =

1

2
( ˆ̃œh + K ”(ˆ̃uh)), and leading to a new approximate solution Ih + Ihh of the exact

value Iex of the quantity of interest. A complete and detailed proof of this basic identity can be

found in [13, 16].

The fundamental equality (14), which does not require any orthogonality property of the FE

solutions (contrary to pioneering techniques [2, 5, 8]) and allows to decouple discretizations of

reference and adjoint problems, is the cornerstone of the classical bounding technique as well as

the improved ones described in section 4. Besides, this bounding technique could conceivably be

extended to problems solved using numerical approximation methods different from the FEM.

Subsequently, the classical bounding procedure merely consists of applying the Cauchy-Schwarz

inequality to (14) with respect to inner product 〈•, ◦〉œ,Ω and then using Prager-Synge’s equality

(13). This yields:

|Iex − Ih − Ihh| 6
1

2
ecre ẽcre. (16)

Subsequently, the derivation of strict lower and upper bounds (ξinf , ξsup) of Iex (or, equivalently,

of the local error Iex − Ih) can be achieved straightforwardly, just having a global error estimation

procedure at hand:

ξinf 6 Iex 6 ξsup, (17)

with

ξinf = Ih + Ihh − 1

2
ecre ẽcre; (18)

ξsup = Ih + Ihh +
1

2
ecre ẽcre. (19)

Besides, owing to the independent natures of spatial discretizations associated to reference and

adjoint problems, a convenient way to achieve accurate and sharp bounds of Iex is to perform a local

space refinement of the adjoint mesh M̃h alone around the zone of interest in order to properly solve

the adjoint problem while keeping a reasonable computational cost. In most practical applications,

the discretization error related to the adjoint problem is concentrated in the vicinity of the zone of

interest, whereas that related to the reference problem may be scattered around zones which present

some singularities or other error sources. However, when the error related to the reference problem

is mostly located outside and far from the zone of interest, the classical bounding technique may

yield large and low-quality local error bounds and thus makes useless bounding result (17). This is

the point that we are revisiting here.

The proposed bounding techniques we present in the two following sections are intended to

circumvent this serious drawback inherent to the classical technique in order to get sharp local

error bounds.

4. FIRST IMPROVED BOUNDING TECHNIQUE

4.1. Definitions and preliminaries

Let us consider a reference subdomain, denoted ω1 and included in Ω, defined by a point O and a

geometric shape. The set of homothetic domains ωλ is defined as:

ωλ = H [O;λ](ω1) (20)

where H [O;λ] stands for the homothetic transformation centered in point O, called homothetic

center, and parameterized by a nonzero positive number λ ∈ [0 , λmax], also called magnification

ratio, scale factor or similitude ratio, such that ωλ ⊂ Ω, i.e. ωλ is a subset of Ω (see Figure 1). The

geometric shape defining the set of homothetic domains ωλ is arbitrary, but in practice these physical

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme



NEW BOUNDING TECHNIQUES FOR GOAL-ORIENTED ERROR ESTIMATION 7

domains are assumed to be basic, such as a circle or a rectangle in 2D, and a sphere or a rectangular

cuboid (also called rectangular parallelepiped or right rectangular prism) in 3D, for instance.

By considering the parameterization (λ, s) (resp. (λ, s1, s2)) of a given domain ωλ ⊂ Ω in 2D

(resp. 3D), where s denotes the curvilinear abscissa along boundary ∂ωλ (see Figure 1), the

following equalities hold:

∫

ωλ

• dΩ =

∫ λ

λ′=0

[

∫

∂ω
λ′

• dS
]

dλ′; (21)

d

dλ

[
∫

ωλ

• dΩ
]

=

∫

∂ωλ

• dS. (22)

where dS is defined in a generic manner as:

dS =

{

ds in 2D;

a(s1, s2) ds1 ds2 in 3D,
(23)

and depends on the geometric shape defining the set of homothetic domains.

ω1

Mλ̄

Mλ

v
λ

v
λ̄

s

n

t

λ

λ̄

O
ωλ

ωλ̄

Mλ̄

Mλ

v
λ

v
λ̄

s

n

t

λ

λ̄

O

ωλ̄

ω1

v11
M1

v1 M1

ωλ

1

Figure 1. Rectangular (left) and circular (right) homothetic domains in two dimensions.

For a given pair (ωλ, ωλ̄) of homothetic domains included in Ω, represented in Figure 1 and

parameterized by (λ, λ̄), such that ωλ ⊂ ωλ̄ ⊂ Ω, i.e. λ ∈ ]0 , λ̄], the position vλ of a point Mλ along

∂ωλ can be defined from the position vλ̄ of the corresponding point Mλ̄ along ∂ωλ̄ by the following

relation:

vλ =











λ

λ̄
vλ̄(s) parameterized by (λ, s) in 2D;

λ

λ̄
vλ̄(s1, s2) parameterized by (λ, s1, s2) in 3D,

(24)

where s (resp. s1 and s2) represent the curvilinear abscissa along boundary ∂ωλ̄ in 2D (resp. 3D).

Such a parameterization leads to the following relations:

∫

ωλ

• dΩ =

∫ λ

λ′=0

[

∫

∂ω
λ̄

• vλ̄ · n dS

]

(

λ′

λ̄

)n
1

λ̄
dλ′; (25)

∫

∂ωλ

• dS =

∫

∂ω
λ̄

• dS
(

λ

λ̄

)n

, (26)

where n denotes a positive integer defined as:

n =

{

1 in 2D;

2 in 3D.
(27)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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8 P. LADEVÈZE, F. PLED AND L. CHAMOIN

Let us define inner products and associated norms over a given homothetic domain ωλ ⊂ Ω:

〈•, ◦〉u,ωλ
=

∫

ωλ

Tr
[

”(•) K ”(◦)
]

dΩ and ‖•‖u,ωλ
=

(
∫

ωλ

Tr
[

”(•) K ”(•)
]

dΩ

)1/2

; (28)

〈•, ◦〉œ,ωλ
=

∫

ωλ

Tr
[

• K
−1 ◦

]

dΩ and ‖•‖œ,ωλ
=

(
∫

ωλ

Tr
[

• K
−1 •

]

dΩ

)1/2

. (29)

Similarly, let us also define inner products and associated norms over boundary ∂ωλ of a given

homothetic domain ωλ, such that ωλ ⊂ ωλ̄ ⊂ Ω:

(•, ◦)u,∂ωλ
=

∫

∂ωλ

Tr
[

”(•) K ”(◦)
]

vλ̄ · n dS and |•|u,∂ωλ
=

(
∫

∂ωλ

Tr
[

”(•) K ”(•)
]

vλ̄ · n dS

)1/2

;

(30)

(•, ◦)œ,∂ωλ
=

∫

∂ωλ

Tr
[

• K
−1 ◦

]

vλ̄ · n dS and |•|œ,∂ωλ
=

(
∫

∂ωλ

Tr
[

• K
−1 •

]

vλ̄ · n dS

)1/2

.

(31)

One can easily prove that the following equalities hold:

d

dλ

[

‖•‖2u,ωλ

]

=

(

λ

λ̄

)n
1

λ̄
|•|2u,∂ω

λ̄

; (32)

d

dλ

[

‖•‖2œ,ωλ

]

=

(

λ

λ̄

)n
1

λ̄
|•|2œ,∂ω

λ̄

, (33)

where n is defined by (27).

Proof

Starting from definition (28) of ‖•‖2u,ωλ
, then using relation (25) and definition (30) of |•|2u,∂ω

λ̄

, one

gets directly:

‖•‖2u,ωλ
=

∫

ωλ

Tr
[

”(•) K ”(•)
]

dΩ

=

∫ λ

λ′=0

[

(

λ′

λ̄

)n
1

λ̄

∫

∂ω
λ̄

Tr
[

”(•) K ”(•)
]

vλ̄ · n dS

]

dλ′

=

∫ λ

λ′=0

[(

λ′

λ̄

)n
1

λ̄
|•|2u,∂ω

λ̄

]

dλ′ (34)

Eventually, differentiation of (34) with respect to variable λ completes the proof of relation (32).

Similarly, the derivation of relation (33) can be proved in a straightforward manner.

Definition 1. Measures ecre,λ(ûh, œ̂h) and ecre,λ(ˆ̃uh, ˆ̃œh) of the non-verification of the constitutive

relations related to both reference and adjoint problems in part ωλ ⊂ Ω are defined by:

ecre,λ ≡ ecre,λ(ûh, œ̂h) = ‖œ̂h − K ”(ûh)‖œ,ωλ
(35)

and

ẽcre,λ ≡ ecre,λ(ˆ̃uh, ˆ̃œh) =
∥

∥ ˆ̃œh − K ”(ˆ̃uh)
∥

∥

œ,ωλ

, (36)

respectively.

Similarly, measures ecre,\λ(ûh, œ̂h) and ecre,\λ(ˆ̃uh, ˆ̃œh) of the non-verification of the constitutive

relations related to both reference and adjoint problems in the complementary part Ω \ ωλ are

defined by:

ecre,\λ ≡ ecre,\λ(ûh, œ̂h) = ‖œ̂h − K ”(ûh)‖œ,Ω\ωλ
(37)

and

ẽcre,\λ ≡ ecre,\λ(ˆ̃uh, ˆ̃œh) =
∥

∥ ˆ̃œh − K ”(ˆ̃uh)
∥

∥

œ,Ω\ωλ

, (38)

respectively.
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4.2. General idea

First, let us recall that the quantity q to bound for building an upper error bound is (see (14)):

q =
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,Ω
, (39)

where œ̂m
h and ˆ̃œh − K ”(ˆ̃uh) are given quantities and œ is the unknown exact stress solution of the

reference problem.

