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ABSTRACT

This paper combines the principles of statistical estimation

and hypothesis testing to analyze the impact of parameter esti-

mation on an authentication system based on graphical codes.

The studied authentication system uses the fact that a code,

once printed, undergoes a stochastic and non invertible al-

teration. A statistical test applies a likelihood ratio between

the model of the authentic printed and scanned image and the

model of the reproduced one, with the particularity here that

the later model is unknown. The proposed solution consists

in using an optimal estimation of the image model coming

from observed fake codes in order to perform the likelihood

test. Using a second order expansion, we derive a linear re-

lation between the quadratic error of the estimated parame-

ters and the probability of type II error. We are then able to

formulate analytically and practically the error spread region

of the Receiver Operating Characteristic (ROC) curves, and

to compute the average authentication performance when the

receiver has to estimate the opponent print and scan channel.

Index Terms— Authentication, Statistical estimation,

Hypothesis testing, Printed documents

1. STUDIED PROBLEM

In the world of global exchanges people can use graphical

code as a way to perform authentication of physical products

such as documents, goods, drugs,.... Our authentication sys-

tem is based on printed graphical 2D codes using very high

resolution printers (2400dpi). Each printed and scanned set

of dots (a dot being a binary element) suffers from a stochas-

tic non-invertible noise which makes the reproduction of the

original graphical code impossible [12, 14, 10, 9] (see in

Fig. 1). The opponent’s goal is then to reproduce a printed

and scanned code similar to the original printed one, using a

printer that will also generate a non-invertible noise.

The goal of the receiver is to reject copied codes. In pre-

vious works [11, 6] we modeled the mentioned authentication

system as a hypothesis testing problem and we derived tight

bounds on its performance. The authentication system works

as follow: a binary authentication image is constructed from a

Fig. 1. Left: an original printed and scanned graphical code.

Right: a re-printed and scanned (forged) graphical code.

randomly chosen binary sequence xN in {0, 1}N by the legit-

imate source. It is shared secretly with the legitimate receiver

and published as a noisy version yN modeling the original

printed and scanned code (see Fig. 1 on the left). The op-

ponent observes y
N and tries to estimate the original image

obtaining x̂
N (see (2) in Fig. 2). He then prints it to create a

forged observable noisy image z
N hopping that it will be ac-

cepted by the receiver as coming from the legitimate source

(see Fig. 1 on the right). The observed images yN and z
N

are 8 bits grey level images. In practice, this attack will be

used to create false documents or fake packages that could be

considered as authentic.

The whole physical process, precisely printing and scan-

ning devices used by the legitimate parts (see (1) in Fig. 2)

and by the counterfeiter (see (3) in Fig. 2), are respectively

modeled by probability distributions conditioned to the origi-

nal data PY/X,Θ and PZ/X,Θ̄, Θ and Θ̄ are sets of parameters,

taken in Ξ, specifying the devices in each case. As pointed in

[11], the receiver observes one of the two possible images yN

or zN and have to decide whether it comes from the legitimate

source or not (see (5) in Fig. 2), supposed that the models

PY/X,Θ and PZ/X,Θ are known. The print and scan process

in this particular setup has been modeled by an AWGN chan-

nel or an additive i.i.d. lognormal noise in [2].

Authentication here is based on classical Neyman-Pearson

test (NP-test) (see ([7, 4])) in which the receiver considers

two hypothesis H0 and H1. The former hypothesis attests

authenticity, i.e. that the received sequence is generated by

PY/X,Θ and the latter one unveils a fake code, i.e. that the

observed sequence is driven from PZ/X,Θ̄. Performances are

evaluated computing the probability of type I error (rejecting



hypothesis H0 while actually the observed sequence comes

from the legitimate source) and the probability of type II error

(accepting hypothesis H0 while it is actually a fake).

In this paper we extend our analysis to the case where

the receiver doesn’t know the true parameter Θ̄ related to

the opponent print and scan process, but establishes a test

statistic using estimated ones obtained by a maximum like-

lihood based algorithm. The estimated parameters are com-

puted from several codes identified previously as fake codes

which represent a set of printed and scanned dots driven from

PZ/X,Θ̄ (see (4) in Fig. 2).

We derive a linear approximation relating the probability

of type II error to the quadratic error on the estimated param-

eters. This approximation helps us to express analytically the

error spread of the authentication performance, and hence to

evaluate its average when the receiver doesn’t know perfectly

the opponent print and scan process.
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Fig. 2. Principle of authentication using graphical codes.

