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Abstract. The assimilation of observations from teledetected
images in geophysical models requires one to develop al-
gorithms that would account for the existence of coherent
structures. In the context of variational data assimilation, a
method is proposed to allow the background to be translated
so as to fit structure positions deduced from images. Trans-
lation occurs as a first step before assimilating all the obser-
vations using a classical assimilation procedure with specific
covariances for the translated background. A simple valida-
tion is proposed using a dynamical system based on the one-
dimensional complex Ginzburg–Landau equation in a regime
prone to phase and amplitude errors. Assimilation of obser-
vations after background translation leads to better scores
and a better representation of extremas than the method with-
out translation.

1 Introduction

Numerical prediction of geophysical flows (meteorology,
oceanography, hydrology, etc.) requires an analysis proce-
dure. Its purpose is to obtain an optimal initial state at a
given instant from which the forecast is computed. Such an
analysis is generally provided by correcting a previous fore-
cast (the background) by observations: this is the assimila-
tion step of observations. Most data assimilation algorithms
rely on the best linear unbiased estimation (BLUE, Tala-
grand, 1997), which is a statistical estimator that requires
the prior knowledge of the bias and variance of the errors
affecting the input data. The BLUE achieves Bayesian esti-
mation if the distribution of errors, taken as a whole, is Gaus-
sian. The BLUE is the background for powerful algorithms,
such as sequential Kalman (1960) filtering and variational

assimilation (Le Dimet and Talagrand, 1986; Talagrand and
Courtier, 1987).

Conventional observations and satellite radiances defined
as punctual values are the essential input data for such anal-
ysis. Observation errors are usually presumed to be uncorre-
lated. As a consequence, the assimilated pixels from a satel-
lite image are undersampled so that to guarantee that their
errors are enough uncorrelated. Still, geophysical flows often
contain coherent structures that teledetected images may ex-
hibit, as for example in the atmosphere for tropical cyclones
or midlatitude storms (Plu et al., 2008). Consistent with this
statement, Hoffman et al. (1995) proposed to separate mete-
orological forecast errors into displacement error, amplitude
error and residual error. However, the position, size and shape
of structures cannot be assimilated correctly by algorithms
derived from the BLUE (Titaud et al., 2010; Michel, 2011).
A reason, among others, for this deficiency is that error dis-
tributions in flows with finite-amplitude coherent structures
diverge from Gaussianity (Beezley and Mandel, 2008).

Some studies have investigated possible means of assim-
ilating features from satellite images. Bogussing is such a
technique: pseudo-observations deduced from an observed
coherent structure are assimilated as conventional observa-
tions (wind, humidity, etc.). The assumptions that link the
image to the pseudo-observation are often simplified (Hem-
ing et al., 1995; Michel, 2011; Montroty et al., 2008), and
such methods are not fully objective. Michel (2011) con-
cluded about the severe limitations of bogussing.

More refined methods have been proposed to assimilate
features from coherent structures, mostly in the context of
ensemble Kalman filters. Chen and Snyder (2007) proposed
to assimilate directly the position of a tropical cyclone.
It gives good results as long as the position error in the
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794 M. Plu: A variational formulation for translation and assimilation of coherent structures

background remains small. Ravela et al. (2007) developed
a two-step method in which the background is first aligned
to an observed image, before treating amplitude errors using
a conventional ensemble Kalman filter. Beezley and Mandel
(2008) inserted a morphing analysis step between sequential
Kalman filter steps, in order to fit a model state to observed
images.

These promising studies emphasize the need to develop as-
similation methods that would treat properly the errors asso-
ciated with coherent structures. In theory, the most satisfac-
tory approach would be to relax the Gaussian assumption and
to develop fully Bayesian estimators. But, assimilation tech-
niques must remain simple in order to deal effectively with
numerical models that have very high degrees of freedom. A
reasonable approach is to try to adapt the existing assimila-
tion procedures (Kalman filter and variational) to take dis-
placement errors into account. The present article proposes
and tests a method to translate the background in the context
of variational assimilation.