Let us consider a subdomain ωλ of domain Ω, whose complementary part is denoted by Ω \ ωλ

in the following. Then, q can be split into two parts:

q = qλ + q\λ, (40)

where

qλ =
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,ωλ

(41)

and

q\λ =
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,Ω\ωλ

. (42)

If quantity ˆ̃œh − K ”(ˆ̃uh) is concentrated over ωλ, i.e. if subdomain ωλ surrounds the zone of

interest ω, part q\λ can be merely bounded as follows:

∣

∣q\λ
∣

∣ 6 ‖œ− œ̂m
h ‖œ,Ω\ωλ

ẽcre,\λ, (43)

ẽcre,\λ being a relatively small computable term. It follows that the main contribution to the error

comes from qλ. Consequently, quantity qλ has to be correctly bounded.

In order to derive accurate bounds for part qλ, the discretization error eh = u− ûh on ωλ is split

into:

• a local error, denoted u1;

• a pollution error, denoted u2,

which are solutions of the following two local problems defined on ωλ, referred to as (P1) and (P2),
respectively:

• Problem (P1) consists of searching (u1,œ1) ∈ U×S such that:

◦ u1 = 0 on ∂ωλ

◦ div(œ1) = div(K ”(u− ûh))

◦ œ1 = K ”(u1)

• Problem (P2) consists of searching (u2,œ2) ∈ U×S such that:

◦ u2 = u− ûh on ∂ωλ

◦ div(œ2) = 0

◦ œ2 = K ”(u2)

Decomposition u− ûh = u1 + u2 is the starting point for deriving the main technical result

presented in the next section. It is worthy noticing that there is no need to perform the extra-

resolutions of local problems (P1) and (P2) to get the main technical and final bounding results

(49) and (53) introduced in Sections 4.3 and 4.4, respectively. This point is discussed and proved in

Appendix A.
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10 P. LADEVÈZE, F. PLED AND L. CHAMOIN

4.3. Main technical result

Let us consider the space V of functions satisfying equilibrium conditions:

V = {v ∈ U/div(K ”(v)) = 0} , (44)

and let us introduce the Steklov constant, or Steklov eigenvalue, h defined in [30] as:

h = max
v∈V

S1(v) (45)

with

S1(v) =

∥

∥K (v ⊗ n)sym
∥

∥

2

œ,∂ω1

‖v‖2u,ω1

, (46)

where subdomain ω1 denotes the homothetic domain ωλ associated to a constant parameter λ = 1.

Then, for any homothetic domain ωλ ⊂ Ω parametrized by λ > 0, one can derive a relation involving

the product of constant h and parameter λ:

hλ = max
v∈V

Sλ(v) (47)

with

Sλ(v) =

∥

∥K (v ⊗ n)sym
∥

∥

2

œ,∂ωλ

‖v‖2u,ωλ

. (48)

Proposition 1. Let (ωλ, ωλ̄) be a pair of homothetic domains such that λ ∈ ]0 , λ̄], i.e. ωλ ⊂ ωλ̄. The

following key inequality holds:

‖œ− œ̂h‖2œ,ωλ
6

(

λ

λ̄

)1/h

‖œ− œ̂h‖2œ,ω
λ̄

+ γλ,λ̄, (49)

where

γλ,λ̄ ≡ γλ,λ̄(ûh, œ̂h) =

∫ λ̄

λ′=λ

[

(

λ′

λ

)−1/h
1

hλ′
e2cre,λ′

]

dλ′. (50)

The proof of Proposition 1 is given in Appendix A.

Let us note that, using Prager-Synge’s equality (13), unknown term ‖œ− œ̂h‖œ,ω
λ̄

involved in

the right-hand side term of fundamental inequality (49) in Proposition 1 is readily bounded as:

‖œ− œ̂h‖2œ,ω
λ̄

6

(

‖œ− œ̂m
h ‖œ,ω

λ̄

+ ‖œ̂m
h − œ̂h‖œ,ω

λ̄

)2

6
1

4

(

ecre + ecre,λ̄
)2

. (51)

It follows that fundamental result (49) can be rewritten in terms of perfectly known quantities as:

‖œ− œ̂h‖2œ,ωλ
6

(

λ

λ̄

)1/h
1

4

(

ecre + ecre,λ̄
)2

+ γλ,λ̄. (52)

Remark 1. Quantity ‖œ− œ̂h‖œ,ω
λ̄

can be straightforwardly bounded without introducing œ̂m
h

by simply using ‖œ− œ̂h‖2œ,ω
λ̄

6 ‖œ− œ̂h‖2œ,Ω 6 e2cre. Nevertheless, the corresponding bound,

namely e2cre, is less accurate than the one given by (51), namely 1/4
(

ecre + ecre,λ̄
)2

.
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Prepared using nmeauth.cls DOI: 10.1002/nme
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4.4. Final bounding result

Proposition 2. The final improved bounding result reads:

|Iex − Ih − Ihh − Ihhh| 6 ẽcre,λ δλ,λ̄ +
1

2
ecre ẽcre,\λ, (53)

where

δλ,λ̄ ≡ δλ,λ̄(ûh, œ̂h) =

[

(

λ

λ̄

)1/h
1

4

(

ecre + ecre,λ̄
)2

+ γλ,λ̄

]1/2

(54)

and

Ihhh =
1

2

∫

ωλ

Tr
[

(œ̂h − K ”(ûh)) K−1 ( ˆ̃œh − K ”(ˆ̃uh))
]

dΩ

=
1

2

〈

œ̂h − K ”(ûh), ˆ̃œh − K ”(ˆ̃uh)
〉

œ,ωλ

(55)

are all computable from the calculated approximate solutions of both reference and adjoint

problems. Ih + Ihh + Ihhh can be viewed as a new approximate solution of the exact value Iex
of the quantity of interest.

Proof

First, let us address the question of bounding of part q\λ. Starting from inequation (43) and using

Prager-Synge’s equality (13), quantity q\λ can be bounded as follows:

∣

∣q\λ
∣

∣ 6
1

2
ecre ẽcre,\λ. (56)

Second, let us now handle the question of bounding of part qλ. Equation (41) can be rewritten as

follows:

qλ =
〈

œ− œ̂h, ˆ̃œh − K ”(ˆ̃uh)
〉

œ,ωλ

+
〈

œ̂h − œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,ωλ

(57)

=
〈

œ− œ̂h, ˆ̃œh − K ”(ˆ̃uh)
〉

œ,ωλ

+ Ihhh, (58)

where Ihhh is a calculable known term defined in (55).

Applying the Cauchy-Schwarz inequality to (58) with respect to scalar product 〈•, ◦〉œ,ωλ
, one

has:

|qλ − Ihhh| 6 ‖œ− œ̂h‖œ,ωλ
ẽcre,λ. (59)

Then, introducing the key inequality (52) coming from Proposition 1 into (59) leads to the

following bounding result:

|qλ − Ihhh| 6
[

(

λ

λ̄

)1/h
1

4

(

ecre + ecre,λ̄
)2

+ γλ,λ̄(ûh, œ̂h)

]1/2

ẽcre,λ. (60)

Finally, using both inequalities (56) and (60), one gets:

|q − Ihhh| 6
[

(

λ

λ̄

)1/h
1

4

(

ecre + ecre,λ̄
)2

+ γλ,λ̄

]1/2

ẽcre,λ +
1

2
ecre ẽcre,\λ, (61)

which completes the proof of Proposition 2.
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12 P. LADEVÈZE, F. PLED AND L. CHAMOIN

Thus, this improved technique provides the following guaranteed lower and upper bounds

(χinf , χsup) of Iex:

χinf 6 Iex 6 χsup, (62)

with

χinf =Ih + Ihh + Ihhh −
∣

∣

∣

∣

ẽcre,λ δλ,λ̄ +
1

2
ecre ẽcre,\λ

∣

∣

∣

∣

; (63)

χsup =Ih + Ihh + Ihhh +

∣

∣

∣

∣

ẽcre,λ δλ,λ̄ +
1

2
ecre ẽcre,\λ

∣

∣

∣

∣

. (64)

Remark 2. These bounds depend on both parameters λ and λ̄. In order to get a practical minimizer,

one seeks to reduce ratio
λ

λ̄
as much as possible by choosing:

• the smallest parameter λ such that domain ωλ surrounds the zone of interest ω;

• the largest parameter λ̄ such that domain ωλ̄ remains a homothetic mapping of ωλ (preserving

its geometric shape) contained in Ω,

and leading to sharp error bounds.

Remark 3. The Steklov constant h could be easily computed, S1(v) being a Rayleigh quotient

associated with a symmetric eigenproblem. By considering a material with isotropic, homogeneous,

linear and elastic behavior, in the two-dimensional (three-dimensional, respectively) case of a unit

circle∗ (unit sphere∗, respectively) ω1, it has been shown numerically that the maximum of S1 is

reached for v = OM , where O is the homothetic center and M ∈ ∂ω1; it follows that ”(v) = Id. Let

us note that in the two-dimensional case of a unit cracked circle and of a double unit square† as well

as in the three-dimensional case of a double unit parallelepiped†, the same maximum eigenfunction

for S1 has been obtained numerically. Analytical expressions of constant h for various shape

domains are reported in Table IV (see Appendix C). Note that, in the particular shape domains

we considered, constant h only depends on Poisson’s ratio ν. Besides, lower bounds of this constant

for a circular shape domain are given in [31].