2. MODELS AND ESTIMATION

2.1. Printing and scanning processes

In our global authentication model, PY/X,Θ represents a grey

level distribution of the authentic image conditioned to the

knowledge of both the authentication dots and the parameters

governing the legitimate print and scan process.

When performing a detection to obtain an estimated se-

quence X̂N , the opponent undergoes errors coming from the

facts that he is not able to infer the original code. It is impor-

tant to note that the opponent will have to print a binary ver-

sion of its observation because a printing device at this very

high resolution can only print binary images.

These errors include probabilities Pe,W when confusing

an original white dot with a black and Pe,B when confusing

an original black dot (generated by bit 0) with a white dot

(generated by bit 1).

Given PZ/X,Θ̄ a grey level distribution of the forged im-

age conditioned to the knowledge of both the authentication

dots and the parameters governing opponent print and scan

process TZ/X,Θ̄, we have (equivalently for X = 0 or 1):

PZ/X,Θ̄(Z = v/X = 0(1), Θ̄)

= (1− Pe,B(W ))TZ/X̂,Θ̄(v/X̂ = 0(1), Θ̄)

+ Pe,B(W )TZ/X̂,Θ̄(v/X̂ = 1(0), Θ̄)

(1)

2.2. Error spread region for the estimated parameters Θ̄

Although our analysis in this paper does not depend on the

estimation method, we consider maximum likelihood estima-

tion (MLE) in order to achieve optimal estimation. In MLE,

we have E[ ˆ̄Θ] = Θ̄ and the estimated set of parameters are

jointly normally distributed N (Θ̄;V ˆ̄Θ
) where V ˆ̄Θ

is their co-

variance matrix which can be computed either practically or

analytically using the Fisher information ([1, 3, 13]). Under

these assumptions the covariance matrix will help us to pro-

vide a measure of how the estimated parameters spread w.r.t

the true value. The quadratic form of the error (the variation

of the estimation) is chi-squared distributed and:

ρ( ˆ̄Θ) = ( ˆ̄Θ− Θ̄)TV −1
ˆ̄Θ

( ˆ̄Θ− Θ̄) ∼ χ2
κ. (2)

where χ2
κ is the chi-squared distribution with κ degree of free-

dom ([3, 13, 15]). Herein, κ is the number of parameters

that govern the print and scan model. One may observe that

ρ( ˆ̄Θ) = cte is an ellipsoid in the κ-dimensional space. Using

the property of ρ( ˆ̄Θ) in (2), we can compute the probabil-

ity that the κ-dimensional error vector lies between two ellip-

soids. The error spread region for the estimated parameters is

given by:

R =
{

ˆ̄Θ : χ2
κ,γ1

≤ ρ( ˆ̄Θ) ≤ χ2
κ,γ2

}

, (3)

where χ2
κ,γ1

and χ2
κ,γ2

are critical levels w.r.t γ1 and γ2, i.e,

Pr[ρ( ˆ̄Θ) ≤ χ2
κ,γ1

] = γ1 and Pr[ρ( ˆ̄Θ) ≤ χ2
κ,γ2

] = γ2.

3. AUTHENTICATION PERFORMANCE

In this section we express reliably the probabilities of type

I error α and probability of type II error β used to assess the

performance of the authentication system in the NP-test setup.

In [11, 6], we indicate several methods to approximate β
while keeping α fixed and show that an Asymptotic Expres-

sion (AE) provides a reliable approximation for β. We present

a brief summary for the AE method.



Given a real number s the Chernoff bounds on α and β
may be expressed as:

α = Pr(L ≥ λ/H0) ≤ e−sλgL/H0
(s) for any s > 0, (4)

β = Pr(L ≤ λ/H1) ≤ e−sλgL/H1
(s) for any s < 0, (5)

where L is the log-likelihood ratio of PZN/XN over PY N/XN

and λ is a threshold. The function gL/Hj
(s) (j = 0, 1) is the

moment generating function of L given the hypothesis Hj :

gL/Hj
(s) = EL/Hj

[

esL
]

. (6)

Without loss of generality, we can use the original code

with the same number of bits 0 (Nb) and bits 1 (Nw), i.e.,

Nb = Nw = N
2 with N is the length of the codeword. For

large N , (4) and (5) become very tight and specifically with

an additional correcting factor we obtain for i.i.d. samples:

α →
N→∞

1

|s0|
√

Nπµ′′
ℓ (s0)

exp

{

N

2
[µℓ(s0)− s0µ

′
ℓ(s0)]

}

.