In the first section, the concept of background transla-
tion is formulated and a method of resolution is proposed.
In the second section, a validation is provided for a one-
dimensional numerical system prone to phase errors. Possi-
ble extension to a realistic context is then discussed before
the conclusion.

2 Method for background translation

2.1 Notations and general formulas for data
assimilation

The model state vector is notedx = (xi)i=1...N . At a given
instant, a backgroundxb = (xb

i )i=1...N and a set ofp obser-
vationsyo = (yo

j )j=1...p are known. If background errors and
observation errors are supposed to be uncorrelated, and if
they are known up to second-order statistical moments, the
optimal analysisxa may be obtained as:

x
a = x

b + BHT (HBHT + R)−1[yo − Hx
b] , (1)

whereH is the observation operator andB and R are, re-
spectively, the background covariance error and observation
covariance error matrices.BHT (HBHT +R)−1 = K = (ki,j )

is the gain matrix. This is the equation used in the analy-
sis step of sequential Kalman filtering. The variational form
of Eq. (1) consists in minimizing the quadratic cost function
J = Jo +Jb:

J (x) =

(Hx − y
o)T R−1(Hx − y

o) + (x − x
b)T B−1(x − x

b). (2)

2.2 A variational approach for translating structures in
the background

The preceding equations will be adapted here to allow coher-
ent structures in the background field to be translated onto

the corresponding observed structures. Let us define a local
translation as the translation of a finite-length segment. What
is sought is the sum of local translations that would make
coherent structures in the background fit the observed struc-
tures. A first hypothesis is to build a transformed background
by applying a surjective function to indices:

x
bt = (xb

i+t (i)), (3)

wheret is an integer function[1,N ] 7→] −N/2,N/2] such
as 1≤ i + t (i) ≤ N ∀i ∈ [1,N ]. The functiont is not given
a priori. It is a supplementary degree of freedom that must
be estimated by the method. A local translation corresponds
to a constant value fort over a segment and 0 elsewhere. In
the general context of geophysical background fields, such
a translation is not satisfactory since it may generate a dis-
continuous transformed background fieldxbt. The function
t should therefore be a compromise between the following
constraints:

– the position of every coherent structure in the trans-
formed backgroundxbt should match the position of a
coherent structure in the observed image,

– t should be the sum of local translations,

– the transformed backgroundxbt should be smooth.

It is assumed that these constraints may be accounted for
by minimizing a cost functionJt . The extension of vari-
ational assimilation (Eq. 2) to allow background transla-
tion may thus be resolved by minimizing the cost function
J = Jo +Jb +Jt :

J (x, t) = (Hx − y
o)T R−1(Hx − y

o)+

(x − x
bt)T B−1

t (x − x
bt) +Jt (t) , (4)

where Bt would depend on the translation (Ravela et al.,
2007). The background is allowed to be translated in theJb
term, which is expected to make sense wherever there is in-
consistency between a structure position in the observations
and in the background. Although several definitions could be
possible, theJt (t) term is proposed as:

Jt (t) = w1

N−1
∑

i=2

(t (i) − t (i − 1))2 t (i)2+

w2

N−1
∑

i=2

(t (i) − t (i − 1))2 , (5)

wherew1 andw2 are positive parameters. Thew1 term of
Eq. (5) has three desirable properties:

– the cost of a local translation increases as the transla-
tion value increases, thus giving a higher probability to
the lower values of translations and avoiding unlimited
translation values,
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– translating a large zone has a similar cost as translating
a small zone,

– it is differentiable.

Thew2 term reaches low values for local translations. More-
over, it gives a high cost to the irregulart function, thus
smoothing the transformed backgroundxbt. As a conse-
quence, Eq. (5) provides a cost function to account for the
desirable constraints of functiont .

Although Eq. (4) seems to be a reasonable formula to
account for structure position errors in the background, its
numerical resolution is far from being obvious.J is not a
quadratic function of(x, t): the existence of a unique mini-
mum is not sure. However, if the transformationt is fixed,J
is a quadratic function ofx. A two-step method is thus pro-
posed to get an optimal(xa, ta): J is minimized first along
t so as to get a transformationta , and thenxa is obtained by
minimizingJ for this given fieldta .

