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Document Authentication Using Graphical Codes: Reliable

Performance Analysis and Channel Optimization

Anh Thu Phan Ho, Bao An Mai Hoang, Wadih Sawaya and Patrick Bas

Abstract

This paper proposes to investigate the impact of the channel model for authentication systems based on

codes that are corrupted by a physically unclonable noise such as the one emitted by a printing process. The

core of such a system for the receiver, is to perform a statistical test in order to recognize and accept an original

code corrupted by noise and reject any illegal copy or a counterfeit. This study highlights the fact that the

probability of type I and type II errors can be better approximated, by several orders of magnitude, when using

the Cramér-Chernoff theorem instead of a Gaussian approximation. The practical computation of these error

probabilities is also possible using Monte-Carlo simulations combined with the importance sampling method. By

deriving the optimal test within a Neyman-Pearson setup, a first theoretical analysis shows that a thresholding

of the received code induces a loss of performance. A second analysis proposes to find the best parameters of

the channels involved in the model in order to maximize the authentication performance. This is possible when

the opponent’s channel is identical to the legitimate channel but also when the opponent’s channel is different,

leading this time to a min-max game between the two players. Finally we evaluate the impact of an uncertainty

for the receiver on the opponent channel and we show that the authentication is still possible whenever the

receiver can observe forged codes and uses them to estimate the parameters of the model.

1 Introduction

The problem of authentication of physical products such as documents, goods, drugs, jewels, is a major concern in

a world of global exchanges. The World Health Organization in 2005 claimed that nearly 25% of medicines in de-

veloping countries are forgeries [1], and according to the Organization for Economic Co-operation and Development

(OECD), international trade in counterfeit and pirated goods reached more than US $250 billion in 2009 [2].

1.1 Addressed problem and related works

Authentication of physical products is generally done by using the stochastic structure of either the materials that

composes the product or of a printed package associated to it. Authentication can be performed for example by

recording the random patterns of the fiber of a paper [3], but such a system is practically heavy to deploy since

each product needs to be linked to its high definition capture stored in a database. Another solution is to rely on

the degradation induced by the interaction between the product and a physical process such as printing, marking,

embossing, carving ... Because of both the defaults of the physical process and the stochastic nature of the mater,

this interaction can be considered as a Physically Unclonable Function (PUF) [4] that cannot be reproduced by the

forger and can consequently be used to perform authentication. In [5], the authors measure the degradation of the

inks within printed color-tiles, and use discrepancy between the statistics of the authentic and print-and-scan tiles

to perform authentication. Other marking techniques can also be used, in [6] the authors propose to characterize
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the random profiles of laser marks on materials such as metals (the technique is called LPUF for Laser-written

PUF) to use them as authentication features.

We study in this paper an authentication system which uses the fact that a printing process at very high

resolution can be seen as a stochastic process due to the nature of different elements such as the paper fibers, the

ink heterogeneity, or the dot addressability of the printer. Such an authentication system has been proposed by

Picard et al. [7, 8] and uses 2D pseudo random binary codes that are printed at the native resolution of the printer

(2400 dpi on a standard offset printer or 812 dpi on a digital HP Indigo printer).

The principle of the studied system in this paper is depicted on Fig. 1.1:

• the original code is secretly exchanged between the legitimate source and the receiver.

• once printed on a package to be authenticated, the degraded code will be scanned then thresholded by an

opponent (the forger). It is important to note that at this stage thresholding is necessary for the opponent

because the industrial printers can only print dots, e.g. binary versions of the scanned code.

• the opponent then produces a printed copy of the original code to manufacture his forgery.

• the receiver performs a test on an observed scanned code, being either the scanned version of the original

printed code or the scanned version of the fake code. Using his knowledge of the original code, he establishes

a statistical test in order to perform authentication.

One advantage of this system over previously cited ones is that it is easy to deploy since the authentication process

needs only a scan of the graphical code under scrutiny and the seed used to generate the original one: no fingerprint

database is required in this case.
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Figure 1.1: Principle of authentication using graphical codes.

The security of this system solely relies on the use of a PUF, i.e. the impossibility for the opponent to accurately

estimate the original binary code. Different security analysis have already been performed w.r.t. this authentication
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system, or to very similar ones. In [9], the authors have studied the impact of multiple printed observations of same

graphical codes and the authors have shown that the power of the noise due to the printing process can be reduced

in this particular setup, but not completely removed due to deterministic printing artifacts. In [10], the authors

use machine learning tools in order to try to infer the original code from an observation of the printed code, their

study shows that the estimation accuracy can be increased without recovering perfectly the original code. In [11],

the authors propose a print and scan model adapted to graphical code and derive attacks and adapted detection

metrics to counter the attacks. In [12], the authors consider the security analysis in the rather similar setup of

passive fingerprinting using binary fingerprints under informed attacks (the channel between the original code and

the copied code is assumed to be a Binary Symmetric Channel), they show that in this case the security increase

with the code length and they propose a practical threshold when type I error (original detected as a forgery) and

type II error (forgery detected as an original) are equal.

1.2 Notations

We denote sets by calligraphic font e.g. X , random variables (RV) ranging over these sets by the same italic capitals

e.g. X, and their outcomes in lower case letters, e.g. x. EX [.] denotes the expectation over X. The cardinality of

the set X is denoted by |X |. The sequence of N variables (X1, X2, ...., XN ) is denoted XN .

1.3 Setup

The binary graphical code can be seen as an authentication sequence xN chosen at random from the message set

XN and shared secretly with the legitimate receiver. In our authentication model, xN is published as a noisy

version yN taking values in the set of points VN (see Fig. 1.1). An opponent may observe yN and, naturally, tries

to retrieve the original authentication sequence. He obtains an estimated sequence x̂N and publish a forgery as a

sequence zN taking value in the same set of points VN , hoping that it will be accepted by the receiver as coming

from the legitimate source. When observing a sequence oN , which may be one of the two possible sequences yN or

zN , the destination has to decide whether this observed sequence comes from the legitimate source or not.

The authentication model involves two channels X → (Y,Z), and in the rest of the paper we define the main

channel as the channel between the legitimate source and the receiver, and the opponent channel as the channel

between the legitimate source and the receiver but passing through the counterfeiter channel (see Fig. 1.1). The

two channels X → (Y,Z) are considered being discrete and memoryless with conditional probability distribution

PY Z|X(y, z | x). The marginal channels PY |X and PZ|X constitute the transition probability matrices of the main

channel and the opponent channel respectively.

As we shall see in the rest of the paper, authentication performances are directly impacted by the discrimination

between the two channels and can be maximized by channel optimization.

Note that the authentication sequence xN is generated using a secure pseudo-random number generator (PRNG)

having a sufficiently large key-space to prevent brute-force attacks. The seed of the PRNG can practically be

transmitted using both a secure lossless communication channel and via a key distribution system so that the

receiver can generate xN from the seed. The security of such a system is beyond the scope of this paper.