(7)

β →
N→∞

1

|s1|
√

Nπµ′′
ℓ (s1)

exp

{

N

2
[µℓ(s1)− s1µ

′
ℓ(s1)]

}

.

(8)

for s0 > 0 and s1 < 0. Here, given hypothesis Hj ,

µℓ(sj) = log gℓ/Hj
(sj) is the cumulant generating function

of
PZ/X

PY/X
at the point sj which is the solution of N

2 µ
′
ℓ(s) = λ,

and note that one can easily prove that s1 = s0 − 1.

4. INTERPLAY BETWEEN CHANNEL ESTIMATION

AND AUTHENTICATION PERFORMANCE

In this section, we analyze how the set of estimated parame-

ters impacts the performance of the probability of type II error

β(α, ˆ̄Θ) for a fixed value of α. Precisely, we relate the error

spread region of log β(α, ˆ̄Θ) to the error spread region of ˆ̄Θ
defined in (3).

For large enough N , the changes of correcting factors
1

|sj |
√

Nπµ′′

ℓ (sj)
in (7) and (8) are imperceptible and we drop

their analysis. Due to the limitation of the paper, we will

present our analysis using only one estimated parameter. The

extension of this analysis for vectors of estimated parameters

will be addressed in future works.

4.1. Analytical Analysis

We want to show the linear tendency of the scatter of

log β(α, ˆ̄Θ) w.r.t ρ( ˆ̄Θ) by using Taylor expansion. For the

case of one parameter, let θ be the estimated version of the

true parameter θt ∈ Θ̄, and θm ∈ Θ be the parameter of the

legitimate model, and define:

β∗(θ) =
2

N
log β(α, θ), (9)

A Taylor expansion gives:

β∗(θ) ∼= β∗(θt) +△θ
∂β∗(θ)

∂θ

∣

∣

∣

∣

θt

+
(△θ)2

2

∂2β∗(θ)

∂θ2

∣

∣

∣

∣

θt

+ ...

(10)

where △θ = (θ − θt).
We aim now to compute the first and second derivatives

of β∗(θ) expressed for θ = θt. Because α is fixed and we

choose the same threshold for detection, we have:

EP0

[

l(θ)el(θ)s0(θ)
]

EP0

[

el(θ)s0(θ)
] =

EP1

[

l(θ)el(θ)s1(θ)
]

EP1

[

el(θ)s1(θ)
] , (11)

with P0 ≡ PY/X,θm , P1 ≡ PZ/X,θt , l ≡ l(θ) = log
PZ/X,θ

PY/X,θm
.

This leads to:

∂β∗(θ)

∂θ
= s1(θ)

{

EP1

[

∂l
∂θ e

l(θ)s1(θ)
]

EP1

[

el(θ)s1(θ)
] − EP0

[

∂l
∂θ e

l(θ)s0(θ)
]

EP0

[

el(θ)s0(θ)
]

}

(12)

Notably, when θ = θt, we have s1(θt) = s0(θt)− 1 and so it

can be proved that for every function f(θ),

EP0

[

f(θt)e
l(θt)s0(θt)

]

= EP1

[

f(θt)e
l(θt)s1(θt)

]

(13)

Therefore:
∂β∗(θ)

∂θ

∣

∣

∣

∣

θt

= 0 (14)

The equality (14) is not surprising since the NP-test is known

to reach the optimum when applied on the true parameter.

Now if we denote:

E1 = EP1

[

el(θt)s1(θt)
]

E2 = EP1

[

l(θt)e
l(θt)s1(θt)

]

E3 = EP1

[

l2(θt)e
l(θt)s1(θt)

]

E4 = EP1

[

∂l(θ)
∂θ

∣

∣

∣

θt
el(θt)s1(θt)

]

E5 = EP1

[

(

∂l(θ)
∂θ

∣

∣

∣

θt

)2

el(θt)s1(θt)

]

E6 = EP1

[

l(θt)
∂l(θ)
∂θ

∣

∣

∣

θt
el(θt)s1(θt)

]

(15)

and given Ri1 = Ei/E1 for all i = 2, 3, ..., 6 we obtain the

second derivative of β∗ at θ = θt as

∂2β∗(θ)