Step 1. An optimalta is searched, such as minimizing

F(t) = J (xbt, t) = (Hx
bt − y

o)T R−1(Hx
bt − y

o)+

N−1
∑

i=2

(t (i) − t (i − 1))2
(

w1t (i)
2 + w2

)

. (6)

The purpose of this step is to obtain a satisfactoryt func-
tion as a compromise between fitting the transformed back-
groundxbt to the observed imageyo, limiting the amplitude
of translations and leading to a smooth transformed back-
groundxbt. The observations taken into account in step 1
may be restricted to the images according to which the back-
ground coherent structures are wished to be corrected.

SinceF is a discrete function with positive values, it ad-
mits a global minimum value for one or several transforma-
tion vectorst . Minimization could simply be achieved by
spanning all the possiblet values, which would be a perfect
but inefficient method. Another approach is to find a local
minimum using a solver for minimization, like the one from
Gilbert and Lemaréchal (1989). For this purpose,t is allowed
to have real values. It is also necessary thatF (Eq. 6) is con-
tinuous and differentiable, which is guaranteed if the term
Jo(x

bt) is computed using cubic interpolations. IfF admits
several local minimas, the minimization solver may find dif-
ferent solutions, depending on the first guess vectort that
initiates the solver. To reach a reasonable solution, and in ac-
cordance with the purpose of background translation, a first
guesst used for minimization is automatically defined. It is a
zero vector except for the points whereHxb reaches the po-
sition of the centre of a coherent structure: at these points the
transformation connects to the centre of the nearest coherent
structure in the observation. After minimization, the values
t (i) are rounded to integer values. This method is general
enough to be applied to many geophysical contexts, provided
there is the possibility of identifying coherent structures in

100 110 120 130 140 150 160 170

Fig. 1. Illustration of the translation method applied to an ideal-
ized function. The observed vectoryo (solid black curve) and the
backgroundxb (solid light-grey curve) are bell-shaped functions,
centered at different positions. The translated background resulting
from the step-1 method is in dash. The algorithm uses the following
parameters:w1 = 1.5× 10−3, w2 = 4, corresponding to a typical
position error of 10 grid points, as in the following parts of the arti-
cle.H is the identity matrix.

modelled and observed fields. Figure 1 shows an idealized
result of step 1, defining the centre of the coherent structure
as a local maximum. Translation applies, so that the tran-
formed background fits well to the observation. The method
seems to be satisfactory and, in particular, the transformed
background is reasonably smooth. In such an idealized con-
text, the solution should be a uniform translation for which
the cost function given in Eq. (6) is null. The non-perfect re-
sult in Fig. 1 reveals some minor defects in the method of
resolution, due to the non-convexity of Eq. (6) and the fact
that the result of minimization depends on the input vector.

The results should depend on the parametersw1 andw2,
and it is important to define and calibrate them properly. The
parameterσt is introduced, which is a typical value for ac-
ceptable translation of the background. This value may be
defined by the user or derived from background statistics
(see implementation further). Since the first term of Eq. (5)
should constrain the amplitude of local translations, the pa-
rameterw1 should be linked toσt. Consider a single local
translation whose value isσt over a segment of a given size,
and that, at the boundaries of this segment,t decreases one
by one towards 0. The cost function of such a local transla-
tion is twice the sum of integers from 0 toσt, which equals
w1σt(σt + 1)(2σt + 1)/3. For practical purposes this expres-
sion is approximated as 2w1σ

