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ABSTRACT 

Hydroxypropylguars (HPGs) are used as water retention agents in modern factory-made 

mortars. Nevertheless, these molecules can also impact also the rheological behavior of 

cement-based materials. The influence of HPG and its dosage on mortars rheological 

properties was thus investigated thanks to a suitable measurement procedure. HPG allows 

keeping a positive yield stress value while the yield stress of hydroxypropyl methyl cellulose 

(HPMC) mortars was found to decrease with an increase in dosage. HPG increases the shear-

thinning behavior and the consistency of mortars. The study of pore solution viscosity 

suggests that the entanglement of HPG coils beyond a threshold dosage is crucial to 

understand the rheological macroscopic behavior of HPG-admixed mortars. Nevertheless, the 

increase in mortar viscosity induced by HPG was lower than expected which reveals 

additional and specific repulsive forces induced by polysaccharides.  
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1 Introduction 

Characterization and understanding of rheological properties of cement-based materials are 

crucial since they affect the properties and thus durability of hardened materials. Roussel et al. 

[1] have established the physical parameters which govern the steady state flow of fresh 

cement paste. According to the authors, cement-based materials can be represented as 

biphasic system consisting of suspended particles in a continuous fluid phase. This 

composition results in complex interplay between colloidal interactions, Brownian forces, 

hydrodynamic forces and direct contact forces between particles. 

The stability of a cement paste results therefore from the balance between attractive and 

repulsive interactions. Because of adsorbed ions at the surface of the cement particles, there 

are repulsive electrostatic forces [2]. Otherwise cement particles tend also to agglomerate 

because of Van der Waals attractive forces [3]. Nonat et al. [4–6] have highlighted these 

short-range attractive forces by means of optical microscopy observations and particle size 

measurements.  

Natural polysaccharides or their derivatives are well-known to act as viscosity-enhancing 

admixtures (VEA) by modifying the rheological behavior of cementitious materials [7]. 

Concrete, mortar and cement grout with high fluidity (e.g. self-compacting concrete or self-

leveling underlayment) have been developed in order to facilitate placement. However, the 

use of highly flowable mixtures may lead to segregation or excessive bleeding and 

subsequently, durability issues. The use of VEAs allows overcoming this problem by 

enhancing the sedimentation resistance while maintaining high fluidity [8–13]. The 

incorporation of VEA in shotcrete or render mortar is also very useful to ensure sagging 

resistance for thick application on vertical support, and allows sufficient fluidity for normal 

pumpability [10,14–17] by supplying shear thinning rheological behavior. Thus 
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polysaccharides provide high yield stress and apparent viscosity at low shear rate but low 

resistance to flow at high shear rate [7].  

Recent studies show that it is more complicated since results from literature are contradictory. 

For instance, the evolution of yield stress with the dosage of polysaccharide depends strongly 

on the kind of binder and polysaccharide studied. Khayat and Yahia [11] and Sonebi [12] 

report a steady increase in yield stress of cement grout by increasing dosage of welan gum. 

Leemann and Winnefeld [10] obtained similar results with starch derivatives incorporated in 

self-compacting mortar. In contrast, Cappellari et al. [17] obtained a reduction in yield stress 

of mortar with increasing dosage of hydroxyethyl methyl cellulose. The results of Paiva et al. 

[15] and Bouras et al. [18] show an initial decrease followed by an increase in mortar yield 

stress when the dosage of hydroxypropyl methyl cellulose and starch ether, respectively, 

increases. In addition, these trends can be amplified or modified when several polysaccharidic 

admixtures are blended, due to synergic effect and formation of interpolymer complexes [19]. 

Among the polysaccharidic VEAs, microbial-source polysaccharides such as welan gum [11–

13,20,21] and cellulose ethers [14–17,22] are the most widely used and studied. Nevertheless, 

the hydroxypropylguar (HPG) are now well-established in the construction industry as water 

retention agent for mortars [23].  

Guar gum is a natural polysaccharide extracted from the seeds of Cyamopsis tetragonolobus. 