1.4 Contributions of the paper

The goal of this paper is twofold:

• firstly it provides reliable performance measurements of the authentication system based on a Neyman–Pearson

hypothesis test (i.e. to compute accurately the probability of rejecting an authentic code and the probability

of non detecting an illegal copy, denoted as type I and type II errors respectively). An asymptotic expression
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which is more accurate than the Gaussian expression is first proposed to compute these probabilities of errors,

then the importance sampling simulation method is provided to practically estimate them. We evaluate the

impact of the Gaussian approximation of the test with respect to its asymptotic expression.

• secondly the computation of type I and type II errors are used to derive the most favorable channels for

authentication. We show first that it is in the receiver’s interest to process directly the scanned grayscale code

instead of a binary version. Then the error probabilities are used to compute for a given channel model, the

configuration which maximizes the authentication performance.

This paper is an extension of [13] in which we use the generalized Gaussian distribution family instead of the Gaussian

distribution as in [13]. Moreover, the analytical formulation of these probabilities is practically confirmed by using

an importance sampling method, a Monte-Carlo strategy of numerical simulation that can be used to compute rare

events. We also present how to design the channel in order to maximize the authentication performance for different

cases of generalized Gaussian distributions and when the opponent is either passive (he undergoes the same channel

as the receiver) or active (he can adapt his channel).

2 The authentication channel

2.1 Channel modeling

Let TV |X be the generic transition matrix modeling the whole physical processes used , more specifically the printing

and scanning devices. The entries of this matrix are conditional probabilities TV |X(v | x) relating an input alphabet

X and the output alphabet V . In practical and realistic situations, X is a binary alphabet standing for black

(0) and white (1) elements of a digital code and the channel output set V stands for the set of gray level values

with cardinality K (for printed and scanned images, K = 256 ). Transition matrix TV |X may conceptually be any

discrete distribution over the set V but we will focus in paragraph 3.5 on some common and realistic distributions

when analyzing numerically the performance.

The marginal distribution of the main channel PY |X is equivalent to one print and scan process, and consequently

we have PY |X = TV |X . On the other hand, PZ|X depends on the opponent processing while he has to retrieve the

original sequence before reprinting it. We aim here at expressing this marginal distribution considering that the

opponent tries to restore the original sequence before publishing his fraudulent sequence zN .

When performing a detection to obtain an estimated sequence x̂N of the original code, the opponent undergoes

errors. These errors are evaluated with probabilities Pe,W when confusing an original white dot with a black and

Pe,B when confusing an original black dot with a white. This distinction is due to the fact that the distribution

TV |X of the physical devices is arbitrary and not necessarily symmetric. Let DW be the optimal decision region for

decoding white dots obtained after using classical maximum likelihood decoding:

DW =
{

v ∈ V : PY |X(v | X = 1) > PY |X(v | X = 0)
}

. (2.1)

Error probabilities Pe,W and Pe,B are then equal to:

Pe,B =
∑

v∈DW

PY |X(v | X = 0), (2.2)

Pe,W =
∑

v∈Dc
W

PY |X(v | X = 1). (2.3)

where Dc
W is the complementary region in the set V. The channel X → X̂ can be modeled as a Binary Input Binary

4



Output channel (BIBO) with transition probability matrix PX̂|X :

[

P X̂|X(x̂ = 0 | x = 0) P X̂|X(x̂ = 1 | x = 0)

P X̂|X(x̂ = 0 | x = 1) P X̂|X(x̂ = 1 | x = 1)

]

=

[

1− Pe,B Pe,B

Pe,W 1− Pe,W

]

(2.4)

As we can see in Fig. 1.1, the opponent channel X → Z is a physically degraded version of the main channel. Thus,

X → X̂ → Z forms a Markov chain with the relation PX̂Z|X(x̂, z | x) = P X̂|X(x̂ | x)TZ/X̂(z | x̂), where TZ|X̂ is

the transition matrix of the counterfeiter physical device. Components of the marginal channel matrix PZ|X are:

PZ|X(v | x) =
∑

x̂=0,1

PX̂Z|X(x̂, v | x)

=
∑

x̂=0,1

P X̂|X(x̂ | x)TZ|X̂(v | x̂).
(2.5)

Finally we have:

PZ|X(v | X = 0) = (1− Pe,B)TZ|X̂(v | X̂ = 0)

+Pe,BTZ|X̂(v | X̂ = 1),
(2.6)

PZ|X(v | X = 1) = (1− Pe,W )TZ|X̂(v | X̂ = 1)

+Pe,WTZ|X̂(v | X̂ = 0).
(2.7)

2.2 Receiver’s strategies: thresholding or not?

Two strategies are possible for the receiver.

2.2.1 Binary thresholding:

As a first strategy, the legitimate receiver first decode the observed sequence oN using a maximum likelihood

criterion based on the main channel marginal distribution PY |X . He then restores a binary version x̃N of the

original message xN using the same decision region as defined by (2.1), and naturally undergoes errors.

• In the main channel, i.e. when ON = Y N , error probabilities are equivalent to (2.2) and (2.3).

• In the opponent channel, i.e. when ON = ZN , we make use of (2.6) and (2.7) to express the corresponding

error probabilities:

P̃e,W =
∑

v∈Dc
W

PZ|X(v | X = 1), (2.8)

P̃e,W = (1− Pe,W )
∑

v∈Dc
W

TZ|X̂(v | X̂ = 1)

+ Pe,W

∑

v∈Dc
W

TZ|X̂(v | X̂ = 0).

P̃e,W = (1− Pe,W )P ′
e,W

+ Pe,W (1− P ′
e,B

) (2.9)

where P ′
e,W

=
∑

v∈Dc
W

TZ|X̂(v | X̂ = 1) and P ′
e,B

=
∑

v∈DW

TZ|X̂(v | X̂ = 0) . The same development yields:
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P̃e,B = (1− Pe,B)P
′
e,B

+ Pe,B(1− P ′
e,W

). (2.10)

For this first strategy, the opponent channel may be viewed as the cascade of two binary input/binary output

channels:
[

1− P̃e,B P̃e,B

P̃e,W 1− P̃e,W

]

=

[

1− Pe,B Pe,B

Pe,W 1− Pe,W

]

×
[

1− P ′
e,B

P ′
e,B

P ′
e,W

1− P ′
e,W

]

. (2.11)

As we will see in the next section, in this particular case the test to decide whether the observed decoded sequence

x̃N comes from the legitimate source or not is tantamount to counting the number of erroneous decoded dots.

2.2.2 Grey level observations:

In the second strategy, the receiver performs his test directly on the received sequence oN without any given

decoding. We will see in section 3.3 that this strategy is better than the previous one (see 3.2).

3 Impacts of the receiver’s strategies on hypothesis testing

We consider here testing whether, for a given fixed input (x1, ..., xN ), an observed i.i.d. sequence (o1, ..., oN |
x1, ..., xN ) is generated from a given distribution PY |X or if it comes from an alternative hypothesis associated

to distribution PZ|X , (oi | xi) belonging to a discrete finite set V. Practically, we are interested in performing

authentication after observing a sequence of N samples (oi | xi), attesting whereas this sequence comes from a

legitimate source or from a counterfeiter. The receiver establishes then a decision based on a predefined statistical

test, and assigns one of the two hypothesis H0 or H1 corresponding respectively to each of the former cases.