3
t /3. To calibrate properly the

different terms ofF (Eq. 6), the expressionw1 = 3/2σ−3
t

is obtained. Thenw2 is adjusted so as to obtain reasonably
smooth solutions.
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Step 2. Given the vectorta from step 1, the analysisxa

is then obtained by minimizingJ (x, ta) alongx. According
to Eq. (4),Bt is the error covariance matrix between trans-
formed background.Bt may be static or it may depend on
the transformation computed in step 1. How to compute at-
dependentBt is not obvious (Ravela et al., 2007) and poses
numerical issues. It is thus assumed thatBt = B′, like B, is
static. If the error is supposed to be the sum of displacement
and amplitude errors (Hoffman et al., 1995),B′ should rep-
resent the covariance of amplitude errors. In other words,B′

may be obtained after eliminating the part of error due to dis-
placement errors of coherent structures. A possible method to
compute theB′ matrix would be similar to the one forB. The
most common method uses an ensemble of coupled forecasts
valid at the same time (Parrish and Derber, 1992; Pereira and
Berre, 2006), starting from different initial conditions.B is
built from the covariance of the differences between the cou-
pled forecasts. To computeB′, one of the coupled forecasts is
translated towards the other one using the algorithm of step
1, thus attempting to remove displacement errors of coherent
structures. The same algorithm as in step 1 should be used
to identify the position of coherent structures in forecasts.B
is built from the covariance of the differences between the
translated forecast and the other one.

AssumingBt = B′ as static andK ′ the associated gain ma-
trix, step 2 is also equivalent to the direct formula:

x
a = x

bt + K ′[yo − Hx
bt],

or

xa
i =

xb
i+t (i) +

p
∑

j=1

k′
i,j

[

yo
j −

N
∑

l=1

hl,jx
b
l+t (l)

]

∀i ∈ [1,N ]. (7)

Like the one proposed by Ravela et al. (2007), this two-
step method attempts to first fit the background to observa-
tions and then to apply a classical assimilation procedure.
The equations here apply to a variational context and the
method of resolution seems to be simpler than the one of
Ravela et al. (2007). The cost functionJ does not necessar-
ily admit a unique minimum and the two-step procedure is
not proven to lead to a local minimum ofJ . However, this
two-step procedure leads to a unique solution, and arguments
have been provided that it should not be far from an optimal
one. In order to be more confident about the method, a vali-
dation is now proposed.

3 Validation on a one-dimensional system

The method will be applied to a one-dimensional dynamical
system, in order to prove the concept of background trans-
lation and to reveal some possible limitations. Such a one-
dimensional system does not provide images, which are two-
dimensional by definition. However, the extreme values of

the wave packets that evolve in the one-dimensional system
may play a similar role as the coherent structures seen in
satellite images. The main reason for restricting to one di-
mension is that the assimilation procedure (spatial correla-
tions) is highly simplified and cost-effective.

3.1 Dynamical system

The one-dimensional system is the complex Ginzburg–
Landau equation. For some relevant parameters, this weakly
nonlinear system simulates coherent structures and is sensi-
tive to initial conditions. The evolution of the complex func-
tion u(z, t) on a periodic segment is given by:

∂u

∂t
= u + (1+ iα)

∂2u

∂z2
− (1+ iβ)|u|2u . (8)

The horizontal dimensionz and timet are, respectively,
expressed in m and s. The stability and the chaotic proper-
ties of the system depend on the parametersα andβ, which
are chosen asα = 2 andβ = −1.5 in all the following exper-
iments. Such a regime is absolutely unstable (Weber et al.,
1992), with a Lyapunov exponent 1.6× 10−2 s−1 equivalent
to a doubling time of small perturbations around 45 s. Nu-
merical integrations confirm the sensitivity to initial condi-
tions of phase and amplitude of the traveling wave packets.
Such a model provides errors of position and amplitude of
coherent structures that will be suitable for testing various
assimilation algorithms. In such model fields, the centres of
coherent structures are simply identified as the local maxi-
mas and the local minimas.