5. SECOND IMPROVED BOUNDING TECHNIQUE

5.1. General idea

As for the first improved bounding method presented in Section 4, let us consider a subdomain

ωλ̄ ⊂ Ω, with complementary part Ω \ ωλ̄. Quantity q previously defined in (39) can be decomposed

as follows:

q = qλ̄ + q\λ̄, (65)

where

qλ̄ =
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,ω
λ̄

(66)

and

q\λ̄ =
〈

œ− œ̂m
h , ˆ̃œh − K ”(ˆ̃uh)

〉

œ,Ω\ω
λ̄

. (67)

Similarly to the previous improved technique, quantity q\λ̄ can be easily bounded as follows:

∣

∣q\λ̄
∣

∣ 6 ‖œ− œ̂m
h ‖œ,Ω\ω

λ̄

ẽcre,\λ̄; (68)

∗a unit circle (sphere, respectively) corresponds to a circular (spherical, respectively) domain of radius one.
†a double unit square (parallelepiped, respectively) corresponds to a squared (parallelepiped, respectively) domain of
side length two.
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NEW BOUNDING TECHNIQUES FOR GOAL-ORIENTED ERROR ESTIMATION 13

whereas the bounding of qλ̄ differs widely. As previously mentioned in Section 4.2, the main

contribution to the error derives from qλ̄.

In order to build sharp bounds for part qλ̄, let us introduce the following local problem defined on

ωλ̄ ⊂ Ω, referred to as (Ph
ex), which consists of searching (uh

ex,œ
h
ex) ∈ U×S such that:

◦ uh
ex = ûh on ∂ωλ̄

◦ div(œh
ex) + f

d
= 0

◦ œh
ex = K ”(uh

ex)

Similarly to local problems (P1) and (P2) previously defined in Section 4.2 for the first improved

bounding technique, one can mention that the final bounding result (85) introduced in Section 5.4

does not require the solution of local problem (Ph
ex), as the present improved technique circumvents

the need to perform any additional resolution of (Ph
ex).

It follows that the discretization error eh = u− ûh and œ− œ̂h on ωλ̄ could be rewritten:

u− ûh = (u− uh
ex) + (uh

ex − ûh) (69)

and

œ− œ̂h = (œ−œh
ex) + (œh

ex − œ̂h), (70)

respectively.

Then, quantity qλ̄ can be decomposed into two parts:

qλ̄ = qλ̄,1 + qλ̄,2, (71)

where

qλ̄,1 =
〈

œ−œh
ex, ˆ̃œh − K ”(ˆ̃uh)

〉

œ,ω
λ̄

(72)

and

qλ̄,2 =
〈

œh
ex − œ̂m

h , ˆ̃œh − K ”(ˆ̃uh)
〉

œ,ω
λ̄

. (73)

It will be shown that second part qλ̄,2 could be easily bounded, while a sharp bound of first part

qλ̄,1 will be derived thanks to Saint-Venant’s principle.

5.2. Bounding of part qλ̄,2

First, let us address the question of bounding of part qλ̄,2. Applying the Cauchy-Schwarz inequality

to (73) with respect to scalar product 〈•, ◦〉œ,ω
λ̄

leads to:

∣

∣qλ̄,2
∣

∣ 6
∥

∥œh
ex − œ̂m

h

∥

∥

œ,ω
λ̄

ẽcre,λ̄. (74)

Proposition 3. Let (uh
ex,œ

h
ex) ∈ U×S be the exact solution of problem (Ph

ex) defined over ωλ̄.

Given an admissible approximate solution (ûh, œ̂h) of the reference problem, the following equality

holds:
∥

∥œh
ex − œ̂m

h

∥

∥

œ,ω
λ̄

=
1

2
ecre,λ̄ (75)

Let us note that replacing œh
ex by the exact solution œ of the reference problem in Proposition 3

leads generally to a incorrect result except over the whole domain Ω, where Prager-Synge’s equality

(13) holds.
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14 P. LADEVÈZE, F. PLED AND L. CHAMOIN

Proof

Noticing that the restriction of (ûh, œ̂h) to ωλ̄ is also an admissible solution of problem (Ph
ex)

defined over ωλ̄, the well-known Prager-Synge hypercircle theorem [29] leads to the following

bounding inequality:

∥

∥uh
ex − ûh

∥

∥

2

u,ω
λ̄

6
∥

∥uh
ex − ûh

∥

∥

2

u,ω
λ̄

+
∥

∥œh
ex − œ̂h

∥

∥

2

œ,ω
λ̄

= e2cre,λ̄, (76)

which conveys the guaranteed nature of the CRE ecre,λ̄ on ωλ̄ for problem (Ph
ex).

Introducing the average admissible field œ̂m
h defined by (12) completes the proof of

Proposition 3.

Finally, incorporating result (75) of Proposition 3 into (74), one gets:

∣

∣qλ̄,2
∣

∣ 6
1

2
ecre,λ̄ ẽcre,λ̄. (77)

From now on, in order to get accurate bounds for part qλ̄,1, let us introduce the main technical

result.

5.3. Main technical result

Let us consider the space V introduced in (44) and let us define the following dimensionless

constant:

k = min
v∈V

Rλ̄(v) (78)

with

Rλ̄(v) =
|v|2u,∂ω

λ̄

‖v‖2u,ω
λ̄

, (79)

for a given homothetic domain ωλ̄ ⊂ Ω associated to parameter λ̄ > 0. Then, for any domain ωλ

homothetic to ωλ̄ such that ωλ ⊂ ωλ̄ ⊂ Ω, i.e. for any λ ∈ ]0 , λ̄], one can derive a relation involving

the product of constant k and ratio
λ̄

λ
:

k
λ̄

λ
= min

v∈V
Rλ(v) (80)

with

Rλ(v) =
|v|2u,∂ωλ

‖v‖2u,ωλ

. (81)

Remark 4. This problem is connected to the description of a 2D or 3D homogeneous domain as an

abstract beam for which a semi-group could be defined [32]. However, we do not know any name

for this constant which is strictly positive for star-shaped domains such that vλ̄ · n > 0.

Proposition 4. Let (ωλ, ωλ̄) be a pair of homothetic domains such that λ ∈ ]0 , λ̄], i.e. ωλ ⊂ ωλ̄ ⊂ Ω.

The following key inequality holds:

∀ v ∈ V , ‖v‖2u,ωλ
6

(

λ

λ̄

)k

‖v‖2u,ω
λ̄

. (82)
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The proof of Proposition 4 is given in Appendix B.

The bounding of part qλ̄,1 involves quantity u− uh
ex (resp. œ−œh

ex) of decomposition (69) (resp.

(70)) of the discretization error. Recalling that u− uh
ex ∈ V , applying fundamental result (82) of

Proposition 4 to u− uh
ex leads to:

∥

∥u− uh
ex

∥

∥

2

u,ωλ

6

(

λ

λ̄

)k
∥

∥u− uh
ex

∥

∥

2

u,ω
λ̄

, (83)

or, equivalently:

∥

∥œ−œh
ex

∥

∥

2

œ,ωλ

6

(

λ

λ̄

)k
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

. (84)

5.4. Final bounding result

Proposition 5. The final improved bounding result reads:

|Iex − Ih − Ihh| 6
1

2

[

ecre

[

θ̃2λ̄ + ẽ2cre,\λ̄

]1/2

+ ecre,λ̄
[

θ̃λ̄ + ẽcre,λ̄
]

]

, (85)

where

θ̃λ̄ ≡ θ̃λ̄(ˆ̃uh, ˆ̃œh) =
∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

œ,∂ω
λ̄

2 k1/2

k + n+ 1
(86)

and

ẽ2cre,\λ̄ = ẽ2cre − ẽ2cre,λ̄ (87)

are fully calculable from the calculated approximate solution of adjoint problem.

Proof

Let us first handle the question of bounding of part qλ̄,1, which is actually the key point of this new

technique. Using relation (25) for domain ωλ̄ itself and applying the Cauchy-Schwarz inequality

with respect to scalar product (•, ◦)œ,∂ω
λ̄

, one has:

qλ̄,1 =

∫ λ̄

λ=0

(

λ

λ̄

)n
1

λ̄

(

œ−œh
ex, ˆ̃œh − K ”(ˆ̃uh)

)

œ,∂ω
λ̄

dλ (88)

and

∣

∣qλ̄,1
∣

∣ 6

∫ λ̄

λ=0

[(

λ

λ̄

)n
1

λ̄

∣

∣œ−œh
ex

∣

∣

œ,∂ω
λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

œ,∂ω
λ̄

]

dλ. (89)

In order to derive an upper bound of (89), let us introduce a function µ(λ) > 0:

∣

∣qλ̄,1
∣

∣ 6

∫ λ̄

λ=0

[

√

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣œ−œh
ex

∣

∣

œ,∂ω
λ̄

1
√

µ(λ)

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

œ,∂ω
λ̄

]

dλ

6
1

2

∫ λ̄

λ=0

[

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣œ−œh
ex

∣

∣

2

œ,∂ω
λ̄

]

dλ+
1

2

∫ λ̄

λ=0

[

1

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ

(90)

Subsequently, applying result (33) to œ−œh
ex in the left-hand side term of (90) leads to:

∣

∣qλ̄,1
∣

∣ 6
1

2

∫ λ̄

λ=0

[

µ(λ)
d

dλ

[

∥

∥œ−œh
ex

∥

∥

2

œ,ωλ

]

]

dλ+
1

2

∫ λ̄

λ=0

[

1

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ.

(91)
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Integrating the first term of the left-hand side of (91) by parts, one obtains:

∣

∣qλ̄,1
∣

∣ 6
1

2
µ(λ̄)

∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

− 1

2

∫ λ̄

λ=0

[

d

dλ
[µ(λ)]

∥

∥œ−œh
ex

∥

∥

2

œ,ωλ

]

dλ

+
1

2

∫ λ̄

λ=0

[

1

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ. (92)

Assuming that
d

dλ
[µ(λ)] 6 0 ∀ λ ∈ ]0 , λ̄], using fundamental result (84) coming from

Proposition 4 leads to:

∣

∣qλ̄,1
∣

∣ 6
1

2
µ(λ̄)

∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

− 1

2

∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

∫ λ̄

λ=0

[

d

dλ
[µ(λ)]

(

λ

λ̄

)k
]

dλ

+
1

2

∫ λ̄

λ=0

[

1

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ. (93)

Integrating the second term of the right-hand side of (93) by parts, one obtains:

∫ λ̄

λ=0

[

d

dλ
[µ(λ)]

(

λ

λ̄

)k
]

dλ = µ(λ̄)−
∫ λ̄

λ=0

[

µ(λ)
k

λ

(

λ

λ̄

)k
]

dλ; (94)

thus resulting in the following inequality:

∣

∣qλ̄,1
∣

∣ 6
1

2

∫ λ̄

λ=0

[

µ(λ)
k

λ

(

λ

λ̄

)k
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

+
1

µ(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ.