According to this test, the space VN will be partitioned into two regions H0 and H1. Accepting hypothesis H0

while it is actually a fake (the observed N -samples sequence belongs to H0 while H1 is true) leads to an error of type

II having probability β. Rejecting hypothesis H0 while actually the observed sequence comes from the legitimate

source (the observed N -samples sequence belongs to H1 while H0 is true) leads to an error of type I with probability

α. It is desirable to find a test with a minimal probability β for a fixed or prescribed probability of type I. An

optimal decision rule will be given by the Neyman-Pearson criterion. The eponymous theorem states that under

the constraint α ≤ α∗, β is minimized if only if the following log-likelihood test infers the choice of H1:

log
PN (oN | xN , H1)

PN (oN | xN , H0)
≥ γ, (3.1)

where γ is a threshold verifying the constraint α ≤ α∗.

3.1 Authentication via binary thresholding:

In the first strategy, the final observed data is x̃N and the original sequence xN is a side information containing

two types of data (”0” and ”1”). The conditional distribution of each random component (X̃i | xi) of the sequence

(X̃N | xN ) is the same for each given type. We compute now the probabilities that describe the two random

i.i.d. sequences (X̃N | xN ), one per data type, and for each of the two possible hypothesis. We derive then the

corresponding test from (3.1). Under hypothesis Hj , j ∈ {0, 1}, these probabilities are expressed conditionally to

the known original code xN . Let NB = {i : xi = 0} and NW = {i : xi = 1}, with NB = |NB | and NW = |NW |.
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Because of i.i.d. sequences we have:

PN (x̃N | xN , Hj) =

N
∏

i=1

P (x̃i | xi, Hj),

PN (x̃N | xN , Hj) =
∏

i∈NB

P (x̃i | 0, Hj)

×
∏

i∈NW

P (x̃i | 1, Hj).

Under hypothesis H0 the channel X → X̃ has distributions given by (2.2) and (2.3) and we have:

PN
(

x̃N | xN , H0

)

= (Pe,B)
ne,B (1− Pe,B)

NB−ne,B

× (Pe,W )ne,W (1− Pe,W )NW−ne,W ,

where ne,B and ne,W are the number of errors (x̃i 6= xi) when black is decoded into white and when white is decoded

into black respectively.

• Under hypothesis H1, the channel X → X̃ has distributions given by (2.9) and (2.10) and we have:

PN
(

x̃N | xN , H1

)

= (P̃e,B)
ne,B (1− P̃e,B)

NB−ne,B

× (P̃e,W )ne,W (1− P̃e,W )NW−ne,W .

Applying now the Neyman Pearson criterion (3.1) the test is expressed as:

L1 = log
PN

(

x̃N | xN , H1

)

PN (x̃N | xN , H0)

H1

≷
H0

γ, (3.2)

L1 = ne,B log

(

P̃e,B(1− Pe,B)

Pe,B(1− P̃e,B)

)

+ ne,W log

(

P̃e,W (1− Pe,W )

Pe,W (1− P̃e,W )

)

H1

≷
H0

λ1, (3.3)

where λ1 = γ −NB log
(

1−P̃B

1−PB

)

−NW log
(

1−P̃W

1−PW

)

. This expression has the practical advantage to only count the

number of errors in order to perform the authentication task but at a cost of a loss of optimality.

3.2 Authentication via grey level observations:

In the second strategy, the observed data is oN . Here again, the conditional distribution of each random component

(Oi | xi) of the sequence (ON | xN ) is the same for each type of data of X. The Neyman Pearson test is expressed

as:

L2 = log
PN (oN | xN , H1)

PN (oN | xN , H0)

H1
≷
H0

λ2, (3.4)

which can be developed as
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L2 =
∑

i∈NB

log
PZ|X(oi | 0)
PY |X(oi | 0)

(3.5)

+
∑

i∈NW

log
PZ|X(oi | 1)
PY |X(oi | 1)

H1

≷
H0

λ2,

L2 =
∑

i∈NB

log

(

(1− Pe,W )
TZ|X̂(oi | 0)
TY |X(oi | 0) + Pe,W

TZ|X̂(oi | 1)
TY |X(oi | 0)

)

+

∑

i∈NW

log

(

(1− Pe,B)
TZ|X̂(oi | 1)
TY |X(oi | 1) + Pe,B

TZ|X̂(oi | 0)
TY |X(oi | 1)

)

H1

≷
H0

λ2. (3.6)

Note that the expressions of the transition matrix modeling the physical processes TY |X and TZ|X̂ are required in

order to perform the optimal test.

3.3 Authentication with thresholding vs Authentication without thresholding

In this setup and without loss of generality, we consider only the Gaussian model with variance σ2 for the physical

devices TY |X and TZ|X̂ .

Fig. 3.1 compares the Receiver Operating Characteristic (ROC) curves associated with the two different strate-

gies. Note that the error probabilities are computed using the results given in the next section (see 4.2). We can

notice that the gap between the two strategies is important. This is not surprising since the binary thresholding

removes information from the grey level observation, yet this has a practical impact because one practitioner can

be tempted to count the number of errors as given in (3.3) as an authentication score for its easy implementation.

The information theoretical analysis presented in appendix 8.1 confirms also that authentication is more accurate

without thresholding, and this result is in line with the remark of Blahut in [14] where in p108 he writes that “in-

formation is increased if a measurement is made more precise [...] (i.e. with a refinement of the set of measurement

outcomes)”.

Moreover, as we will see in section 5, the plain scan of the graphical code can be used whenever the receiver

needs to estimate the opponent’s channel.
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Figure 3.1: ROC curves for the two different strategies (N = 2000, σ = 52) where α is the probability of rejecting
an authentic code and β the probability of non detecting an illegal copy.
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4 Toward reliable performance evaluation

In the previous section we have expressed the Neyman-Pearson test for the two proposed strategies resumed by (3.3)

and (3.6). These tests may then be practically performed on the observed sequence in order to make a decision about

its authenticity. We aim now at expressing the error probabilities of type I and II, and comparing the two possible

strategies described previously. Let m = 1, 2 be the index denoting the strategy, a straightforward calculation gives

αm =
∑

l>λm

PLm
(l | H0), (4.1)

βm =
∑

l<λm

PLm
(l | H1). (4.2)

where PLm
(l | Hj) is the distribution of the log-likelihood ratio Lm under hypothesis Hj .

4.1 Gaussian approximation

As the length N of the sequence is generally large, we use the central limit theorem to study the distributions PLm
,

m = 1, 2 (a similar strategy was proposed in [15]).