The equation is integrated over anN = 512-point peri-
odic segment ofL = 100 m length. Numerical integration
relies on exponentional time differencing of second order
applied to the Fourier coefficients ofu. Let us define the
nonlinear term of Eq. (8) as the functionG(z, t) = (1+

iβ)|u(z, t)|2u(z, t), andũk(t) (respG̃k(t)) the Fourier coef-
ficients ofu(z, t) (resp (G(z, t)) at instantt . The method for
time integration for each indexk is:

ũk(t + 1t) =

ũk(t)e
qk1t + [G̃k(t)(1+ qk1t)eqk1t − 1− 2qk1t+

G̃k(t − 1t)(−eqk1t + 1+ qk1t)]/(q2
k 1t) , (9)

whereqk = 1− (1+ iα)(2πk/L)2, and the time step is1t =

0.05 s.

3.2 Error statistics

Although experiments rely on a highly idealized model, the
general context and assumptions for data assimilation resem-
ble those of realistic prediction systems. Thus the time be-
tween two assimilation instants is fixed. For the chosen dy-
namical system, it is taken as 100 s, which corresponds to a
sufficient time for error to grow.

Nonlin. Processes Geophys., 20, 793–801, 2013 www.nonlin-processes-geophys.net/20/793/2013/
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0-10 10 20 30-20-30

Fig. 2. Distribution of difference of positions between the closest
maximas and between the closest minimas (i.e. coherent structures)
in the 10 000 coupled forecasts.

The background error covariances are obtained from a
sample of 10 000 independent forecasts at lead time 100 s.
For each initial state, a coupled initial state is obtained after
addition of small-amplitude white noise and a coupled fore-
cast after simulation of this initial state. For each forecast,
a translated coupled forecast is obtained after translation of
the coupled forecast towards the unperturbed forecast, us-
ing the translation approach described in step 1. The back-
ground error covariances are supposed to be homogeneous
over the domain. TheB matrix is computed from covariance
of the difference between the 10 000 coupled forecasts. The
B′ matrix is computed from covariance of the difference be-
tween the 10 000 translated coupled forecasts and the original
ones. The local variance changes significantly after transla-
tion: while it is 0.070 forB, it gets down to 0.043 forB′. The
variance of the translated background error is much lower
than the original variance of background error, reflecting the
reduction, if not removal, of displacement error.

Depending on the assimilation experiments, background
error covariance matrices are supposed to be diagonal or not.
It has been verified that statistics do not depend much on the
amplitude of the initial white noise. In addition, the typical
value for translationσt is deduced from the distribution of
difference of positions between the closest local maxima in
the coupled forecasts (Fig. 2). Its standard deviation yields
the uniform parameterσt = 10 (gridpoint unit) used in the
following assimilation experiments.

The observation error covariance matrixR is supposed to
be diagonal (no spatial correlation) and uniform.

3.3 Validation

A nature run is computed using the model configuration de-
scribed previously. 1001 nature state vectors are thus ob-
tained, one every 100 s. At each instant,

– an observation state vector is computed as the na-
ture perturbed by some random small-amplitude noise.
This observation is assumed to be both theimage to-
wards which a background may be translated (step 1)
and the observation vector (with or without undersam-
pling) that will be assimilated (step 2),

– a model background is obtained as the 100 s model in-
tegration from the previous instant, starting from the
nature state vector perturbed by some random small-
amplitude noise.

The nature run serves as a reference from which error values
are computed. It follows from this very simple system that
the observation operatorH is a unity matrix. Assimilation of
observations in the background for the 1000 instants is done
using different methods. The experiments with background
translation use the step-1 algorithm described in Sect. 2.2,
with w1 = 1.5× 10−3 (corresponding toσt = 10) andw = 4
(for sufficient smoothness deduced from tests like in Fig. 1).

Eight experiments (Table 1) are compared by measuring
a score as the r.m.s. of analysis error (difference between
the assimilated and the nature state vectors over the 1000
cases). Since translations do not apply at the boundaries
(Eq. 3), only the points at 32 gridpoints inside the segment
are used for score computation. The ability of the experi-
ments to reproduce the coherent structures (extrema) of the
nature run (Fig. 4) is also compared. TheB matrix may be
diagonal, or spatial correlations may be taken into account
(non-diagonal). Another option is whether the whole obser-
vation state vector is assimilated or whether it is undersam-
pled (1 point over 5) in step 2, in order to mimic the classical
undersampling of satellite images.