It consists of a β(1-4)-linked D-mannopyranose backbone with random branchpoints of 

galactose via an α(1-6) linkage. Hydroxypropylguar is obtained from the native guar gum via 

an irreversible nucleophilic substitution, using propylene oxide in the presence of an alkaline 

catalyst. It is one of the most widely available derivatives of guar gum since it has application 

as thickener in many important industries, including hydraulic fracturing process, paper 

manufacturing, water treatment or textile printing [24–28].  
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The manufacture of HPG has the advantage of having a more reduced impact on the 

environment than cellulose derivatives. Indeed, guar gum exhibits a higher chemical 

reactivity and is soluble in cold water because of its branched-chain structure with a lot of 

hydroxyl groups. Thus, the chemical modification of the native guar gum requires normal 

reaction conditions of temperature and pressure, does not generate large quantity of by-

products, and requires minimal purification procedure [23]. 

The efficiency of HPG as good water retention agent has been shown by several authors 

[17,29–31] but studies about their effect on rheological properties are very scarce. Izaguirre et 

al. [32] have worked with aerial lime-based mortars and Cappellari et al. [17] have 

characterized only one HPG. However, the formulation of modern factory-made mortars 

requires choosing a specific type and dosage of polysaccharide to obtain the desired water 

retention performance and rheological behavior suitable for the application.  These 

requirements underscore the need to characterize and understand the influence of HPG on 

mortar rheological properties.  

The aim of this paper is to characterize and understand the influence of HPG and its dosage 

on the rheological properties of cement-based mortars. This study will be divided into three 

parts. Firstly, the impact of HPG on mortar rheological behavior will be described using the 

parameters of the Herschel–Bulkley model. Then, the effect of HPG on pore solution 

viscosity will be presented. The pore solution was extracted from the mortar by means of 

centrifugation. Finally, the relationship between pore solution and mortar viscosities will be 

investigated. 
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2 Material and methods 

2.1 Mineral and organic compounds 

2.1.1 Mineral products 

Mineral products used in this study consist in ordinary Portland cement, siliceous sand (DU 

0.1/0.35, Sibelco) and limestone filler (BL 200, Omya).  

Chemical and phase compositions of the cement used are given in Table 1. It is an ordinary 

Portland cement (OPC), classified CEM I 52.5 R CE CP2 NF type cement according to EN 

197-1 and French NF P 15-318 standards. Phase composition was determined by Rietveld 

refinement method (Siroquant V2.5 software) after XRD analysis (D5000, Siemens). Oxide 

composition was quantified by means of X-ray fluorescence spectroscopy (SRS3400, Bruker-

AXS).  

The median particle diameters by volume (D50%), determined by means of laser 

diffractometry with dry powder disperser, (Mastersizer 2000 and Scirocco dispersing unit, 

Malvern), are about 310, 12 and 6 µm for the sand, cement and filler respectively.  

Table 1: Chemical and phase compositions of the investigated cement. 

Chemical composition (% wt) Phase composition (% wt) 

Oxides XRF Oxides XRF Phases 
XRD 

(Rietveld) 
Phases 

XRD 
(Rietveld) 

CaO 66.9 ± 0.8 MgO 1.16 ± 0.01 C3S 79.4 ± 0.5 Gypsum 1.3 ± 0.2 

SiO2 20.9 ± 0.2 TiO2 0.32 ± 0.03 C2S 8.2 ± 0.4 Anhydrite 3.2 ± 0.2 

Al 2O3 4.7 ± 0.1 P2O5 0.14 ± 0.01 C3A 3.3 ± 0.2 Hemi-hydrate 0.8 ± 0.3 

SO3 2.4 ± 0.2 MnO 0.04 ± 0.01 C4AF 4.1 ± 0.9 Free CaO 0.5 ± 0.2 

Fe2O3 2.6 ± 0.1 K2O 0.10 ± 0.01     

LOI 2.1 ± 0.1       
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2.1.2 Organic admixtures  

Seven polysaccharidic water retention admixtures were investigated: five hydroxypropylguars 

(HPG 1, HPG 2, HPG 3, HPG 5 and HPG 6) and two hydroxypropyl methyl celluloses 

(HPMC1 and HPMC 2) as references for comparison since they are widely used in industry. 

Fig. 1 shows the molecular structure of HPMC and HPG (substituent positions are arbitrary). 

Table 2 provides a qualitative description of the admixtures. The qualitative substitution 

degrees are provided by the manufacturers. 

              

Fig. 1: Molecular structure of (a) HPMC and (b) HPG. 

 

All the HPG samples, provided by Lamberti S.p.A, exhibit similar molecular weight, about 

2.106 g.mol-1. The molar substitution ratio (MSHP) represents the number of moles of 

hydroxypropyl groups per mole of anhydroglucose unit and is less than 3 for the investigated 

HPG samples. It appears from Table 2 that the only difference between HPG 1, 2 and 3 is the 

molar substitution ratio while HPG 5 and 6 exhibit additional substitution (short or long alkyl 

chains). 