• For the binary thresholding strategy, ne,W and ne,B in (3.3) are binomial random variables depending on the

origin of the observed sequence. Let Nx stands for the number of data of type x in the original code and

Pe,x the cross over probabilities emerging from type x in the BIBO channels (2.4) or (2.11). When N is large

enough, the binomial random variables can be approximated with a Gaussian distribution. We have:

ne,x ∼ N (NxPe,x, NxPe,x(1− Pe,x)). (4.3)

From (3.3) L1 is a weighted sum of Gaussian random variables and one can obviously deduce the parameters

of the normal approximation describing the log-likelihood L1.

• For the second strategy, i.e. when the receiver tests directly the observed gray level sequence, the log-likelihood

L2 Eq. (3.6) may be expressed as two sums of i.i.d. and becomes:

L2 =
∑

i∈NB

ℓ(oi, 0) +
∑

i∈NW

ℓ(oi, 1)
H1

≷
H0

λ2, (4.4)

where ℓ(v, x) is a function ℓ : X × V →R having some distribution with mean and variance equal to:

mx = E[ℓ(V, x) | Hj ] =
∑

v∈V

ℓ(v, x)P (v | x, Hj), (4.5)

and

var[ℓ(V, x) | Hj ] =
∑

v∈V

(ℓ(v, x)−mx)
2P (v | x ,Hj), (4.6)

with P = PY |X (resp. P = PZ|X ) for j = 0 (resp. 1) . The central limit theorem is then used again to approximate

the distribution of L2 and compute type I and type II error probabilities.

4.2 Asymptotic expression

In this sub-section we drop the subscribe m denoting the strategy as all the subsequent analysis is common for

both of them. One important problem is the fact that the Gaussian approximation proposed previously provides
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inaccurate error probability values when the threshold λ in (4.1) and (4.2) is far from the mean of the log-likelihood

random variable L. Chernoff bound and large deviation theory [16] are preferred in this context as very small error

probabilities of type I and II may be desired [17]. Given a real number s the Chernoff bound on type I and II errors

may be expressed as:

α = Pr(L ≥ λ | H0) ≤ e−sλgL(s ; H0) for any s > 0, (4.7)

β = Pr(L ≤ λ | H1) ≤ e−sλgL(s ; H1) for any s < 0, (4.8)

where the function gL(s ; Hj) , j = 0, 1 is the moment generating function of the random variable L defined as:

gL(s ; Hj) = EPL(L|Hj)

[

esL
]

. (4.9)

where expectation is performed with respect to distribution PL(L | Hj). Reminding that L is a sum of N inde-

pendent random variables, asymptotic analysis in probability theory (when N is large enough) shows that bounds

similar to (4.7) and (4.8) are much more appropriate for estimating α and β than the Gaussian approximation

especially when λ is far from E [L], namely when bounding the tails of a distribution [17, 16]. The tightest bound

is obtained by finding the value of s that provides the minimum of the RHS of (4.7) and (4.8), i.e. the minimum

of e−sλgL(s ; Hj) for each j = 0, 1. Taking the derivative, the value s that provides the tightest bound under each

hypothesis is such that1:

λ =
dgL(s ;Hj)

ds

gL(s ; Hj)

⌋

s=s̃j

=
d

ds
ln gL(s ; Hj)

⌋

s=s̃j

. (4.10)

We introduce the semi-invariant moment generating function after an acute observation of the identity (4.10). The

semi-invariant moment generating function of L is:

µL(s ; Hj) = ln gL(s ; Hj). (4.11)

This function has many interesting properties that ease the extraction of an asymptotic expression for (4.7) and

(4.8) [17]. For instance, this function is additive for the sum of independent random variables and we have:

µL(s ; Hj) =
∑

i∈NB

µi, 0(s ; Hj) +
∑

i∈NW

µi, 1(s ; Hj), (4.12)

where µi, x(s ; Hj) is the semi-invariant moment generating function of the random component ℓ(Oi, x) when the

observed sequence comes from the distribution associated to hypothesis Hj . In addition, relation (4.10) may be

expressed as the sum of the derivatives at the value s̃j optimizing the bound:

λ =
∑

i∈NB

µ′
i, 0(s̃j ; Hj) +

∑

i∈NW

µ′
i, 1(s̃j ; Hj). (4.13)

Chernoff bounds on type I and II errors (4.7) and (4.8) may then be expressed as:

α = Pr(L ≥ λ | H0)

≤ exp

[

∑

i∈NB

(

µi, 0(s̃0 ; H0)− s̃0µ
′
i, 0(s̃0 ; H0)

)

(4.14)

+
∑

i∈NW

(

µi, 1(s̃0 ; H0)− s̃0µ
′
i, 1(s̃0 ; H0)

)

]

,

1(one can show that e−sλgL(s ; Hj) is a convex function of s)
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and

β = Pr(L ≤ λ | H1)

≤ exp

[

∑

i∈NB

(

µi, 0(s̃1 ; H1)− s̃1µ
′
i, 0(s̃1 ; H1)

)

(4.15)

+
∑

i∈NW

(

µi, 1(s̃1 ; H1)− s̃1µ
′
i, 1(s̃1 ; H1)

)

]

.

The distribution of each random component (Oi | xi) in the sequence (ON | xN ) is the same for each type of data

X, and consequently µi, x(s ; Hj) = µx(s ; Hj), i.e. µi, x(s ; Hj) is independent from i for each type of data x. The

RHS in (4.14) and (4.15) can be simplified as:

exp [NB (µ0(s̃j ; Hj)− s̃jµ
′
0(s̃j ; Hj)) + NW (µ1(s̃j ; Hj)− s̃jµ

′
1(s̃j ; Hj))] . (4.16)

Roughly speaking, Cramér’s theorem [16] states that for sufficiently large N , the upper-bounds expressed for j = 0, 1

in (4.16) are also lower-bounds for α and β respectively. Thus one can write for NB ≈ NW ≈ N/2 :

lim
N→∞

2

N
lnα = [µ(s̃0; H0)− s̃0µ

′(s̃0 ; H0)] , (4.17)

lim
N→∞

2

N
lnβ = [µ(s̃1; H1)− s̃1µ

′(s̃1 ; H1)] . (4.18)

where s̃0 > 0, s̃1 < 0, µ(s̃j ; Hj) = µ0(s̃j ; Hj) + µ1(s̃j ; Hj) , µ′(s̃j ; Hj) = µ′
0(s̃j ; Hj) + µ′

1(s̃j ; Hj). A modified

asymptotic expression including a correction factor is evaluated for the sum of an i.i.d random sequence (see [17],

Appendix 5A), and for large N we have:

α = Pr(L ≥ λ | H0),

→
N→∞

1

s̃0
√

Nπµ′′(s̃0;H0)
exp

{

N
2 [µ(s̃0; H0)− s̃0µ

′(s̃0 ; H0)]
}

.

(4.19)

and
β = Pr(L ≤ λ | H1),

→
N→∞

1

|s̃1|
√

Nπµ′′(s̃1;H1)
exp

{

N
2 [µ(s̃1; H1)− s̃1µ

′(s̃1 ; H1)]
}

.