(95)

The optimal function µ is the one which minimizes the right-hand side of (95):

µ(λ) = argmin
µ∗(λ)>0

d
dλ

[µ∗(λ)]60

{

1

2

∫ λ̄

λ=0

[

µ∗(λ)
k

λ

(

λ

λ̄

)k
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

+
1

µ∗(λ)

(

λ

λ̄

)n
1

λ̄

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

2

œ,∂ω
λ̄

]

dλ

}

.

(96)

It reads:

µ(λ) =

∣

∣ ˆ̃œh − K ”(ˆ̃uh)
∣

∣

œ,∂ω
λ̄

‖œ−œh
ex‖œ,ω

λ̄

1

k1/2

(

λ̄

λ

)(k−n−1)/2

, (97)

under the assumption that µ is a strictly positive, monotonically decreasing function of λ on the

interval ]0 , λ̄], which implies the following condition:

k > n+ 1. (98)

Remark 5. Note that, in the two- and three-dimensional cases of circular and spherical domains,

respectively, condition (98) holds (see Remark 7).

Then, replacing function µ(λ) by expression (97) into (95), one gets:
∣

∣qλ̄,1
∣

∣ 6
∥

∥œ−œh
ex

∥

∥

œ,ω
λ̄

θ̃λ̄, (99)

where θ̃λ̄ is defined by (86). Finally, collecting bounding results (99) and (77) for qλ̄,1 and qλ̄,2,

respectively, qλ̄ can be bounded as follows:

|qλ̄| 6
∥

∥œ−œh
ex

∥

∥

œ,ω
λ̄

θ̃λ̄ +
1

2
ecre,λ̄ ẽcre,λ̄

6

[

∥

∥

∥

∥

œ−œh
ex − 1

2
(œ̂h − K ”(ûh))

∥

∥

∥

∥

œ,ω
λ̄

+
1

2
ecre,λ̄

]

θ̃λ̄ +
1

2
ecre,λ̄ ẽcre,λ̄. (100)
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Corollary 1. Let (uh
ex,œ

h
ex) ∈ U×S be the exact solution of problem (Ph

ex) and (u,œ) ∈ U×S the

one of the reference problem. Given an admissible approximate solution (ûh, œ̂h) of the reference

problem, the following equality holds:

‖œ− œ̂m
h ‖œ,ω

λ̄

=

∥

∥

∥

∥

œ−œh
ex − 1

2
(œ̂h − K ”(ûh))

∥

∥

∥

∥

œ,ω
λ̄

(101)

Proof

Using result (75) of Proposition 3, one obtains:

‖œ− œ̂m
h ‖2œ,ω

λ̄

=
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

+
∥

∥œh
ex − œ̂m

h

∥

∥

2

œ,ω
λ̄

+ 2
〈

œ−œh
ex,œ

h
ex − œ̂m

h

〉

œ,ω
λ̄

=
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

+
1

4
‖œ̂h − K ”(ûh)‖

2
œ,ω

λ̄

+ 2
〈

œ−œh
ex,œ

h
ex − œ̂m

h

〉

œ,ω
λ̄

(102)

with

〈

œ−œh
ex,œ

h
ex − œ̂m

h

〉

œ,ω
λ̄

=
〈

œ−œh
ex,œ

h
ex − K ”(ûh)

〉

œ,ω
λ̄

−
〈

œ−œh
ex,

1

2
(œ̂h − K ”(ûh))

〉

œ,ω
λ̄

,

(103)

and

〈

œ−œh
ex,œ

h
ex − K ”(ûh)

〉

œ,ω
λ̄

=

∫

ω
λ̄

Tr
[

(œ−œh
ex) ”(u

h
ex − ûh)

]

dΩ = 0. (104)

Eventually, we end up the proof of Corollary 1 with:

‖œ− œ̂m
h ‖2œ,ω

λ̄

=
∥

∥œ−œh
ex

∥

∥

2

œ,ω
λ̄

+

∥

∥

∥

∥

1

2
(œ̂h − K ”(ûh))

∥

∥

∥

∥

2

œ,ω
λ̄

− 2

〈

œ−œh
ex,

1

2
(œ̂h − K ”(ûh))

〉

œ,ω
λ̄

=

∥

∥

∥

∥

œ−œh
ex − 1

2
(œ̂h − K ”(ûh))

∥

∥

∥

∥

2

œ,ω
λ̄

. (105)

It follows from result (101) of Corollary 1:

|qλ̄| 6
[

‖œ− œ̂m
h ‖œ,ω

λ̄

+
1

2
ecre,λ̄

]

θ̃λ̄ +
1

2
ecre,λ̄ ẽcre,λ̄; (106)

it can be rewritten in the following form:

|qλ̄| 6 ‖œ− œ̂m
h ‖œ,ω

λ̄

θ̃λ̄ +
1

2
ecre,λ̄

[

θ̃λ̄ + ẽcre,λ̄
]

; (107)

thereby getting back to the bounding (65) of quantity q by using bounding results (107) and (68) for

qλ̄ and q\λ̄, respectively, one obtains:

|q| 6 ‖œ− œ̂m
h ‖œ,ω

λ̄

θ̃λ̄ +
1

2
ecre,λ̄

[

θ̃λ̄ + ẽcre,λ̄
]

+ ‖œ− œ̂m
h ‖œ,Ω\ω

λ̄

ẽcre,\λ̄. (108)

Let us now introduce a scalar ν > 0 in order to shrewdly regroup ‖œ− œ̂m
h ‖œ,ω

λ̄

and

‖œ− œ̂m
h ‖œ,Ω\ω

λ̄

, which are such that:

‖œ− œ̂m
h ‖2œ,ω

λ̄

+ ‖œ− œ̂m
h ‖2œ,Ω\ω

λ̄

= ‖œ− œ̂m
h ‖2œ,Ω =

1

4
e2cre; (109)
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one has:

‖œ− œ̂m
h ‖œ,ω

λ̄

θ̃λ̄ + ‖œ− œ̂m
h ‖œ,Ω\ω

λ̄

ẽcre,\λ̄ 6
1

2

[

1

ν
‖œ− œ̂m

h ‖2œ,Ω + ν
(

θ̃2λ̄ + ẽ2cre,\λ̄

)

]

.

(110)

The optimal scalar ν is the one which minimizes the right-hand side of (110):

ν = argmin
ν∗>0

{

1

ν∗
‖œ− œ̂m

h ‖2œ,Ω + ν∗
(

θ̃2λ̄ + ẽ2cre,\λ̄

)

}

. (111)

It reads:

ν =
‖œ− œ̂m

h ‖œ,Ω
√

θ̃2
λ̄
+ ẽ2

cre,\λ̄

=
1

2

ecre
√

θ̃2
λ̄
+ ẽ2

cre,\λ̄

, (112)

which is a strictly positive scalar.

Then, changing scalar ν by expression (112) into inequation (110), one gets:

|q| 6 1

2
ecre

[

θ̃2λ̄ + ẽ2cre,\λ̄

]1/2

+
1

2
ecre,λ̄

[

θ̃λ̄ + ẽcre,λ̄
]

. (113)

which proves result (85) of Proposition 5.

Thus, this improved technique provides the following guaranteed lower and upper bounds

(ζinf , ζsup) of Iex:

ζinf 6 Iex 6 ζsup, (114)

with

ζinf = Ih + Ihh − 1

2

∣

∣

∣

∣

ecre

[

θ̃2λ̄ + ẽ2cre,\λ̄

]1/2

+ ecre,λ̄
[

θ̃λ̄ + ẽcre,λ̄
]

∣

∣

∣

∣

; (115)

ζsup = Ih + Ihh +
1

2

∣

∣

∣

∣

ecre

[

θ̃2λ̄ + ẽ2cre,\λ̄

]1/2

+ ecre,λ̄
[

θ̃λ̄ + ẽcre,λ̄
]

∣

∣

∣

∣

. (116)

Remark 6. These bounds involve only one parameter λ̄, while bounds (χinf , χsup) defined by (63)

and (64) in Section 4.3 depend on two parameters (λ, λ̄). In practice, one can determine an optimum

value λ̄opt for parameter λ̄ that minimizes upper bound (113) of q in order to obtain very precise

bounds (ζinf , ζsup) of Iex. Besides, practically subdomain ωλ̄ should recover the zone where the

solution of adjoint problem has stiff gradients.

Remark 7. The constant k could be easily computed, Rλ̄(v) being a Rayleigh quotient associated

with a symmetric eigenproblem. In the two-dimensional (three-dimensional, respectively) case of a

circle∗ (sphere∗, respectively) ωλ̄, it has been shown numerically that the minimum of Rλ̄ is reached

for v = OM , where O is the homothetic center and M ∈ ∂ωλ̄; furthermore, for a circular and

spherical geometric shapes, it has been shown in [33] (see Appendix D); it follows that ”(v) = Id.

Let us note that in the two-dimensional case of a cracked circle and of a double square†, as well as

in the three-dimensional case of a double unit parallelepiped†, the same minimum eigenfunction for

Rλ̄ has been obtained numerically.

For all aforementioned two- (three-, respectively) dimensional cases, constant k is equal to 2
(3, respectively). Note that, in these particular shape domains, constant k does not depend on any

material parameter.