The degree of substitution (DSM) represents the amount of methoxyl groups per 

anhydroglucose unit and is about 1.8 for HPMC 1 and HPMC 2. The molecular weights are 

about 0.25.106 and 1.106 g.mol-1 for HPMC 1 and HPMC 2 respectively, which constitute the 

only difference between these two samples.  
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Table 2: Qualitative description of the admixtures used. 

Admixtures MSHP DSM 
Additional 
substitution 

HPMC 1 Very low Very high / 

HPMC 2 Very low Very high / 

HPG 1 Low / / 

HPG 2 Medium / / 

HPG 3 High / / 

HPG 5 High / Short alkyl chain 

HPG 6 High / Long alkyl chain 

 

2.2 Preparation of mortars 

Admixtures were dissolved in deionized water. Polymer dosages in mortars varied from 0.1 to 

1.6% by weight of cement (bwoc) by preparing polymer solutions of concentrations varying 

from 1 to 16 g.L-1. Complete dissolution of all polymers was obtained by means of magnetic 

stirring for 24h. 

Mortars were prepared according to the following mixture proportions: 30 wt.% of cement, 65 

wt.% of siliceous sand and 5 wt.% of limestone filler. Dry mixture (i.e. cement, sand and 

filler) was homogenized in a shaker (Turbula, Wab) with low shear forces for 15 min. 

Admixture solutions were then added in order to obtain a water to cement ratio W/C = 1. Dry 

mixture and admixture solution were mixed (MIx40, CAD Instruments) in accordance with 

EN 196-1 [33]. A control test was performed with a mortar without admixture. 

Each mortar studied was divided into two parts after mixing. One part was used to study 

mortar rheological properties, while the other portion was centrifuged in order to determine 

pore solution viscosity.  

It is worth noting that the mortar formulation with high W/C was adapted from the CEReM 

(European consortium for study and research on mortars) mixture design [34,35]. This work 

is part of a larger study that focuses on the influence of HPG on overall mortar properties at 

early age, including mortar water retention capacities. Regarding water retention, the high 



 9

W/C ratio corresponds to extreme conditions which allow highlighting the effectiveness of 

HPG as water retention agent.  

2.3 Rheological measurements 

All the rheological measurements were obtained with Anton-Paar Rheometer MCR 302, 

thermostated at 20 °C because rheological properties are temperature-dependent.  

2.3.1 Mortars 

Fresh mortar rheological properties were investigated with vane-cylinder geometry. 

According to many authors [17,18,36], this system is suitable for granular pastes like mortars. 

The gap thickness, distance between the periphery of the vane tool and the outer cylinder, was 

set at 8.5 mm, which is an order of magnitude higher than the maximum size of sand particles, 

in order to be less sensitive to the heterogeneity of the mortar [37]. Using a Couette analogy, 

the shear stress and shear rate were calculated from the torque and the applied rotational 

velocity respectively [38,39], after calibration with glycerol.  

The mortar was introduced into the measurement system at the end of the mixing cycle, i.e. 4 

min after the contact between cement and water. The suspension was then held at rest for 6 

min. At 10 min, the mortar was pre-sheared for 30 s at 100 s-1 in order to re-homogenize the 

sample and to eliminate its shear history because of thixotropic character of cementitious 

materials [40,41]. After a period of rest of 4.5 min, the rheological measurements were started 

at 15 min. At this time, the hydration rate is very low which allows overcoming the 

irreversible effect of cement hydration on rheological behavior, especially at low shear rate 

[40].   

Imposed shear rate was decreased by step from 300 to 0.06 s-1. At each shear rate, the 

measuring time was adjusted in order to obtain a steady state whatever the formulation 

[42,43]. Nevertheless, because of high W/C ratio, many mortar mixtures with an insufficient 
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amount of VEA experienced sedimentation before reaching steady state, which distorts results 

from rheological measurements. The samples were therefore systematically submitted to high 

shear rate (100 s-1) for 20 s before each imposed shear rate in order to resuspend particles of 

the mortar within the mortar mixtures. In a previous study, Patural et al. [35] validated this 

resuspension procedure in case of non-settling samples. Here, a comparison between the 

rheograms of mortars without admixture, which constitute the most critical case with regard 

to sedimentation, obtained with or without the resuspension procedure was made (Fig. 2).  No 

effect was observed at shear rates higher than 10 s-1. At lower shear rate, rheogram obtained 

with resuspension procedure exhibits expected behavior. In contrast, results obtained in 

standard steady state regime (i.e. without resuspension procedure) exhibit an increase in shear 

stress when the shear rate decreases. This may be attributed to the particle sedimentation 

which induces an artificial increase in shear stress. Therefore the resuspension procedure 

allows keeping particles in suspension even at low shear rate.   