(4.20)

where µ′′(s̃j ; Hj) = µ′′
0(s̃j ; Hj) + µ′′

1(s̃j ; Hj) is the second derivative of the semi-invariant moment generating

function of ℓ(V, x) defined by:

ℓ(v, 1) = log



(1− Pe,W )
TZ|X̂(v | 1)
TY |X(v | 1) + Pe,W

TZ|X̂(v | 0)
TY |X(v | 1)



 , (4.21)

ℓ(v, 0) = log



(1− Pe,B)
TZ|X̂(v | 0)
TY |X(v | 0) + Pe,B

TZ|X̂(v | 1)
TY |X(v | 0)



 . (4.22)

4.3 Numerical computations of α and β via importance sampling

This section addresses the problem of estimating numerically type I and II error probabilities, i.e. α and β. Monte-

Carlo simulation method [18] gives accurate solution since these probabilities can be expressed as expectations of a
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function of a random variable governed by a given probability distribution. We have:

α =
∑

vN∈H1

PN (vN | xN , H0), (4.23)

=
∑

vN∈VN

PN (vN | xN , H0)φ(v
N ; H1). (4.24)

where φ(vN ; H1) = 1 whenever vN ∈ H1 and zero if not. The probability of type I error is then expressed as the

expectation of φ(vN ; H1) under distribution PN (vN | xN , H0). In the same way, type II error probability β is the

expectation of φ(vN ; H0) under distribution PN (vN | xN , H1). In the sequel, we denote PN (vN | xN , H0) = PN
Y |X ,

and PN (vN | xN , H1) = PN
Z|X , and we have:

α = EPN
Y |X

[

φ(V N ; H1)
]

, (4.25)

β = EPN
Z|X

[

φ(V N ; H0)
]

. (4.26)

Monte-Carlo methods make use of the law of large numbers to infer an estimation for α and β by computing

numerically an empirical mean for φ(vN ; H1) and φ(vN ; H0) respectively. Clearly, the computer runs Ntrials, each

one generating an i.i.d. vector vN , where samples vn are driven from distributions PY |X and PZ|X respectively,

which gives the following estimates:

α̂ =
1

Ntrials

Ntrials
∑

i=1

φ((vN )(i); H1), (vn)
(i)being generated from PY |X

β̂ =
1

Ntrials

Ntrials
∑

i=1

φ((vN )(i); H0), (vn)
(i)being generated from PZ|X

The Monte-Carlo estimator is unbiased (α̂ → α and β̂ → β a.s.) and the rate of convergence is N
−1/2
trials. Recalling

that for a zero mean and unit variance Gaussian random variable U , P (|U | ≤ 1.96) = 0.95, the confidence interval

at 0.95 obtained from each estimation is:

[α̂− 1.96σα√
Ntrials

, α̂+
1.96σα√
Ntrials

] (4.27)

[β̂ − 1.96σβ√
Ntrials

, β̂ +
1.96σβ√
Ntrials

], (4.28)

where σα(resp. σβ) is the standard deviation of the random variable φ((V N )(i); H1) (resp. φ((V N )(i); H0)).

As φ((vN )(i); H1) and φ((vN )(i); H0) are Bernoulli random variables with parameter α and β respectively, their

variances are easily deduced, e.g. σ2
α = α− α2 ≈ α and σ2

β = β − β2 ≈ β. When α and β are very small, accurate

estimations are then difficult to achieve with realistic number of trials. Roughly speaking, the number of trials

needed is Ntrials >
103

α (or Ntrials >
103

β ) when the desired confidence interval at 0.95 is constrained to be about a

tenth of the expected value of α or β. Actually, we need to evaluate numerically very small values of α and β to

draw the curve β(α) evaluating the performance of a given test statistic. The required number of trials fails to be

realistic. We propose then to use the importance sampling method [18] which enables us to generate rare events

and thus reduce considerably the required number of trials. Let us consider distributions QY |X and QZ|X over the

12



set V such that QY |X and QZ|X > 0, and rewrite (4.25) and (4.26) as:

EPN
Y |X

[

φ(V N ; H1)
]

= EPN
Y |X

[

φ(V N ; H1)
QN

Y |X

QN
Y |X

]

,

EPN
Z|X

[

φ(V N ; H0)
]

= EPN
Z|X

[

φ(V N ; H0)
QN

Z|X

QN
Z|X

]

.

One can then alternatively express type I and II error probabilities by:

α = EQN
Y |X

[

φ(V N ; H1)
PN
Y |X

QN
Y |X

]

, (4.29)

β = EQN
Z|X

[

φ(V N ; H0)
PN
Z|X

QN
Z|X

]

. (4.30)

Monte-Carlo simulation with importance sampling method gives the two following estimates:

α̂ =
1

Ntrials

Ntrials
∑

i=1

φ
(

(vN )(i); H1

)

×
[

PN
Y |X((vN )(i) | xN )

QN
Y |X((vN )(i) | xN )

]

, (vN )(i)being generated fromQN
Y |X , (4.31)

β̂ =
1

Ntrials

Ntrials
∑

i=1

φ
(

(vN )(i); H0

)

×
[

PN
Z|X((vN )(i) | xN )

QN
Z|X((vN )(i) | xN )

]

, (vN )(i)being generated fromQN
Z|X . (4.32)

The problem of importance sampling is to choose an adequate function QV |X such that the variance of the estimated

probabilities in (4.31) and (4.32) are very small. The number of trials will be considerably reduced and accurate

estimations of very low values of α and β may be possible. Let:

QY |X(s, v | x) = exp (−µx(s; H0) + sℓ(v, x))PY |X(v | x),

and:

QZ|X(s, v | x) = exp (−µx(s ; H1) + sℓ(v, x))PZ|X(v | x).

be tilted distributions over the set V , and µx(s; Hj) the semi-invariant moment generating function of ℓ(v, x)

distributed under hypothesis Hj .

Proposition 1. The mean of the log-likelihood function ℓ(v, x) governed by the tilted distributions QY |X(s, v | x)
is µ′

x(s; H0).

Proof. We have indeed:

∑

v∈V

ℓ(v, x)QY |X(s, v | x) =
∑

v∈V

ℓ(v, x) exp (−µx(s; H0) + sℓ(v, x))PY |X(v | x),

=

∑

v∈V
ℓ(v, x) exp (sℓ(v, x))PY |X(v | x)

exp (µx(s; H0))
,

13



since µx(s; H0) = log (gx(s; H0)) the denominator of the previous expression is simply gx(s; H0):

∑

v∈V

ℓ(v, x)QY |X(s, v | x) =

∑

v∈V
ℓ(v, x) exp (sℓ(v, x))PY |X(v | x)
∑

v∈V
exp (sℓ(v, x))PY |X(v | x) ,

=
dgx(s ;H0)

ds

gx(s ; H0)
,

Finally we have:

∑

v∈V

ℓ(v, x)QY |X(s, v | x) = µ′
x(s; H0). (4.33)

The same development yields:

∑

v∈V

ℓ(v, x)QZ|X(s, v | x) = µ′
x(s; H1). (4.34)

When choosing s = s̃0 for QY |X(s, v | x) and s = s̃1 for QZ|X(s, v | x) the mean of the log-likelihood function

ℓ(v, x) governed by these tilted distributions will be equal to the threshold λ of the test 4.13.