Figure 3 shows the distribution of background error before
and after translation, deduced from the 1000-instants sam-
ple. The translation step reduces significantly the standard
deviation (0.17 instead of 0.26), which is consistent with
the reduction in displacement error discussed in Sect. 3.2.
The distribution error is not initially Gaussian, with skewness
−0.045 and kurtosis 4.21 (a Gaussian distribution has skew-
ness 0 and kurtosis 3). After translation, skewness is−0.16
and kurtosis is 6.3, which means that the Gaussianity of the
background error distribution after translation is slightly de-
graded. Although it has been wished that translation would
improve the Gaussianity of background error in order to bet-
ter apply the BLUE, this result does not prevent one from
testing assimilation.

An attempt has also been made to iterate several times the
two-step method, using the ouput(xa, ta) as the input of a
second processing of steps 1 and 2. The results over the 1000
test cases was that translation was rarely modified after an-
other step 1 and, if it changed, it was only by a few grid
points. No significant improvement may thus be expected
from further iterations of the two-step method.

Table 1 and Fig. 4 illustrate the method and compare it
to classical variational assimilation. For all experiments, the

www.nonlin-processes-geophys.net/20/793/2013/ Nonlin. Processes Geophys., 20, 793–801, 2013
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Fig. 3.Distribution of background error before translation (top) and
after translation (bottom).

scores (r.m.s. of analysis error) remain between the r.m.s. of
observation error (0.034) and the r.m.s. of background er-
ror (0.26), which means that the assimilation procedure is
suboptimal, probably due to nonlinearities of the Ginzburg–
Landau system. If two equivalent experiments are compared,
one with and one without translation, the one with transla-
tion has better scores than the one without translation, and
it better represents the extremas. The example of translated
background (Fig. 4) confirms the results shown in Fig. 1:
the extremas in the translated background fit well with the
ones from the observation, while preserving smoothness. The
analysis after background translation seems to be less smooth
than without, but the amplitude of the irregularities remains
small.

The experiments with and without background translation
will now be compared in detail. The experiments exp1 and
exp3 are designed with the most complete assumptions: hor-
izontal correlations are full (B andB′ are non-diagonal) and
all observed points are assimilated. Still, the score (Table 1)
is improved in exp3 (with background translation) com-
pared to exp1 (without background translation), and most of
the extremas and slopes (upper panels of Fig. 4) are better
represented using background translation. The experiments
exp2, exp4, exp5 and exp7 are closer to classical geophysical
models: either the observations are undersampled before as-
similation, or the background error covariance matrices are

Table 1.Description of the eight assimilation experiments: assump-
tion for theB matrix, translation approach (no, T1 or T2), distance
(in gridpoints) between the observations that are assimilated, score
(r.m.s. of analysis error) of the experiment.

number B translation obs. distance score

exp1 non-diagonal no 1 0.042
exp2 non-diagonal no 5 0.213
exp3 non-diagonal yes 1 0.040
exp4 non-diagonal yes 5 0.135
exp5 diagonal no 1 0.091
exp6 diagonal no 5 0.238
exp7 diagonal yes 1 0.061
exp8 diagonal yes 5 0.151

diagonal. Table 1 shows that each experiment with back-
ground translation (exp4 and exp7, respectively) performs
better than the corresponding one without (exp2 and exp5,
respectively). In particular, the extremas in exp7 (Fig. 4,
bottom-right panel) are far better reproduced than in exp5
(Fig. 4, bottom-left panel), and nearly as well as in exp3
(Fig. 4, upper-right panel). Background translation without
horizontal correlations performs nearly as well as a classi-
cal assimilation with background translation. To some extent,
this result suggests that background translation corrects po-
sition errors, and amplitude errors may be corrected without
spatial correlations.