 

Fig. 2: Interest of resuspension procedure for a mortar without admixture, the most critical case with regards to 
sedimentation. 
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2.3.2 Pore solution 

At 15 min (i.e. similar to mortar rheological measurements), a large representative sample of 

mortar was centrifuged (Thermo Scientific, Sorvall Legend XF) for 10 min at 4,500 rpm. 

Then, the supernatant was collected and centrifuged again (Eppendrof, MiniSpin Plus) at 

higher speed (14,500 rpm) for 5 min which allows removing residual particles.  

The steady shear flow of final supernatant, representing pore solution, has been investigated 

using decreasing logarithmic ramps in the 103 - 1 s-1 range with cone and plate geometry (2° 

cone angle, 50 mm diameter). Flow curves, )(γη &f= , exhibited typical shear thinning 

behavior with a Newtonian region in the low shear rate range. Experimental data were well 

correlated with the Cross model [44]: 

 
)(1

)( 0
nγα

ηηηγη
&

&

+
−

+= ∞
∞      (1) 

where η0 is the zero-shear rate viscosity, η∞  the infinite rate viscosity, α a relaxation time and 

n a non-dimensional exponent.  

Among Cross parameters, the zero-shear rate viscosity represents the constant viscosity in the 

Newtonian plateau at low shear rate and was chosen to characterize pore solution viscosity. 

3 Results and discussions 

3.1 Influence of HPG on mortar rheological properties 

Rheological properties of admixed cement-based materials are decisive parameters according 

to the desired applications. Thus, the influence of HPG on rheological properties of admixed 

cement-based mortars was first characterized. The results can be expressed as shear stress τ  

according to shear rateγ& . The Herschel-Bulkley (HB) model [45] is often used to describe 

mortar rheological behavior: 

nKγττ &+= 0        (2) 
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where 0τ  is the yield stress, K the consistency coefficient and n the fluidity index which 

characterizes shear-thinning behavior of  mortar.  

Fig. 3: (a) Shear stress and (b) apparent viscosity versus shear rate according to the dosage 
Example of HPG 1  

Markers represent experimental data and lines represent calculated values according to HB model (Eq 2).  
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3.1.1 Fluidity Index 

Fig. 4a shows the evolution of the fluidity index n according to the admixture used and its 

dosage. For the control test and at low VEA dosage, fluidity index was found to be equal to 1 

which means that the non-admixed mortars are Binghamian. When the dosage of HPG or 

HPMC increases, the fluidity index decreases. Indeed, whatever the polysaccharidic 

admixture tested, the fluidity index seems to start decreasing at a dosage ranging from 0.2 to 

0.3% bwoc (Fig. 4b). This means that, above this dosage the mortars become shear-thinning 

and this rheological behavior gets more and more pronounced as the HPG dosage increases. 

This is in good agreement with the literature concerning welan gum [11], cellulose ethers and 

HPG [17]. Moreover, admixed mortars with HPG 5 exhibit a more shear-thinning behavior 

(lower fluidity index) than mortars admixed with other HPG, whatever the dosage.  

Fig. 4: (a) Evolution of the fluidity index (n) according to the dosage and the admixture studied  
(b) focus on the transition from Binghamian to shear-thinning behaviors. 
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the solution. At low shear rate, the entanglement of polymer coils leads to a higher pore 

solution viscosity and thus higher mortar viscosity. When the shear rate increases, the 

polysaccharide chains align in the direction of the flow resulting in less and less effect on 

mortar fluidity. The presence of additional alkyl chains enhances the entanglement and, thus, 

the shear-thinning behavior, which may explain why admixed mortar with HPG5 exhibits the 

highest shear-thinning behavior among HPG studied. These assumptions will be verified in 

section 3.2. 