Proposition 2. The variances of the estimations in (4.31) and (4.32) go to zero as the number of dots is sufficiently

large.

Proof. To show this, let oN be the observed samples coming from the main channel, e.g. driven from the tilted

distribution QN
Y |X(s̃0, v

N | xN ). We have:

QN
Y |X(s̃0, o

N | xN ) = exp

(

−
∑

i∈NB

µi, 0(s̃0; H0)−
∑

i∈NW

µi, 1(s̃0; H0) + s̃0
∑

i∈NB

ℓ(oi, 0) + s̃0
∑

i∈NW

ℓ(oi, 1)

)

PN
Y |X(oN | xN ).

Recalling that µ(s̃j ; Hj) = µ0(s̃j ; Hj) + µ1(s̃j ; Hj), for NB ≈ NW ≈ N/2 we have:

QN
Y |X(s̃0, o

N | xN ) = exp

(

−N

2
µ(s̃0; H0) + s̃0

(

∑

i∈NB

ℓ(oi, 0) +
∑

i∈NW

ℓ(oi, 1)

))

PN
Y |X(oN | xN ).

By the law of large numbers, the sum of N/2 log-likelihood functions of the observed samples (oi | x) governed by

the tilted distribution, converges in probability to its mean value as N is sufficiently large:

∑

i∈NB

ℓ(oi, 0)
P→ N

2

∑

v∈V

ℓ(v, 0)QY |X(s̃0, v | 0) = N

2
µ′
0(s̃0; H0),

∑

i∈NW

ℓ(oi, 1)
P→ N

2

∑

v∈V

ℓ(v, 1)QY |X(s̃0, v | 1) = N

2
µ′
1(s̃0; H0).

Recalling that µ′(s̃j ; Hj) = µ′
0(s̃j ; Hj) + µ′

1(s̃j ; Hj), and from proposition 1, we have:

(

∑

i∈NB

ℓ(oi, 0) +
∑

i∈NW

ℓ(oi, 1)

)

P→ N

2
µ′(s̃0; H0).

Equivalently, when observed samples come from the opponent channel, e.g. drawn from the tilted distribution
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QN
Z|X(s̃1, v

N | xN ) we have:

(

∑

i∈NB

ℓ(oi, 0) +
∑

i∈NW

ℓ(oi, 1)

)

P→ N

2
µ′(s̃1; H1).

Finally we have:

QN
Y |X(s̃0, o

N | xN )
P→ exp

(

−N

2
(µ(s̃0; H0)− s̃0µ

′(s̃0; H0))

)

PN
Y |X(oN | xN ). (4.35)

and:

QN
Z|X(s̃1, o

N | xN )
P→ exp

(

−N

2
(µ(s̃1; H1)− s̃1µ

′(s̃1; H1))

)

PN
Z|X(oN | xN ). (4.36)

The variance of φ(V N ; H1)
PN

Y |X

QN
Y |X

when V N is governed by the tilted distribution QN
Y |X(s̃0, v

N | xN ) is then (the

function φ(.) being 0 or 1):

varQN
Y |X

[

φ(V N ; H1)
PN
Y |X

QN
Y |X

]

= EQN
Y |X



φ2(V N ; H1)

(

PN
Y |X

QN
Y |X

)2


− α2,

= EPN
Y |X

[

φ(V N ; H1)

(

PN
Y |X

QN
Y |X

)]

− α2,

P→ EPN
Y |X

[

φ(V N ; H1)

(

1

exp
(

−N
2 (µ(s̃0; H0)− s̃0µ′(s̃0; H0))

)

)]

− α2.

The denominator in the expectation, i.e. exp
(

−N
2 (µ(s̃0; H0)− s̃0µ

′(s̃0; H0))
)

, is simply the inverse of the Cramér-

Chernoff bound proposed in (4.17). We then have:

varQN
Y |X

[

φ(V N ; H1)
PN
Y |X

QN
Y |X

]

P→ αEPN
Y |X

[

φ(V N ; H1)
]

− α2.

Finally, since EPN
Y |X

[

φ(V N ; H1)
]

= α (4.25), the variance goes to zero as N is large enough:

varQN
Y |X

[

φ(V N ; H1)
PN
Y |X

QN
Y |X

]

P→ 0.

The same development gives:

varQN
Z|X

[

φ(V N ; H0)
PN
Z|X

QN
Z|X

]

P→ 0.

4.4 Practical performance analysis

Without loss of generality, we use in our analysis a generalized Gaussian distribution to model the physical device,

i.e. the association of a printer with a scanner, used by the legitimate source TY |X(v | x) and by the counterfeiter

TZ|X̂(v | x̂):
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p(v | x) = b

2aΓ(1/b)
e−(|v−m(x)|/a)b , (4.37)

where m(x) is the mean and the parameter a can be computed from the variance σ2 = var[V ]:

a =
√

σΓ(1/b)/Γ(3/b). (4.38)

The parameter b is used to control the sparsity of the the distribution, for example when b = 1 the distribution

is Laplacian, b = 2 the distribution is Gaussian, and b → +∞ the distribution is uniform. The resulting distribution

is first discretised then truncated to provide values within [0, . . . , 255] to model a scanning process. Each channel

is parametrized in this case by four parameters, 2 per each type of dots, mb = m(0) and σb for black dots and

mw = m(1) and σw for white dots. Note that other print and scan models that take into account the gamma

transfer function or additive noise with input dependent variance can be found in [19], but the general methodology

of this paper is not dependent on the model and can still be applied.

Figure 4.1 illustrates the different effects of the generalized Gaussian distributions on the main and the opponent

channels of same mean and variance and b = 1 (Laplacian distribution), b = 2 (Gaussian distribution) and b = 6,

i.e. close to a uniform distribution.

b = 1

b = 2

b = 6

Figure 4.1: Example of a 20x20 code which is printed and scanned by an opponent. Main and opponent channels
are identical, mb = 50, mw = 150, σb = 40, σw = 40 .

In order to assess the accuracy of the computations of α and β using either the Gaussian approximation given

by (4.1) and (4.2), the asymptotic expression given by (4.19) and (4.20) or the Monte-Carlo simulations using

importance sampling given by (4.31) and (4.32). We derive ROC curves for generalized Gaussian distributions and

b = {1, 2, 6}.
Fig. 4.2 illustrates the gap between the estimation of α and β using the Gaussian approximation and the

asymptotic expression or the Monte-Carlo simulations. The Monte-Carlo simulations confirm the fact that the

derived Cramér Chernoff bounds are tight, and the difference between the results obtained with the Gaussian

approximation are very important especially for close to uniform channels. We can also notice that for the same

channel power, the authentication performances are better for b = 6 then for b = 2 and b = 1.