Remark 8. In the present work, we restrict to only one subdomain, but the results could be easily

extended to several ones. Multiple subdomains could be associated to different zones where the

local CRE is relatively high either for adjoint or reference problem.

∗circle (sphere, respectively) ω
λ̄

corresponds to a circular (spherical, respectively) domain of radius λ̄.
†double square (parallelepiped, respectively) ω

λ̄
corresponds to a squared (parallelepiped, respectively) domain of side

length 2λ̄.
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6. NUMERICAL RESULTS

All numerical experiments have been performed assuming that the material remains isotropic,

homogeneous, linear and elastic with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3.

Furthermore, the two-dimensional examples are assumed to satisfy the plane-stress approximation.

The balance technique used to derive a statically admissible stress field is the element equilibration

technique (EET) combined with a p-refinement technique consisting of a p+ k discretization, p
being the FE interpolation degree and k an additional degree equal to 3 (see principles of the

different techniques for constructing admissible stress fields in [24] for more information).

Performances of the proposed bounding techniques are illustrated through a two-dimensional

cracked structure, already considered in [19, 23, 25].

The results obtained for classical bounding technique as well as first and second improved variants

are presented in terms of the normalized bounds (ξ̄inf , ξ̄sup), (χ̄inf , χ̄sup), (ζ̄inf , ζ̄sup), respectively,

defined by:

ξ̄inf =
ξinf
Iex

and ξ̄sup =
ξsup
Iex

; (117)

χ̄inf =
χinf

Iex
and χ̄sup =

χsup

Iex
; (118)

ζ̄inf =
ζinf
Iex

and ζ̄sup =
ζsup
Iex

. (119)

6.1. Presentation of the 2D cracked structure

Let us consider the two-dimensional structure shown in Figure 2, which presents two round cavities.

A homogeneous Dirichlet boundary condition is imposed to the bigger circular hole, whereas a

unit internal constant pressure p0 is applied to the smaller one. Furthermore, the top-left edge is

subjected to a unit normal traction force density t = +n. Besides, a single edge crack emanates

from the bottom of the smaller cavity. The two lips of this crack as well as the remaining sides

are traction-free boundaries. The FE mesh consists of 7 751 linear triangular elements and 4 122
nodes (i.e. 8 244 d.o.f.), see Figure 2. It has been adaptively refined in the vicinity of the crack tip.

The reference mesh used to compute an “overkill” solution and to define a “quasi-exact” value,

denoted Iex for convenience, of the quantity of interest is built up by dividing each element into

256 elements; thereby, it is made of 1 984 256 linear triangular elements and 996 080 nodes (i.e.

1 992 160 d.o.f.).

x

y

t

p0

Figure 2. Cracked structure model problem (left) and associated finite element mesh (right).

The quantities of interest being considered in this work are:
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• the average value in a local zone ω ⊂ Ω of the component (.)xx of the stress field œ:

I1 = σ̄xx =
1

|ω|

∫

ω

σxx dΩ, (120)

where extraction domain ω corresponds to a finite element E of FE mesh Mh illustrated in

Figure 3 and |ω| represents its measure;

• the pointwise value of the component (.)x of the displacement field u at a point P :

I2 = ux(P ), (121)

where point P coincides with a node of FE mesh Mh illustrated in Figure 3, the corresponding

extraction domain ω being pointwise;

• the stress intensity factor KI involved in the finite-energy analytical asymptotic expression

of the stress field œ in the vicinity of the crack tip [10, 15] and classically used in crack

propagation criteria for linear elastic fracture mechanics (LEFM) problems:

I3 = KI. (122)

P
E

Figure 3. Position of element E (left) and point P (right) in the FE mesh defining the zones of interest for
local quantities I1 and I2, respectively.

All the local quantities being considered are linear functions of displacement field u associated

to reference problem. Exact values Iex and approximate values Ih obtained for the three considered

quantities of interest are reported in Table I.

Table I. Calculated values of the quantities of interest

Quantity of interest Exact value Iex Approximate value Ih

I1 0.0347969 0.0303747
I2 −16.2939 −16.1596
I3 2.8974 2.86161

In the case of pointwise quantity of interest I2, for which the loading of the adjoint problem

is a pointwise force defined using a Dirac-type function applied to a node of FE mesh Mh, a

natural regularization would consist in treating the pointwise force as a nodal force f̃
Σ
= δ(xP )F̃Σ,

where F̃Σ =

[

1
0

]

and xP denotes the position of point P . Let us note that this approach can be

employed only in the case of pointwise values of the displacement field related to the position

of a node P of the FE mesh and leads to a coarse approximate solution of the adjoint problem.

Another classical way to handle truly pointwise quantities of interest is to have recourse to the use

of mollification, also called mollifying process, replacing the initial quantity of interest by a local

weighted average value [5]. A last approach, henceforth known as handbook techniques [12, 17, 16],
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consists in introducing a local enrichment of the solution of the adjoint problem particularly well-

suited to pointwise error estimation without performing any regularization of the pointwise quantity

of interest being considered. The singularities involved in the loading of the adjoint problem are

captured explicitly in a non-intrusive way introducing adapted enrichment functions, also called

handbook functions and denoted (ũhand, œ̃hand), through the PUM (satisfied by the linear FE shape

functions) allowing to ensure displacement compatibility. These functions represent local (quasi-

)exact solutions of the adjoint problem. In the context of pointwise error estimation, they correspond

to the well-known and possibly infinite-energy Green functions describing the singular solutions of

the adjoint problem over an infinite (or semi-infinite) domain. Several examples of such functions

and a detailed description of handbook techniques can be found in [12, 17, 16]. The Green functions

can be determined analytically using approaches based on strain nuclei combined with the image

method [34, 35, 36, 37, 38]; for quantity of interest I2, handbook functions are given in Figure 4.

O

δ(xO)x

ũhand
x ũhand

y

˜handxx ˜handxy ˜handyy

Figure 4. Spatial distribution of handbook pair (ũhand, œ̃hand) associated to a pointwise force loading
δ(xO)x applied to point O over an infinite domain, xO being the position of point O.

Enrichment is applied via the PUM to a region ΩPUM of domain Ω, which is decomposed into

two non-overlapping subregions: a zone ΩPUM
1 containing the zone of interest ω over which the

quantity of interest is defined and a complementary zone ΩPUM
2 surrounding ΩPUM

1 . In the case

of quantity of interest I2, an enrichment by the PUM involving only one or two layers of nodes

is sufficient to capture the local high gradients of the exact solution ũ of the adjoint problem; the

definition of subregions ΩPUM
1 (containing 6 (resp. 24) elements and 7 (resp. 19) enriched nodes)

and ΩPUM
2 (containing 18 (resp. 30) elements) in region ΩPUM is given in Figure 5 by considering

a single layer (resp. two layers) of nodes involved in the enrichment.

Finally, the global solution (ũ, œ̃) of the adjoint problem is composed of an enrichment

part (ũhand
PUM , œ̃hand

PUM ) introduced a priori either analytically or numerically and a residual part

(ũres, œ̃res) computed a posteriori numerically by using the FEM. The new adjoint problem consists

in finding the residual pair (ũres, œ̃res). The corresponding force vector involved in the equilibrium

equations comes down to a traction load −œ̃hand n12 over ∂ΩPUM
1 , where n12 is the outgoing

normal vector to ΩPUM
1 , and a prestress −œ̃hand

PUM over ΩPUM
2 by using properties of the handbook

functions. Let us note that the loading of the adjoint problem becomes finite and smooth and that

a correct and satisfactory approximate solution can be merely obtained by using the same spatial

discretization as the one employed for the reference problem. Besides, observing that enrichment

part (ũhand
PUM , œ̃hand

PUM ) satisfies the constitutive relation over Ω, the CRE ecre(ˆ̃uh, ˆ̃œh) of initial
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ΩPUM
1

ΩPUM
2

ω

P PP

Figure 5. Definition of the zone of interest ω, the subregions ΩPUM
1 and ΩPUM

2 in the enriched region

ΩPUM for quantity of interest I2; enrichment with the PUM is applied to one layer (left) or two layers
(right) of nodes.

approximate adjoint problem is exactly equal to the CRE ecre(ˆ̃u
res
h , ˆ̃œres

h ) of residual approximate

adjoint problem.

In the case of quantity of interest I3, open-mode stress intensity factor KI (i.e. associated with

the Mode-I loading) is defined from an extension of the contour integral method proposed in [39].

The interested reader can refer to [39, 1, 10, 40, 15] for a detailed description of this technique.

The calculation of stress intensity factor KI comes down to evaluating a surface integral over an

arbitrary crown Ωc surrounding the crack tip:

KI =

∫

Ωc

Tr
[

(K ”(φ vI)− φœI) ”(u)
]

dΩ−
∫

Ωc

(œI ∇φ) · u dΩ, (123)

where (vI,œI) corresponds to a singular (infinite-energy) analytical solution of the elastic problem

defined near the crack tip and φ is an arbitrary continuously derivable scalar function that is equal

to 0 (resp. 1) along external boundary Γe (resp. internal boundary Γi) of crown Ωc. One usually

considers a circular annulus Ωc centered around the crack tip and a linear continuous function φ
[10, 40, 15], but other polynomial functions φ could be considered [1]. Here, internal part Γi and

external part Γe of boundary ∂Ωc are assumed to be circles centered at the crack tip with radii

Ri = 6 and Re = 8, respectively; the definition of crown Ωc is given in Figure 6.

Ωc

Figure 6. Definition of the crown Ωc for quantity of interest I3.

Function φ is chosen to be linear with radius r and is defined as:















φ(r) = 1 if 0 6 r 6 Ri

φ(r) =
Re − r

Re −Ri
if Ri 6 r 6 Re

φ(r) = 0 if r > Re.