    

3.1.2 Yield stress 

Fig. 5 shows the evolution of the yield stress calculated from Herschel-Bulkley model 

according to the dosage. The mortar without admixture exhibits a yield stress value of 5 Pa. In 

additions, the yield stress varies very slightly with the polymer dosage whatever the 

admixture considered. This unfortunate result may be due to the high W/C ratio used in this 

work resulting in a very low solid volume fraction and thus low values of yield stress since 

they are strongly linked [1,3,10]. Nevertheless, it is possible to identify trends. 

Fig. 5: Evolution of the yield stress (τ0) according to the dosage and the admixture studied (a) HPG (b) HPMC. 
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Yield stress exhibited by mortars admixed with HPG and HPMC is of the same order of 

magnitude. However, for HPMC (Fig. 5b), yield stress decreases when the dosage increases. 

These results are not common since several papers reported that an increase in VEA dosage 

leads to a rise in the yield stress [10–12,21,46,47], but is in agreement with recent study [17].  

In the case of HPG (Fig. 5a), an increase in polymer dosage leads also to a decrease in yield 

stress values of mortars admixed with HPG 5 and HPG 6. In contrast, when the dosage of 

HPGs 1-3 increases, yield stress decreases first and then remains stable.  

The yield stress of neat cementitious materials is attributed to the existence of a network of 

attractive colloidal interactions [1]. The enhancement of yield stress by polysaccharide is 

often attributed to the entanglement of polymer coils making the pore solution and hence the 

admixed material shear-thinning. The sample thus exhibits higher viscosity at low shear rate 

and higher yield stress. Moreover, polysaccharides such as HPG and HPMC are able to 

adsorb on cement grains [29,48]. Since polysaccharides exhibit long chains, the same 

molecule can adsorb on separate cement particles and draw them together. This phenomenon 

is known as polymer bridging flocculation [49–51] and induces a rise in yield stress [7,13,16].  

However, according to several authors, polysaccharides lead to an increase in the entrained air 

amount [15,17], highlighted by a rise in the total porosity from 15 to 50% and a drop of the 

mortar density [35,52–54], to steric hindrance induced by their adsorption on cement grains 

[16] and repulsive depletion forces induced by polymers dissolved in pore solution [16]. All 

these factors tend to decrease impact of Van der Waals attractive forces and thus yield stress. 

The overall competition between these opposing effects may lead to non-monotonic evolution 

of the yield stress with dosage [17].  

Characterization of yield stress with mortar mix-design corresponding to an industrially-used 

standard mixture is of course required to confirm that HPG allows maintaining yield stress 
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while the yield stress decreases with an increase in dosage of HPMC and HPG with additional 

alkyl chains.   

3.1.3 Consistency 

According to many authors, incorporation of polysaccharide leads to an increase in apparent 

viscosity of cement-based materials because of an increase in the pore solution viscosity 

[7,10,12,13]. Fig. 6a shows the evolution of the consistency coefficient, which is a parameter 

of HB model, as a function of the dosage for the different admixtures studied. It appears 

effectively that an increase in polymer dosage leads to an increase in consistency. 

Fig. 6: Evolution of the consistency coefficient (K) according to the dosage and the admixture studied in linear 
scale (a), only for HPG in Logarithmic scale (b). 
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by Cappellari et al. [17] who have attributed the first regime to an increase in air content 

which results in dispersing effects that offset the increase in consistency.  

Nevertheless, another hypothesis may be assumed. Indeed, Fig. 6b is found to be quite similar 

to typical curve representing the evolution of polymer solution viscosity with polymer 

concentration (see section 3.2). It means that the consistency coefficient of admixed cement-

based materials is strongly linked to the rheological behavior of the pore solution. In solution, 

the transition between diluted and semi-diluted solution is marked by an abrupt change in 

slope due to the overlapping of polymer coils which induces a dramatic change in flow 

behavior and viscosity of the solution. If this assumption is correct, the evolution of the pore 

solution viscosity of admixed cement-based materials, according to the polymer dosage, 

should exhibit similar trends. Moreover, the change of slope and thus the overlapping of coils 

should occur for polysaccharide dosages ranging from 0.2 to 0.3% bwoc, since the 

consistency coefficient strongly changes in this range of dosage.  

 

3.2 Pore solution viscosity 

The influence of HPG on pore solution viscosity was characterized.  