5 Optimal configurations for authentication

The goal of this section is to derive configurations that are optimal regarding authentication, i.e. to derive config-

urations that for a given α minimize β.
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Figure 4.2: Comparison between the Gaussian approximation, the asymptotic expression and Monte-Carlo simula-
tions for b = 1 b = 2 and b = 6. Main and opponent channels are identical, mb = 50, mw = 150, σb = 40, σw = 40 .

5.1 Optimal configurations by modification of the printing channel

5.1.1 Problem setting

This authentication problem can be seen as a game where the main goal of the receiver, for a given false alarm

probability α, is to find a channel that minimizes the probability of miss detection β. Practically this means that the

channel can be chosen by using a given quality of paper, a different ink and/or by adopting an appropriate resolution.

For example if the legitimate source wants to decrease the noise variance, he can choose to use oversampling to

replicate the dots, on the contrary if the legitimate source wants to increase the noise variance, he can use a paper

of lesser quality. It is important to recall that because the opponent will have to print a binary version of its

observation, and because a printing device at this very high resolution can only print binary images, the opponent

will in any case have to print with decoding errors after estimation X̂.

We analyze two scenarios described below:

• The legitimate source and the opponent have identical printing devices, practically this means that they use

exactly the same printing setup. In this case the legitimate source will try to look for the channel C such that

for a given α, the legitimate party will have a probability of miss detection β∗ such that:

β∗ = min
C

β(α). (5.1)

In this case, the opponent is passive and has no strategy but duplicating the graphical code.

• The opponent can modify its printing channel Co (here we assume that he can change the variance of its

noise), practically it means that he can modify one or several parameters of the printing setup without

being detected. The opponent then tries to maximize the probability of false detection by choosing the

adequate printing channel, and the legitimate sources will adopt the printing channel Cl which will minimize

the probability of false detection. We end up with what is called a min-max game in game theory, where the

optimal β∗ is the solution of:

β∗ = min
Cl

max
Co

β(α). (5.2)

In this case the opponent is active since he tries to adapt his strategy in order to degrade the authentication

performance.

Because the expressions of β(α) is not simple and has to be computed using the asymptotic expressions (4.14) and

(4.15), we cannot solve this problem analytically and we have to use numerical calculus instead.

We conduct this analysis for the generalized Gaussian model, where we assume that the parameters mb and

mw are constant for the main and the opponent channels (which implies that the scanning process has the same

calibration for the two types of images). We assume that the main channel and the opponent channel variances are

respectively denoted σ2
m and σ2

o and are identical for black and white dots.
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5.1.2 Passive opponent

Here the opponent has to undergo a channel identical to the main channel, the only parameter of the optimization

problem (5.1) is consequently σm. Figure 5.1 presents the evolution of β w.r.t. σm for α = 10−6 and mb = 50,

mw = 150. For each channel configuration, we can find an optimal configuration, this configuration offers a smaller

probability of error for b = 6 than for b = 2 or b = 1. It is not surprising to notice that in each case, β is important

whenever σm is very small (i.e. when the print and scan noise is very small hence the estimation of the original

code is easy) or very large (i.e. when the print and scan noise is so important that the original and forgery become

equally noisy).
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Figure 5.1: Evolution of β w.r.t. σm ( α = 10−6). Main and opponent channels are identical, mb = 50, mw = 150.

5.1.3 Active opponent

In this setup the opponent can use a channel of different variance σ2
o than the main channel σ2

m and tries to solve

the game defined in (5.2). Figure 5.2 shows the evolutions of β w.r.t σo for different σm. We can see that in each

case it’s in the opponent interest to optimize his channel. Note that even if we assume that the opponent print and

scan channel is perfect (x̂N = z
N ), because the input of the printer has to be binary and because the opponent will

make decoding errors by estimating the original code, the copied printed code will be necessarily different from the

original printed code (see Figure 1.1), which implies a perfect discrimination between the 2 hypotheses.

Figure 5.3 shows the evolution of best opponent strategy max
σo

β w.r.t σm. By comparing it with Figure 5.1, we

can see that the opponent’s probability of non detection can be multiplied by one or several orders of magnitude

(×107 for b = 1, ×105 for b = 2 and ×10 for b = 6).
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Figure 5.2: Evolution of the probability of non detection β w.r.t σo for different σm. The plots arriving from left
to right show σm varying from 20 to 80 with an increment of 10. mb = 50, mw = 150, α = 10−6.
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Figure 5.3: Evolution of best opponent strategy max
σo

β w.r.t σm. mb = 50, mw = 150, α = 10−6.

6 Impact of the estimation of the print and scan channel

The previous scenarios assume that the receiver has a full knowledge of the print and scan channel. Here we

assume that the receiver also has to estimate the opponent channel before performing authentication. From the

estimated parameters, the receiver will compute a threshold and a log-likelihood test. Depending on the number of

observations No, the estimated model and test will decrease the performance of the authentication system.

We consider that the opponent uses a different printing device unknown from the legitimate party. According

to (2.6) and (2.7), the parameters to be estimated are Pe,W , Pe,B, mb, mw and σ = σb = σw. We use the classical

Expectation Maximization (E.M.) algorithm combined with the Newton’s method to solve the maximization step

as these distributions are discrete and have the finite support of the gray level range.

Fig. 6.1 shows the authentication performances using an estimated Gaussian model (b = 2) from No = 2000

observed symbols. We can notice that the performance is very close to an exact knowledge of the model. This

analysis shows also that if the receiver has some assumptions of the opponent channel and enough observations, he

should perform model estimation instead of using the thresholding strategy. Fig. 6.2 shows the importance of model

estimation when comparing it to a blind authentication test when the receiver assumes that both the opponent

channel and his channel are identical.
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Figure 6.1: Authentication performance using model estimation with the EM algorithm (N = 2000, No = 2000,
σ = 52, mb = 50, mw = 150). The asymptotic expression is used to derive the error probabilities.

7 Conclusions and perspectives

This paper brings numerous conclusions on the authentication using binary codes corrupted by a manufacturing

stochastic noise:

• The nature of the receiver’s input is of upmost importance and thresholding is a bad strategy with respect to
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Figure 6.2: ROC curves comparing different degrees of knowledge about the opponent channel while the true
opponent printing process model has parameters (σ = 40, mb = 40, µw = 160). “True model”: the receiver knows
exactly this model, “Blind model”: the receiver uses arbitrary his printing process to model it, “Est. model”: the
receiver estimates the opponent channel using No = 2000 observations.

getting an accurate version of the genuine or forged code, except if the system requires it, due for example to

computational requirements.

• The Gaussian approximation used to compute the ROC of the authentication system are not valuable anymore

for very low type I or type II errors. Cramér Chernoff bound or Monte-Carlo simulations using importance

sampling can be used instead to achieve accurate values of these probabilities.The proposed methodology is

not impacted by the nature of the noise, and can be applied for different memoryless channels that are more

realistic for modeling the printing process.