(124)
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Let us mention that taking a polynomial function φ with a degree at most compatible with that

of the FE analysis is appropriate, since it can be correctly represented in FE framework. The

effectiveness and accuracy of the classical bounding technique to derive lower and upper bounds

for open- and shear-mode stress intensity factors with a standard FEM have been demonstrated on

two-dimensional benchmark problems in [10].

The loading of the adjoint problems involves the following extractors:

• a uniform prestress field œ̃Σ = K ”̃Σ over element E, where ”̃Σ =
1

|E|

[

1 0
0 0

]

and |E| denotes

the measure of element E, for quantity of interest I1;

• a traction load F̃Σ = −œ̃hand n12 over ∂ΩPUM
1 and a prestress field œ̃Σ = −œ̃hand

PUM over

ΩPUM
2 for quantity of interest I2;

• a prestress field œ̃Σ = K ”(φ vI)− φœI and a body force field f̃
Σ
= −œI ∇φ over crown Ωc

for quantity of interest I3.

In this work, circular shape domains are considered for quantities of interest I1 and I2, while

cracked circular shape domains are used for quantity of interest I3, but other geometric shapes

could have been investigated, the main technical aspect being the calculation of the constants h
and k involved in the first and second improved techniques, respectively. Values of constants h
and k have been calculated analytically and computed numerically for different geometric shapes

by considering an isotropic, homogeneous, linear and elastic material with Poisson’s ratio ν = 0.3.

Results are given in Table II.

Table II. Values of constants h and k involved in both optimized improvements for different geometric shapes

Geometric shape Constant h Constant k

Dim 2 plane stress assumption plane strain assumption

circle 0.76923 0.7 2
cracked circle with θ = 0 0.79780 0.72122 2
cracked circle with θ = π/6 0.80039 0.72315 2
cracked circle with θ = π/3 0.80351 0.72546 2
cracked circle with θ = π/2 0.80732 0.72829 2
square 0.85897 0.76667 2

Dim 3

sphere 0.53846 3
parallelepiped 0.64103 3

6.2. Average value of a field over a local zone: case of quantity of interest I1

Maps of the local contributions to the global error estimates for both reference and adjoint problems

are displayed in Figure 7. The adjoint mesh has been slightly refined around the zone of interest ω
(corresponding to element E), and contains 8 973 linear triangular elements and 4 733 nodes (i.e.

9 466 d.o.f.). The main contributions to the error estimate associated to reference problem are by a

majority located near the crack tip, while that associated to adjoint problem are concentrated around

the zone of interest ω. Therefore, the error estimates for both reference and adjoint problems are

localized in disjoint regions.

The values of parameters λ and λ̄ involved in the first improved technique are set to 2r and 14r,

respectively, where r corresponds to the radius of the circle circumscribed by element E. The value

of parameter λ̄opt involved in the second improved technique is set to 9r, which enables to achieve

the sharpest bounds for quantity of interest I1. The corresponding subdomains ωλ, ωλ̄ and ωλ̄opt
are

illustrated in Figure 8.

Figure 9 shows the evolutions of the normalized bounds on Iex for quantity of interest I1 as

functions of the number of elements Ñe of adjoint problem for the classical bounding technique as

well as the two improved ones. The adjoint mesh has been locally refined near the zone of interest

ω, since the loading and the contributions to the global error estimate of the adjoint problem are
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Figure 7. Spatial distribution of local contributions to the error estimates associated to reference (left) and
adjoint (right) problems related to local quantity I1. Zoom boxes represent the estimated errors in the vicinity

of the crack tip for reference problem (left) and around the zone of interest for adjoint problem (right).

ωλ̄
ωλ ωλ̄opt

λ̄opt

λ̄

λ

Figure 8. Definition of subdomains ωλ, ωλ̄ involved in the first improved technique and ωλ̄opt
involved in

the second one for quantity of interest I1.

highly localized in this region. One can see a slight improvement in the bounds obtained with the

first improved technique compared to the classical one. As regards the second improved technique,

a very clear improvement is observed allowing to achieve sharp local error bounds without refining

too much the adjoint problem, thus keeping an affordable computing time. Similar results can be

obtained for the average values in element E of the other components (.)xy and (.)yy of stress field

œ, as well as for the ones of the different components of strain field ”.

Figure 10 represents the evolutions of the normalized exact value Iex/Iex of local quantity

I1, its normalized approximate value Ih/Iex obtained through the FEM and its new normalized

approximate value (Ih + Ihh)/Iex as functions of the number of elements Ñe of adjoint problem.

One can see that Ih + Ihh corresponds to an approximation of better quality with respect to Iex
compared to Ih.

6.3. Pointwise value of a field: case of quantity of interest I2

In order to properly solve the adjoint problem and to capture the singularities of its solution, specific

pre-calculated handbook functions are introduced locally in the neighborhood of the loading of the

adjoint problem, i.e. in the vicinity of point P . Let us recall that handbook techniques enable to

achieve accurate local error bounds by using exactly the same spatial mesh for both adjoint and

reference problems. The graph represented in Figure 11 shows the evolution of the normalized

bounds (ξ̄sup, ξ̄inf) of Iex, obtained using the classical bounding technique coupled with handbook

techniques, with respect to the number of enriched nodes. The corresponding number of layers of

enriched nodes ranges from 1 to 7. By using the same spatial discretization for both residual adjoint

and reference problems, meaningful and effective bounds can be obtained with an enrichment via
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Figure 9. Evolutions of the lower and upper normalized bounds of Iex for local quantity I1, obtained using
the classical bounding technique as well as first and second improvements, with respect to the number of

elements Ñe associated to the discretization of the adjoint problem.
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Figure 10. Evolutions of the normalized exact value of local quantity I1, its normalized approximate value
Ih/Iex and its new normalized approximate value (Ih + Ihh)/Iex with respect to the number of elements

Ñe associated to the discretization of the adjoint problem.

the PUM involving only few nodes. In the following, we restrict to an enrichment applied only to

one or two layers of nodes without performing any refinement of the residual adjoint problem.

Maps of the local contributions to the global error estimates for (residual) adjoint problem with

both enrichments are displayed in Figure 12. The main contributions to the error estimate associated

to residual adjoint problem are concentrated in zone ΩPUM
2 , which constitutes the support of the

loading of residual adjoint problem. Similarly to the previous case presented in Section 6.2, the error

estimates for both reference and residual adjoint problems are located in distant regions.

For the enrichment involving a single layer of nodes, the values of parameters λ and λ̄ involved in

the first improved technique are set to 1.7r and 7r, respectively, where r corresponds to the distance
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Figure 11. Evolutions of the lower and upper normalized bounds (ξ̄inf , ξ̄sup) of Iex for local quantity I2,
obtained using the classical bounding technique combined with handbook techniques, with respect to the

number of enriched nodes.

Figure 12. Spatial distribution of local contributions to the error estimates associated to (residual) adjoint
problem related to local quantity I2, with one (left) and two (right) layers of nodes involved in the

enrichment. Zoom boxes represent the estimated errors around enriched zone ΩPUM .

between point P (defining the pointwise zone of interest) and its farthest neighbor node. The value

of parameter λ̄opt involved in the second improved technique is set to 4.4r, which enables to achieve

the sharpest bounds for quantity of interest I2. The corresponding subdomains ωλ, ωλ̄ and ωλ̄opt
are

illustrated in Figure 13.

For the enrichment involving two layers of nodes, the values of parameters λ and λ̄ involved in

the first improved technique are set to 2.5r and 7r, while the value of parameter λ̄opt involved in the

second improved technique is set to 4.4r, which enables to achieve the sharpest bounds for quantity

of interest I2. The corresponding subdomains ωλ, ωλ̄ and ωλ̄opt
are illustrated in Figure 14.

The normalized bounds obtained using classical and improved bounding techniques combined

with handbook techniques for an enrichment by the PUM involving either one or two layers of

nodes are summarized in Table III.

The analysis of the results reveals that bounds (ζ̄inf , ζ̄sup) obtained using the second improved

technique are more accurate than the ones (ξ̄inf , ξ̄sup) obtained using the classical technique as well

as the ones (χ̄inf , χ̄sup) obtained using the first improved technique for both considered enrichments.

It is worth noticing that bounds (χ̄inf , χ̄sup) obtained using the first improved technique are coarser

than the ones (ξ̄inf , ξ̄sup) obtained using the classical technique for the second enrichment. Indeed,
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Figure 13. Definition of subdomains ωλ, ωλ̄ involved in the first improved technique and ωλ̄opt
involved in

the second one for quantity of interest I2 with a single layer of nodes involved in the enrichment.
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Figure 14. Definition of subdomains ωλ, ωλ̄ involved in the first improved technique and ωλ̄opt
involved in

the second one for quantity of interest I2 with two layers of nodes involved in the enrichment.

Table III. Normalized bounds obtained using classical and optimized bounding techniques for quantity of
interest I2

Number of layers Classical bounds Improved bounds 1 Improved bounds 2

of enriched nodes ξ̄inf ξ̄sup χ̄inf χ̄sup ζ̄inf ζ̄sup

1 0.7168 1.2668 0.7291 1.2545 0.8512 1.1323

2 0.7567 1.2268 0.7387 1.2451 0.8543 1.1292

performances of the first improved technique strongly depend on ratio
λ

λ̄
; the larger the enriched

zone is, the higher ratio
λ

λ̄
is.

Similar results can be obtained for the value at point P of the other component (.)y of

displacement field u.

6.4. Extracted value of a field: case of quantity of interest I3

Map of the local contributions to the global error estimate for adjoint problem is depicted in

Figure 15. The adjoint mesh density has been slightly increased toward the crown Ωc; the adjoint

mesh is made of 10 699 linear triangular elements and 5 597 nodes (i.e. 11 194 d.o.f.). The highest

contributions to the error estimate associated to adjoint problem are localized along the boundary

of crown Ωc. Therefore, the error estimates for both reference and adjoint problems are localized in

close regions, contrary to previous cases presented in Sections 6.2 and 6.3.