As discussed earlier, the flow curves of pore solutions )(γη &f= exhibit well-known shear-

thinning behavior of polysaccharides solutions. This behavior gets more pronounced when the 

introduced amount of HPG in the mortar increases. This is highlighted by the double 

logarithmic plots of zero-shear viscosity versus the concentration (Fig. 7). Indeed, two well-

defined linear concentration-dependences of zero-shear rate viscosity are observed. The 

dosage corresponding to the intersection of these two straight lines, called critical coil-overlap 

concentration C* in literature, is essential to understand the rheological behavior of polymer 

solution. Below this threshold concentration, individual polymer molecules provide their 

individual contribution to the viscosity since they are present as isolated coils (diluted 
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regime). Thus the solution viscosity increases slightly with the concentration. Above this 

critical concentration, the polymer solution becomes semi-dilute. Thus, an entanglement of 

polymer coils and formation of polymer agglomerates are expected, leading to a sudden 

increase in the solution viscosity [55,56].  

 
Fig. 7: Determination of polymer dosage corresponding to agglomerate formation. 

 

From Fig. 7, it is possible to establish the critical polymer dosage corresponding to the 

formation of polymer agglomerates in the pore solution. Table 3 presents the dosage 

necessary for the formation of these polymer agglomerates in the mortar pore solution. 

Nevertheless, one should keep in mind that these dosages do not correspond to real 

concentrations of dissolved polymer present in the pore solution, but to the polymer dosage 

necessary to form agglomerates. Indeed, a certain amount of water is lost due to cement 

hydration and mortar drying. Moreover, a non-negligible amount of polymer may be trapped 

into the mortar paste during hydration [57] and/or irreversibly adsorbed onto cement phases 

[48]. Therefore it is impossible to estimate the real concentration of polymer in solution 

without its measurement.  
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Table 3: Polymer dosage corresponding to the formation of agglomerates into the admixed mortar pore solution. 

 HPG1 HPG2 HPG3 HPG5 HPG6 HPMC1 HPMC2 
Polymer dosage (% bwoc) 

corresponding  
to formation of agglomerates  

0.26 0.25 0.25 0.20 0.22 0.58 0.20 

 
 

In addition, Fig. 7 highlights that HPMC 2 exhibits the strongest viscosity-enhancing effect 

on pore water, far ahead of HPG, while HPMC 1 exhibits the weakest influence on viscosity. 

The difference between HPMC 1 and HPMC 2 is ascribed to difference in molecular mass. 

Among HPG, pore solution viscosities of mortars admixed with HPG 1, 2 and 3 are similar 

despite the increase in substitution degree. In literature, an increase in the DS conducts to a 

decrease in zero-shear rate viscosity. However, in the same time, polymer adsorption on 

cement phases is also reduced [29]. Consequently, the effect of substitution degree on 

viscosity is compensated by the effect of adsorption ability, leading to comparable viscosities. 

Therefore the formation of polymer aggregates occurs at similar polymer dosage of about 

0.25% bwoc for HPG 1, 2 and 3 (Table 3). On the contrary, the formation of polymer 

aggregates is obtained at slightly lower polymer dosage (0.2% bwoc) in the presence of 

additional alkyl chains (HPG 5 and 6). The interconnection between alkyl chains creates 

intermolecular interactions through specific hydrophobic interactions which cause a decrease 

in the coil-overlapping concentration. 

The polymer dosages corresponding to the start of the fluidity index decrease in Fig. 4b and to 

the change in slope in Fig. 6b are consistent with those inducing formation of HPG aggregates 

in pore solution (Table 3). The results seem to indicate a significant relationship between the 

effect of HPG on pore solution viscosity and on mortar rheological behavior. 
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3.3 Relationship between pore solution and mortar viscosities 

Many empirical expressions have been proposed to describe the viscosity of highly 

concentrated granular suspensions. The most famous one is the Krieger-Dougherty equation: 

m

m

Φ−

Φ
Φ−= 5.2

0 )1(ηη       (3) 

where η  is the viscosity of the paste, 0η  the viscosity of the interstitial fluid, Φ  the solid 

volume fraction and mΦ  the solid volume fraction corresponding to maximum packing.  

According to this equation, the viscosity of a suspension is directly proportional to the 

viscosity of the suspending fluid. When applied to our study, it appears that the viscosity of 

mortar is proportional to the pore solution viscosity as expected from previous results. 

Nevertheless, some results may be contradictory as polysaccharidic VEA seems to 

preferentially increase the pore solution viscosity versus the effective viscosity of the mortar. 