Figure 5 shows another example, for which the local trans-
lations to be sought are positive at some points (peak around
abscissa 160) and negative at some other points (peak around
abscissa 250). In such a case, the transformed background
(left panels of Fig. 5, dashed lines) correctly fits the peaks
from the background to the observations. The resulting as-
similation procedure leads to improved results compared to
assimilation without background translation (Fig. 5).

4 Discussion on the possible implementation in a
meteorological model

The method that has been described is sufficiently general to
be applied in many geophysical models. The purpose of this
section is to present and discuss how the method could be
applied to a specific variational meteorological assimilation
scheme. It is assumed that an algorithm is available to detect
coherent structures in images and in numerical model outputs
(Plu et al., 2008; Michel, 2011).

Coherent structures in meteorology may be observed in
two-dimensional fields such as satellite or radar images. Me-
teorological models are however three-dimensional. It is thus
sufficient to let translation be two-dimensional: translated
background points are not allowed to go through vertical
levels. The translation fields are computed by minimizing
Eq. (6).

Nonlin. Processes Geophys., 20, 793–801, 2013 www.nonlin-processes-geophys.net/20/793/2013/
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Fig. 4.Examples of assimilation for six relevant experiments described in Table 1. The only difference between the panels on the same line is
that translation is (resp. not) applied on the right (resp. left). The nature state (solid black curve) and the background (solid light grey curve)
are the same in each panel. The translated background is the dashed curve when relevant (right panels). The results of assimilation are plotted
in solid dark grey.

The main issue is how to compute the typical position er-
ror σt of background coherent structures (that leads to the
parameterw1) and the background covariance matrixB′. A
common formulation of background error covariance is from
Derber and Bouttier (1999), in which cross-parameter corre-
lations are expressed from vorticity. Covariances are com-
puted from an ensemble of coupled forecasts valid at the
same instant. For every forecast, two-dimensional coherent

structures at every model level are identified in the rela-
tive vorticity using the above-mentioned algorithm. The typ-
ical position errorσt of coherent structures at every level
would be obtained by the distribution of the difference of
positions of detected structures in the coupled forecasts. For
each coupled forecast, its coherent structures in the vorticity
field would be translated towards the corresponding coherent
structures in the other forecast. At each level, the resulting
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Fig. 5.Other examples of assimilation for four relevant experiments described in Table 1. Same legend as Fig. 4.

translations would be applied to every field in the same fore-
cast, and the resulting covariances between the translated
forecast and the other one would lead to theB′ matrix. It is
expected that this method would change horizontal and ver-
tical correlations, but would preserve cross-parameter corre-
lations.

Using these statistics and the algorithm for identification
of coherent structures, step 1 and step 2 would apply to any
background. One of the advantages of background transla-
tion is that the selection of observations to be assimilated
would be improved. Since such a procedure relies on keeping
the observations that do not depart too much from the back-
ground, good observations would have a better chance if they
are compared to the translated background.

5 Conclusions

A method to translate and assimilate coherent structures in
the context of variational data assimilation has been intro-
duced. Application to the more general problem of fusion
of geophysical data is also promising in the case of a data
source that is prone to phase error. A simple and robust
two-step algorithm is provided to compute the translation

field and the analysis. Validation of the method is provided
in a one-dimensional system, but extension of the method
to three-dimensional geophysical fields and even to a four-
dimensional context (4D-Var) is possible. Application to a
model vector state in the wavelet domain may be highly valu-
able, since wavelet space is compatible with the representa-
tion of coherent structures (Plu et al., 2008). Moreover, some
studies have shown the advantage of formulating data assim-
ilation in a wavelet space (Deckmyn and Berre, 2005).

Adapting the algorithm to realistic operational variational
systems would require further work, but the benefit is ex-
pected to be high in flows where coherent structures (vor-
tices, convective cells, etc.) exist and may be observed. A
strength of the method is that its additional cost depends on
the number of translations. If translation is applied only to a
small part of the domain (for instance, where a phasing error
is obvious and could generate rapid error growth), its appli-
cation could be operationally acceptable. Testing the method
on a well-identified coherent structure in an operational me-
teorological model would be the following stage.
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