The values of parameters λ and λ̄ involved in the first improved technique are set to 1.2Re and

2.1Re, respectively, where Re corresponds to the radius of external circle Γe. The value of parameter

λ̄opt involved in the second improved technique is set to 1.6Re, which enables to achieve the sharpest
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Figure 15. Spatial distribution of local contributions to the error estimate associated to adjoint problem
related to local quantity I3. Zoom box represents the estimated error around crown Ωc.

bounds for quantity of interest I3. The corresponding subdomains ωλ, ωλ̄ and ωλ̄opt
are illustrated

in Figure 16.

Ωc

ωλ̄
ωλ ωλ̄opt

λ̄optλ̄

λ

Figure 16. Definition of subdomains ωλ, ωλ̄ involved in the first improved technique and ωλ̄opt
involved in

the second one for quantity of interest I3.

Figure 17 shows the evolutions of the normalized bounds on Iex for quantity of interest I3 as

functions of the number of elements Ñe of adjoint problem for the classical bounding technique as

well as the two improved ones. A local refinement of adjoint mesh has been performed adaptively

near the zone of interest ω, especially along internal and external boundaries of crown Ωc, since the

contributions to the global error estimate of the adjoint problem are mainly located in this region.

One can see a moderate decrease in the bounds obtained with the first improved technique compared

to the classical one., while the second improved technique and the classical one give similar results

as regards the accuracy of the bounds. Consequently, the improvements presented in this work may

lead to useless bounds in cases where the major part of estimated error related to both reference and

adjoint problems are localized in close regions. Similar results can be obtained for the shear-mode

stress intensity factor KII.

Figure 18 represents the evolutions of the normalized exact value Iex/Iex of local quantity

I3, its normalized approximate value Ih/Iex obtained through the FEM and its new normalized

approximate value (Ih + Ihh)/Iex as functions of the number of elements Ñe of adjoint problem.

One can observe once again that Ih + Ihh corresponds to an approximation of better quality with

respect to Iex compared to Ih.
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Figure 17. Evolutions of the lower and upper normalized bounds of Iex for local quantity I3, obtained using
the classical bounding technique as well as first and second improvements, with respect to the number of

elements Ñe associated to the discretization of the adjoint problem.
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Figure 18. Evolutions of the normalized exact value of local quantity I3, its normalized approximate value
Ih/Iex and its new normalized approximate value (Ih + Ihh)/Iex with respect to the number of elements

Ñe associated to the discretization of the adjoint problem.

7. CONCLUSION AND PROSPECTS

In this paper, we introduced two new approaches related to the general framework of robust

goal-oriented error estimation dealing with extraction techniques. These techniques are based on

mathematical tools which are not classical in model verification. Several numerical experiments

clearly demonstrate the efficiency of these methods to produce strict and relevant bounds on the

errors in linear local quantities of interest compared to the classical bounding technique, especially

when the discretization error related to the reference error is not concentrated in the local zone of
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interest. Nevertheless, the second proposed technique seems to achieve sharper local error estimates

than the first one.

Finally, such powerful methods may open up opportunities and help widen the field of robust

goal-oriented error estimation methods. Both techniques could be easily extended to other quantities

of interest but are restricted to linear problems, i.e. cases where Saint-Venant’s principle is well

established. The extension to broader classes of mechanical problems such as time-dependent non

linear problems is thus an open question. Besides, coupling these new improved methods with

handbook techniques offers several potentially fruitful directions for future research. This crucial

issue is still under active consideration.

APPENDIX A. PROOF OF THE MAIN TECHNICAL RESULT OF PROPOSITION 1

First, let us recall that the CRE in subdomain ωλ, included in Ω, defined by (35) can be recast in the

following form:

e2cre,λ = ‖œ− œ̂h‖2œ,ωλ
+ ‖u− ûh‖

2
u,ωλ

− 2

∫

ωλ

Tr
[

(œ− œ̂h) ”(u− ûh)
]

dΩ (125)

= ‖œ− œ̂h‖2œ,ωλ
+ ‖u− ûh‖

2
u,ωλ

− 2

∫

∂ωλ

(œ− œ̂h) n · (u− ûh) dS. (126)

Let us now consider the following decomposition of the discretization error eh = u− ûh on

subdomain ωλ:

u− ûh = u1 + u2, (127)

where the local error u1 and the pollution error u2 are solutions of local problems (P1) and (P2),
respectively, defined on ωλ and introduced in Section 4.2.

Such a decomposition verifies

‖u− ûh‖
2
u,ωλ

= ‖u1‖
2
u,ωλ

+ ‖u2‖
2
u,ωλ

(128)

and
∫

∂ωλ

(œ− œ̂h) n · (u− ûh) dS =

∫

∂ωλ

(œ− œ̂h) n · u2 dS (129)

=

∫

∂ωλ

Tr
[

(œ− œ̂h) (u2 ⊗ n)
]

dS (130)

=
〈

œ− œ̂h,K (u2 ⊗ n)sym

〉

œ,∂ωλ

(131)

6 ‖œ− œ̂h‖œ,∂ωλ

∥

∥

∥
K (u2 ⊗ n)sym

∥

∥

∥

œ,∂ωλ

, (132)

where (•)sym represents the symmetric part of matrix •.

Then, relation (126) becomes:

e2cre,λ > ‖œ− œ̂h‖2œ,ωλ
+ ‖u1‖

2
u,ωλ

+ ‖u2‖
2
u,ωλ

− 2 ‖œ− œ̂h‖œ,∂ωλ

∥

∥

∥
K (u2 ⊗ n)sym

∥

∥

∥

œ,∂ωλ

.

(133)

By observing that u2 ∈ V , where space V has been defined in (44), let us now introduce the

Steklov constant hλ defined in (47), which leads to:

∥

∥

∥
K (u2 ⊗ n)sym

∥

∥

∥

œ,∂ωλ

6
√
hλ ‖u2‖u,ωλ

. (134)
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As a result, the following inequality can be deduced from (133) and (134):

e2cre,λ > ‖œ− œ̂h‖2œ,ωλ
+ ‖u1‖

2
u,ωλ

+
[

‖u2‖u,ωλ
−
√
hλ ‖œ− œ̂h‖œ,∂ωλ

]2

− hλ ‖œ− œ̂h‖2œ,∂ωλ

(135)

Besides, using equality (22) for quantity Tr
[

(œ− œ̂h) K
−1 (œ− œ̂h)

]

, one obtains:

d

dλ

[

‖œ− œ̂h‖2œ,ωλ

]

= ‖œ− œ̂h‖2œ,∂ωλ
. (136)

Incorporating (136) into (135) and rearranging the terms, inequality (135) can be rewritten as

follows:

αλ > ‖œ− œ̂h‖2œ,ωλ
− hλ

d

dλ

[

‖œ− œ̂h‖2œ,ωλ

]

(137)

where αλ ≡ αλ(ûh, œ̂h, u1, u2) = e2cre,λ − ‖u1‖
2
u,ωλ

−
[

‖u2‖u,ωλ
−
√
hλ ‖œ− œ̂h‖œ,∂ωλ

]2

. Let

us note that first order ordinary differential inequation (137) verified by ‖œ− œ̂h‖2œ,ωλ
can be

reformulated as:

d

dλ

[

‖œ− œ̂h‖2œ,ωλ
f(λ)

] 1

f(λ)
> − 1

hλ
αλ, (138)

where f : λ 7→ λ−1/h is a strictly positive function for any λ > 0. Finally, a worthwhile relation

between ‖œ− œ̂h‖2œ,ωλ
and ‖œ− œ̂h‖2œ,ω

λ̄

can be derived integrating inequality (138) over [λ , λ̄].
It reads:

‖œ− œ̂h‖2œ,ωλ
6

(

λ

λ̄

)1/h

‖œ− œ̂h‖2œ,ω
λ̄

+ βλ,λ̄, (139)

where βλ,λ̄ ≡ βλ,λ̄(ûh, œ̂h, u1, u2) =

∫ λ̄

λ′=λ

[

(

λ′

λ

)−1/h
1

hλ′
αλ′

]

dλ′ is a function involving

displacement solutions u1 and u2 of problems (P1) and (P2), respectively. In practice, inequality

αλ′ 6 e2cre,λ′ ∀ λ′ ∈ [λ , λ̄] allows to work around the extra resolutions of problems (P1) and (P2)
and leads to the following fundamental result of Proposition 1:

‖œ− œ̂h‖2œ,ωλ
6

(

λ

λ̄

)1/h

‖œ− œ̂h‖2œ,ω
λ̄

+ γλ,λ̄, (140)

where γλ,λ̄ is completely defined by (50) in terms of computable known quantities. For practical

purposes, one-dimensional numerical integration methods, such as the simple trapezoidal rule or

the classical Gauss-Legendre quadrature rule, can be employed to get an accurate approximation of

γλ,λ̄.