In order to check the proportionality between these two viscosities, the relative viscosity relη  

defined as the ratio between macroscopic mortar viscosity and interstitial fluid viscosity (Eq. 

4) has been plotted as a function of pore solution viscosity (Fig. 8).  

0

)100( 1

η
η

η
−

= sapp
rel       (4) 

where 
)100( 1−sapp

η  is the mortar viscosity at 100 s-1 and 0η  the pore solution viscosity directly 

extracted from the mortar by means of centrifugation. 
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Fig. 8: Evolution of relative viscosity (Eq. 4) according to pore solution viscosity. 

 

It is worth mentioning that the models describing the viscosity of granular pastes, including 

the Krieger-Dougherty equation, have been developed for particles in suspension in a 

Newtonian fluid, which is not the case here since the pore solution exhibits a shear-thinning 

behavior. This is the reason for taking the mortar viscosity at 100 s-1 in Eq. 4. At this shear 

rate, the mortar viscosity is indeed pseudo-Newtonian and thus does not depend on shear rate 

(Fig. 3b). 

According to Krieger-Dougherty equation, a horizontal line should be expected. A steady 

decrease in the relative viscosity is however observed when the pore solution viscosity 

increases (i.e. increase in polymer dosage) as shown in Fig. 8. This means that 

polysaccharides increase both pore solution viscosity and macroscopic mortar viscosity but 

the latter increase is lower than expected. Polysaccharides induce therefore additional and 

specific repulsive forces. This unexpected phenomenon has been previously observed by 

Lambois-Burger et al. [58] and Brumaud [16]. 
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Lambois-Burger et al. [58] have studied the effect of non polysaccharidic VEA on the flow of 

suspensions of cement and silica particles. They highlighted the antagonistic effects of 

hydrodynamic lubrication forces which result, on the one hand, in a viscous dissipation that 

increases the suspension viscosity, but prevent on the other hand the direct contact between 

particles and the friction which promotes flow. The authors argue moreover that this reduction 

of overall energy dissipation is only due to the non-adsorbed polymer. 

Brumaud [16] has tested this hypothesis by increasing pore solution viscosity of cement paste 

using glycerol. As proportionality between pore solution and macroscopic cement paste 

viscosities was obtained with glycerol, the author has dismissed the effect of hydrodynamic 

repulsive forces due to the high pore solution viscosity. The author then proposed that 

polymers in the gap between particles induce repulsive depletion forces. 

The increase in air content induced by polysaccharide may also participate in the decrease in 

relative viscosity. Indeed the increase in air content should result in the decrease in solid 

volume fraction Φ  while the solid volume fraction corresponding to maximum packing mΦ  

remains constant. Therefore it can be assumed that the ratio mΦΦ decreases which induces 

mathematically a decrease in relative viscosity0ηη according to Eq. 3. 

4 Conclusions 

This paper focuses on the influence of HPG and its dosage on rheological behavior of cement-

based mortars. The rheograms were obtained over a wide range of polymer dosage thanks to 

an efficient resuspension procedure which allows keeping particles in suspension even at low 

shear rate and low polymer dosage. Herschel-Bulkley model was used to fit the resulting 

rheograms. It appears that:  
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(i) HPG has a strong impact on the shear-thinning behavior of admixed mortars: the 

higher the dosage, the more pronounced the shear-thinning behavior. 

(ii)  HPG induces an increase in mortar yield stress compared to the un-admixed 

mortar. Then, in the case of HPMC and the HPG polysaccharide with additional 

alkyl chains, the yield stress was found to decrease with the increase in the 

polymer dosage. On the contrary, the yield stress of common HPG-admixed 

mortars remains stable in over the whole range of dosage studied.  

(iii)  HPG increases the mortar consistency. 

The effect of HPG on pore solution, i.e. the shear-thinning behavior and the entanglement of 

polymer coils which leads to a strong increase in pore solution viscosity, was investigated in 

order to explain the effect of HPG on mortar rheological behavior. It emerges that the dosage 

corresponding to the formation of polymer agglomerates in pore solution is crucial, as for 

water retention [30]. Below this threshold concentration, the mortar exhibits a Binghamian 

behavior and the increase in consistency is slight.   

However, there is no direct proportionality between pore solution viscosity and mortar 

viscosity. Indeed, the increase in mortar viscosity due to polysaccharidic VEA was lower than 

expected which means that polysaccharides induce specific additional repulsive forces. 
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