• It’s in the opponent’s interest to adapt its channel in order to decrease the authentication performances of

the system, this can be possible by solving a max-min game.

• If the opponent’s print and scan channel remains unknown for the receiver, he can use estimation techniques

such as the E.M algorithm in order to estimate the channel.

Our future works will consist in evaluating the impact of the noise model on the authentication performance, this

first analysis suggest that sparse distributions are less favorable for authentication then dense distributions but this

has to be confirmed by a deeper study.

8 Appendix

8.1 Information-theoretic comparison between hypothesis testing with and without

thresholding

In this appendix we aim at establishing an inequality between the average of the two log-likelihood tests (3.3) and

(3.4). The greater is the discrimination between the two distributions involved in the log-likelihood test, the best is

the authentication performance. The expected value of the log-likelihood test (3.1) with respect to any of the two

distributions involved in the ratio is the Kullback-Leibler divergence or discrimination defined as:

L(PN
Y |X ;PN

Z|X) =
∑

vN∈VN

PN
Y |X(vN | xN ) log

PN
Y |X(vN | xN )

PN
Z|X(vN | xN )

, (8.1)

the base of the logarithm being arbitrary. In the remaining of this paper we settle on base 2.

In [14, p.114] the author provides an interesting inequality relating the discrimination to type I and type II

errors in hypothesis testing. This relation is stated by the following lemma.
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Lemma. (see the former reference for the proof) For any partition (H0, H1) of the observation space VN the

probabilities of type I and II errors satisfy:

L(PN
Y |X ;PN

Z|X) ≥ α log
α

1− β
+ (1− α) log

1− α

β
. (8.2)

In our authentication model, the likelihood test is performed conditionally to an available side information

involving two types of data x. One type for black points , and the second one for white points in the original

code. In accordance to this, we express now the discrimination quantity for the two proposed strategies in order to

establish the desired inequality:

L(PN (X̃N | xN , H0) ; P
N (X̃N | xN , H1)) =

∑

x̃1

· · ·
∑

x̃N

PN
(

x̃N | xN , H0

)

log
PN

(

x̃N | xN , H0

)

PN (x̃N | xN , H1)
, (8.3)

and

L(PN (ON | xN , H0) ; P
N (ON | xN , H1)) =

∑

v1

· · ·
∑

vN

PN
Y |X(vN | xN ) log

PN
Y |X(vN | xN )

PN
Z|X(vN | xN )

. (8.4)

For the sake of simplicity we develop proofs and details for the second strategy only and give results for the

thresholding case for which all developments are likewise the former. Regarding the additivity theorem [14, theorem

4.3.7] for independent sequences, and reminding that the distribution of each component of the sequence (ON | xN )

is the same for each type of data x, the discrimination quantity becomes:

L(PN (ON | xN , H0) ; P
N (ON | xN , H1)) = NW ×

∑

v∈V

PY |X(v | 1) log PY |X(v | 1)
PZ|X(v | 1)

(8.5)

+ NB ×
∑

v∈V

PY |X(v | 0) log PY |X(v | 0)
PZ|X(v | 0) .

Given a composition (or relative frequency) for X PX = {NW/N , NB/N}, we have:

L(PN (ON | XN , H0) ; P
N (ON | XN , H1)) = N × L(PY |X ; PZ|X | PX). (8.6)

where L(PY/X ; PZ/X | PX) is the average discrimination. Similarly, we obtain for the first strategy the relation:

L(PN (X̃N | XN , H0) ; P
N (X̃N | XN , H1)) = N × L(Pe,x; P̃e,x | PX). (8.7)

Corollary. Given an i.i.d outcome XN = xN with composition, or type PX , for any partition of the observation

space (H0, H1), the probabilities of type I and II errors satisfy:

L(PY |X ; PZ|X | PX) ≥ 1

N

(

α log
α

1− β
+ (1− α) log

1− α

β

)

. (8.8)

Proof. The proof is straightforward by combining (8.2) and (8.6).

Corollary. Consider a partition of the observation space (H0, H1) with probability of type I error α, then the

probability of type II error is lower bounded by:

β ≥ 2−[NL(PY |X ;PZ|X |PX)+h(α)]/(1−α). (8.9)
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Proof. From the previous corollary we have:

−(1− α) log β ≤ NL(PY |X ; PZ|X | PX)− α logα− (1− α) log(1− α)

+ α log(1− β).

setting h(α) = −α logα− (1−α) log(1−α), which is the binary entropy (≤ 1), and observing that α log(1−β) ≤ 0

we can write the inequality:

− (1− α) log β ≤ NL(PY |X ; PZ|X | PX) + h(α). (8.10)

It is desired that this lower bound is very small which is obviously possible with large values of the quantity

L(PY |X ; PZ|X | PX).

Theorem. For the two strategies of the receiver, we have L(PY |X ; PZ|X | PX) ≥ L(Pe,x; P̃e,x | PX)

Proof.

L(PY |X ; PZ|X | PX) =
∑

x=0,1

PX(x)
∑

v∈V

PY |X(v | x) log PY |X(v | x)
PZ|X(v | x) ,

∑

x=0,1

PX(x)
∑

v∈DW

PY |X(v | x) log PY |X(v | x)
PZ|X(v | x) ,

+
∑

x=0,1

PX(x)
∑

v∈Dc
W

PY |X(v | x) log PY |X(v | x)
PZ|X(v | x) ,

(a)

≥
∑

x=0,1

PX(x)
∑

v∈DW

PY |X(v | k) log

∑

v∈DW

PY |X(v | x)
∑

v∈DW

PZ|X(v | x) ,

+
∑

x=0,1

PX(x)
∑

v∈Dc
W

PY |X(v | x) log

∑

v∈Dc
W

PY |X(v | x)
∑

v∈Dc
W

PZ|X(v | x) ,

(b)
=

∑

x=0,1

PX(x)

(

Pe,x log
Pe,x

P̃e,x

+ (1− Pe,x) log
(1− Pe,x)

(1− P̃e,x)

)

,

=
∑

x=0,1

PX(x)L(Pe,x, P̃e,x | x),

= L(Pe,x, P̃e,x | PX).

(a) is obtained from the log-sum inequality:
N
∑

i=1

ai log
ai

bi
≥
(

N
∑

i=1

ai

)

log

N∑

i=1
ai

N∑

i=1
bi

.

(b) since Pe,x =
∑

v∈DW

PY |X(v | x), P̃e,x =
∑

v∈DW

PZ|X(v | x), 1−Pe,x =
∑

v∈Dc

W

PY |X(v | x), 1− P̃e,x =
∑

v∈Dc

W

PZ|X(v |

x)
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Figure 8.1 plots a comparison between the Kullback-Leibler divergences with and without thresholding w.r.t

the variance of Gaussian model of the physical devices, we can see that the divergence is smaller with thresholding

than without.
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Figure 8.1: Kullback-Leibler divergence function for the two different strategies w.r.t the standard deviation of the
Gaussian model of the physical devices.
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