Remark 9. Other expressions for γλ,λ̄ can be derived directly by integration by parts; it readily

reads:

γλ,λ̄ = e2cre,λ −
(

λ

λ̄

)1/h

e2cre,λ̄ +

∫ λ̄

λ′=λ

[

(

λ′

λ

)−1/h
d

dλ′

[

e2cre,λ′

]

]

dλ′. (141)

However, implementation of this latter expression is more cumbersome compared to the former one,

since it requires the integration of the first derivative of function e2cre,λ′ instead of function e2cre,λ′

itself. Nevertheless, applying relation (33) to quantity œ̂h − K ”(ûh) for any homothetic domain ωλ′

such that λ′ ∈ [λ , λ̄], one obtains:

d

dλ′

[

e2cre,λ′

]

=
d

dλ′

[

‖œ̂h − K ”(ûh)‖
2
œ,ω

λ′

]

=

(

λ′

λ̄

)n
1

λ̄
|œ̂h − K ”(ûh)|

2
œ,∂ω

λ̄

; (142)
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32 P. LADEVÈZE, F. PLED AND L. CHAMOIN

consequently, using relation (25) for both domains ωλ and ωλ̄, one has:

γλ,λ̄ = e2cre,λ −
(

λ

λ̄

)1/h

e2cre,λ̄ +

∫ λ̄

λ′=λ

[

(

λ′

λ

)−1/h (
λ′

λ̄

)n
1

λ̄
|œ̂h − K ”(ûh)|

2
œ,∂ω

λ̄

]

dλ′

= e2cre,λ −
(

λ

λ̄

)1/h

e2cre,λ̄ +

∫ λ̄

λ′=λ

∣

∣

∣

∣

∣

(

λ′

λ

)−1/2h

(œ̂h − K ”(ûh))

∣

∣

∣

∣

∣

2

œ,∂ω
λ̄

(

λ′

λ̄

)n
1

λ̄
dλ′

= e2cre,λ −
(

λ

λ̄

)1/h

e2cre,λ̄ + e2wcre,λ̄\λ, (143)

where the last term of the right-hand side:

e2wcre,λ̄\λ ≡ e2wcre,λ̄\λ(ûh, œ̂h) =

∥

∥

∥

∥

∥

(

λ′

λ

)−1/2h

(œ̂h − K ”(ûh))

∥

∥

∥

∥

∥

2

œ,ω
λ̄
\ωλ

(144)

=

〈

(

λ′

λ

)−1/h

(œ̂h − K ”(ûh)) , œ̂h − K ”(ûh)

〉

œ,ω
λ̄
\ωλ

(145)

can be viewed as a weighted constitutive relation error in ωλ̄ \ ωλ. Even though this last relation

(143) does not call for one-dimensional numerical integration methods contrary to (50) and (141),

it requires the numerical evaluation of a definite integral of a rational function over ωλ̄ \ ωλ.

Eventually, in order to perform an accurate calculation of function γλ,λ̄, expression (50) computed

by means of a basic trapezoidal integration method with a large number of integration points is

preferred among the different aforementioned expressions.

APPENDIX B. PROOF OF THE MAIN TECHNICAL RESULT OF PROPOSITION 4

Let us consider v ∈ V . One can deduce the following inequality from (80):

∀ λ ∈ [0 , λ̄],
k

λ
‖v‖2u,ωλ

6
1

λ̄
|v|2u,∂ωλ

. (146)

Then, using (26), one has: |v|2u,∂ωλ
=

(

λ

λ̄

)n

|v|2u,∂ω
λ̄

and (146) becomes:

k

λ
‖v‖2u,ωλ

6

(

λ

λ̄

)n
1

λ̄
|v|2u,∂ω

λ̄

. (147)

According to result (32), one has:

(

λ

λ̄

)n
1

λ̄
|v|2u,∂ω

λ̄

=
d

dλ

[

‖v‖2u,ωλ

]

; consequently, the following

first order ordinary differential inequation satisfied by ‖v‖2u,ωλ
holds:

k

λ
‖v‖2u,ωλ

6
d

dλ

[

‖v‖2u,ωλ

]

, (148)

which can be recast as:

d

dλ

[

‖v‖2u,ωλ
g(λ)

] 1

g(λ)
> 0, (149)

where g : λ 7→ λ−k is a strictly positive function for any λ > 0; as a consequence, one gets:

d

dλ

[

‖v‖2u,ωλ
g(λ)

]

> 0, (150)
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Finally, a fundamental result connecting ‖v‖2u,ωλ
and ‖v‖2u,ω

λ̄

can be derived integrating

inequality (150) over [λ , λ̄]. It reads:

‖v‖2u,ωλ
6

(

λ

λ̄

)k

‖v‖2u,ω
λ̄

, (151)

which completes the proof of Proposition 4.

APPENDIX C. ANALYTICAL VALUES OF CONSTANT h INVOLVED IN THE FIRST

IMPROVED TECHNIQUE

The values of constant h, expressed in terms of Lamé’s cœfficients (λ, µ) in column two and in

terms of Poisson’s ratio ν in the last columns (under both plane stress and plane strain assumptions

for two-dimensional geometric shapes), are given in Table IV.

Table IV. Analytical values of constant h for different geometric shapes

Geometric shape Constant h

Dim 2 plane stress assumption plane strain assumption

unit circle
2µ+ λ

2(µ+ λ)

1

1 + ν
1− ν

unit cracked circle∗
2µ+ λ

2(µ+ λ)
+

1

3(2π − θ)

µ

µ+ λ

1

1 + ν
+

1

3(2π − θ)

1− ν

1 + ν
1− ν +

1

3(2π − θ)
(1− 2ν)

double unit square
7µ+ 3λ

6(µ+ λ)

7− ν

6(1 + ν)

7− 8ν

6

Dim 3

unit sphere
2µ+ λ

2µ+ 3λ

1− ν

1 + ν

double unit parallelepiped
8µ+ 3λ

6µ+ 9λ

4− 5ν

3(1 + ν)

APPENDIX D. ANALYTICAL COMPUTATION OF CONSTANT k INVOLVED IN THE

SECOND IMPROVED TECHNIQUE FOR CIRCULAR AND SPHERICAL SHAPE DOMAINS

Let us consider the space V of functions satisfying homogeneous equilibrium equations expressed

in displacements, also known as Lamé-Navier equations. Trefftz (or T-) functions are homogeneous

solutions of the governing differential equations inside the domain (corresponding to Lamé-Navier

equations in our case). Trefftz-type approaches, which consist in using a set of linearly independent

solutions of a differential equation, were initially introduced by Trefftz [41]. T-functions were

firstly employed as basis functions in Trefftz methods [42]. Nowadays, they are classically used

as interpolation functions to define Trefftz-type finite elements in (hybrid) FEM, Boundary Element

Method (BEM) also called Boundary Integral Equation Method (BIEM); they can be found in the

form of polynomials, Legendre, harmonic, exponential, Bessel, Hankel, Kelvin (also called singular

Kupradze), Boussinesq functions, depending on the governing equations [43, 44, 45]. Some special

purpose T-functions enable to satisfy not only the governing equations, but also take into account

special boundary conditions a priori. The interested reader can refer to [46, 43] for a complete

description of basic sets of T-functions associated to Laplace, Helmholtz and biharmonic equations

in 2D and 3D problems, both for bounded and unbounded domains. Combinations of those classical

∗θ denotes the angle between the two lips of the crack.
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T-functions allow the derivation of T-functions associated to a broad class of problems, such as 2D

and 3D elasticity or Mindlin-type plates.

Let us consider a circular (resp. spherical) shape domain ωλ̄ of radius λ̄ in 2D (resp. 3D). The

set of T-functions associated to Lamé-Navier equations constitutes a basis of functions belonging to

space V on ωλ̄ [33]. Thus, any homogeneous solution v ∈ V can be defined by linear combination

of a set of Trefftz functions. Suitable Trefftz functions corresponding to solutions of Lamé-Navier

equations can be found in cartesian coordinates system in [47] and in polar coordinates system

in [48]. T-functions associated to Lamé-Navier equations can be expressed in cartesian coordinate

system (x, y) in 2D (resp. (x, y, z) in 3D) as polynomials [47]. Transforming cartesian coordinates

into polar coordinates (r, θ) in 2D (resp. spherical coordinates (r, θ, φ) in 3D), displacement T-

functions T can be formulated as regular harmonic polynomials of the form:

{

Tx = rif2(θ), Ty = rjg2(θ), i, j = 0, 1, 2, . . . in 2D;

Tx = rif3(θ, φ), Ty = rjg3(θ, φ), Tz = rlh3(θ, φ), i, j, l = 0, 1, 2, . . . in 3D,
(152)

where functions f2 and g2 (resp. f3, g3 and h3) depend on material parameters ν, E as well as

polar coordinate θ in 2D (resp. spherical coordinates θ, φ in 3D) only. Let us consider T-function

T (m) of maximum degree m in polar (resp. spherical) coordinate r, or, equivalently, in cartesian

coordinates (x, y) (resp. (x, y, z)) in 2D (resp. 3D), with m > 1 (i.e. discarding rigid body motions).

Corresponding stress T-function K ”(T (m)) can be derived in a polynomial form of degree m− 1;

it follows that energy e(m) ≡ Tr
[

”(T (m)) K ”(T (m))
]

can be put in the following polynomial form:

{

e(m)(r, θ) = r2(m−1)Ψ2(θ) in 2D;

e(m)(r, θ, φ) = r2(m−1)Ψ3(θ, φ) in 3D,
(153)

where function Ψ2 (resp. Ψ3) depends on material parameters ν, E as well as polar coordinate θ
in 2D (resp. spherical coordinates θ, φ in 3D) only. Thus, after some straightforward computations,

corresponding Rayleigh quotient Rλ̄(T
(m)) reads as:

Rλ̄(T
(m)) =

∣

∣

∣
T (m)

∣

∣

∣

2

u,∂ω
λ̄

∥

∥

∥
T (m)

∥

∥

∥

2

u,ω
λ̄

=

{

2m in 2D;

2m+ 1 in 3D.
(154)

Therefore, any displacement T-function T associated to non-vanishing strain satisfies Rλ̄(T ) > 2
in 2D and Rλ̄(T ) > 3 in 3D. Besides, let us note that T-functions are also orthogonal with respect

to both inner products (•, ◦)u,∂ω
λ̄

and 〈•, ◦〉u,ω
λ̄

related to Rayleigh quotient Rλ̄.

Finally, given that any function v ∈ V (i.e. any homogeneous solution of Lamé-Navier equations)

can be approximated as a linear combination of T-functions, one can show that:

min
v∈V

Rλ̄(v) =

{

2 for the two-dimensional case of a circular shape domain;

3 for the three-dimensional case of a spherical shape domain.
(155)
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