∂θ2

∣

∣

∣

∣

θt

= [R61 −R41R21]
2 [

R31 −R2
21

]−1
+R2

41−R51,

(16)

based on the fact that

2

N

∂2log β(α, θ)

∂θ2

∣

∣

∣

∣

θt

=
∂2β∗(θ)

∂θ2

∣

∣

∣

∣

θt

. (17)

If now we call γ(α, θt) = ∂2log β(α,θ)
∂θ2

∣

∣

∣

θt
× Var(θ)

2 the slope

of analytical linear expression, then from (10), (14) and (17),

it yields



log β(α, θ) ∼= log β(α, θt) + γ(α, θt)ρ(θ) (18)

where Var(θ) is the variance of the estimated parameter θ and

ρ(θ) = (△θ)2

Var(θ) is the variation of the estimation. Moreover,

from the property of NP-test, β(α, θ) ≥ β(α, θt) for all θ so

γ(α, θt) is always nonnegative. Using (2) and (18), we show

that log β(α, θ) follows a shifted and scaled χ2 distribution

and we are now able to derive a spread error region (see 4.2).

4.2. Numerical results

In order to perform our analysis, we have to construct a

MLE scheme for parameter estimation. It is known that the

Expectation Maximization (EM) algorithm is an iterative

method for finding maximum likelihood. Without loss of

generality we assume that TZ/X̂=0,Θ̄ and TZ/X̂=1,Θ̄ are

modeled by truncated discrete normal distributions with

Θ̄ = (µ̄b, σ̄
2
b , µ̄w, σ̄

2
w) such that PZ/X,Θ̄ is a mixture of

two truncated Gaussians (see (1)). We then develop an EM

algorithm ([5, 8]) for this particular mixture to estimate the

set of unknown parameters.

Fig. 3. Comparison between log β(ρ) for the true parame-

ter (horizontal line) and the one (dots) from estimated oppo-

nent’s parameters. Linear regression (stars); analytical ex-

pression (straight line). Critical value χ2
1,0.025 and χ2

1,0.975

are represented by vertical lines. Nobs = 3.103, α = 10−16,

Niter = 5.103, N = 2.103.

In Fig. 3, we suppose that only µ̄w is unknown and we run

EM algorithm Niter times using each time Nobs observations

and obtain a set of ˆ̄µw. The scatter plot of Fig. 3 represents

the computed values of log β coming from AE method. It is

compared with the analytical expression (18) and the statisti-

cal linear regression.

In Fig. 4, we analyze the impact of the estimation error

on the ROC curves. We select a 95% confidence error region

for ˆ̄µw, i.e., ρ(ˆ̄µw) is bounded by two critical levels χ2
1,0.025

and χ2
1,0.975 such that Pr[ρ(ˆ̄µw) ≤ χ2

1,0.025] = 0.025 and

Pr[ρ(ˆ̄µw) ≤ χ2
1,0.975] = 0.975, and we thus obtain a corre-

sponding 95% confidence error region for log β(α, ˆ̄µw). We

then derive two critical ROC curves C0.025
min and C0.975

max com-

puted analytically from χ2
1,0.025 and χ2

1,0.975 and we choose

the mean value for ρ(ˆ̄µw) to find the mean ROC curve Cmean.

We then compare C0.025
min , C0.975

max and Cmean with the three

ones computed from the dataset of ρ(ˆ̄µw) and we observe that

our approximation is accurate.

Fig. 4. Comparison between three analytical ROC curves

C0.025
min (squares), C0.975

max (stars) and Cmean (circles) with min

ROC curve (dash line), max ROC curve (straight line) and

mean ROC curve (straight line with triangles) computed from

Niter = 5000 data of ˆ̄µw.

5. CONCLUSIONS

This paper analyzes the impact of parameters estimation on

the performance of document authentication.

- We show experimentally and theoretically an analytical lin-

ear relation between the variation of the estimated parameters

and the logarithm of the corresponding probabilities of type

II error.

- We are able to predict the average authentication loss when

performing the NP-test of the estimated distribution for the

opponent’s channel.

- The proposed analysis is not impacted by the nature of the

noise, and can be applied for different memoryless channels

that are more realistic to model the printing process, such as

the lognormal distribution [2].

- Although we particularly focus on document authentication,

our analysis in this paper generally can be applied for a larger

class of forensics problems.
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