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In order to carry out reliable LES or Helmholtz solver computations in aeronautical

combustion chambers, it is crucial to impose the right boundary conditions at both

inlet and outlet of the combustion system. This means providing acoustic boundary

impedances that take into account all the stages in compressors and turbines. This

study is a follow up of works where the boundary condition were derived from the

isentropic and isenthalpic Linearized Euler Equations. Specific terms are added to the

quasi-1D LEE in order to account for enthalpy jumps induced by the rotor stages of

the compressors and turbines. This system of equations also accounts for the entropy-

acoustic coupling since, in addition to the continuity and momentum equations, the

entropy equation is also considered. The numerical implementation is validated by

comparing the numerical results with analytical solutions in several model problems.

The effective impedance of the inlet air-circuit of an actual helicopter engine is then
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computed in order to illustrate the potential of the method as well as the importance

of the rotor terms added.

I. Introduction

The prediction of combustion instabilities in combustion chambers embedded in complex sys-

tems, such as aeronautical engines, is extremely difficult because different phenomena must be taken

into account at once: the strong interaction between the flame and the most representative turbu-

lent length scales of the reacting and burnt gases, the two-way interaction between the flame and

the radiated acoustic waves it produces, the possible coupling between entropy waves caused by the

hot spots generated by the flame and the acoustic waves produced by the non-homogeneities in the

mean flow, and evidently the role played by all boundary conditions (inlets, outlets and walls).

Different strategies have been developed over the years [1–5] to understand the physics of all

these interactions and to create methodologies to control or avoid them. In recent years, reacting

and compressible Large Eddy-Simulations (LES) have shown their capability to study the dynamics

of turbulent flames [6–12]. Due to its intrinsic nature (resolution of the unsteady 3D Navier-Stokes

equations) LES is able to predict the interactions between the flame, the turbulent flow and the

acoustic modes of the chamber, and for some particular configurations to distinguish between stable

and unstable combustion systems [13]. Yet, LES presently remains very CPU demanding and its

use for parametric studies of aeronautical engines design is still excluded.

For this reason, simplifications on the geometry of the combustor as well as on the physics

of the reactive turbulent flow may lead to interesting and useful strategies to study combustion

instabilities. Following this philosophy, a wide spread methodology has been developed over the

years which is based on the so called low-order models. A given system is characterized as a

network of individual one dimensional/ two dimensional axisymmetric acoustic elements in which

only perturbations of first order are kept [14–17]. Since acoustics is considered to be the only cause

of these perturbations, all viscous terms in the Navier Stokes equations are neglected. The acoustic

elements are then described by 1D Linearized Euler Equations (LEE) and they are associated with
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each other by relations of conservation of mass, momentum and energy. These methods aim to study

the low frequency unstable modes that are originated by the coupling of plane acoustic waves with

compact heat release sources. For complex geometries, as actual aeronautical combustion chambers,

this 1D modeling strategy might remain too simplistic: the full three dimensional geometry might

play an important role not only on the values of the predicted resonance frequencies but also on

the growth rate of the acoustic modes, as shown for example in [18]). Instead of solving the LEE

equations for a set of interconnected acoustic elements, it might be more precise to account for

the actual 3D geometry. The development of LEE solvers for complex geometries associated to

combustion chambers is still in a nascent state. In such an approach the stability not only of

acoustic modes, but also vortical and entropy modes is studied [19]. Nevertheless, the mean flow

velocity field in typical combustion chambers is very low, and assuming that convective terms do not

significantly contribute in the analysis of combustion instabilities is reasonable. Therefore, under

the low Mach approximation, the LEE equations can be recast into a wave equation that if expressed

in the frequency domain results in the so called Helmhotz Equation. The respective numerical tools,

commonly known as Helmholtz solvers, have proved their ability to predict combustion instabilities

[13, 20, 21] in real combustion chambers.

The ability of the strategies above described (LES, low-order model techniques and Helmholtz

solvers) to correctly estimate combustion instabilities depends strongly on the acoustic description at

the system boundaries. The main objective when describing the acoustic behaviour of such bound-

aries is to be able to predict accurately the transmission and reflection of acoustic waves caused by

impinging acoustic waves at these frontiers. The general idea is to solve the quasi-1D LEE in a do-

main that represents the regions either upstream (fan + compressor stages) or downstream (turbine

stages + nozzle) of the combustion chamber. Several works have made important contributions in

the study of acoustics of quasi 1D elements. The first significant study is due to Tsien [22]. In this

work, the propagation of acoustic waves through a quasi 1D system is studied. The mean flow is

considered to be linearly distributed along the axis. Subsequently, Marble and Candel [23] proposed

analytical expressions that estimate the transmission and reflection of acoustic waves due to either

acoustic or entropy waves that are injected in a quasi 1D system. The main assumption, in addition
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to consider plane acoustic waves, is to consider the system as compact, i.e. as a system whose length

is considered small compared with a characteristic acoustic wavelength. These relations have been

demonstrated to be very useful in the low frequency limit. In the work of Stow et al. [24], this the-

ory is extended to second-order through an asymptotic analysis. A second-order correction is added

through an effective length which is function of the mean flow spatial distribution. Consequently,

the transmission and reflection coefficients are well predicted within a low frequency band. In the

study of Moase et al. [25], transmission and reflection coefficients are derived for a quasi-1D system

whose mean flow is modelled to be piece-wise linear. As a result, an acoustic characterization of any

quasi 1D geometry can be performed for any frequency band of interest as long as the mean flow can

be described by piece-wise linear functions. Recently, a remarkable work has been carried out by

Duran and Moreau [26] in which the quasi 1D LEE are solved analytically through an asymptotic

analysis based on the Magnus expansion of the quasi 1D LEE. In addition to analytical methods,

numerical approaches to solve the quasi 1D LEE system can be also used to study the acoustic

properties of a given quasi 1D system. Corresponding numerical schemes have demonstrated to be

useful when evaluating the acoustic impedance of isentropic nozzle and diffusers to subsequently

study combustion instability in complex 3D combustion chambers, as in the work of Lamarque and

Poinsot [27].

In the present study, a numerical approach is used to solve the quasi 1D LEE in the case

where neither the total enthalpy nor the total entropy are constant over the entire domain. In

the first section, the quasi 1D LEE system is presented. Compared to the system of equations

exposed by [28], additional terms are added accounting for the compression or expansion stages in

the system. Subsequently, analytical solutions are derived to validate the quasi 1D LEE numerical

tool in two specific cases: isentropic compact nozzles [23] and a one dimensional compressor. Finally

the reflection coefficient at the inlet air circuit of an helicopter combustion chamber is computed

and used to evaluate the first two acoustic modes of a 3D combustion chamber.
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II. The quasi 1D Linearized Euler Equations

A quasi 1D Euler system of equations in the conservative form is presented (Nicoud and Wiec-

zorek [28]). This set of equations states that the flow is strictly one-dimensional and therefore only

changes over the stream direction x are of relevance. It implies that only plane acoutic waves can

be retrieved. The quasi 1D Euler system of equations reads:

∂

∂t
(ρA) +

∂

∂x
(ρuA) = 0 (1)

∂

∂t
(ρuA) +

∂

∂x
(ρu2A) + A

∂p

∂x
− AF = 0 (2)

∂

∂t
(ρhtA) +

∂

∂x
(ρuhtA) − A

∂p

∂t
− AQ̇ − AW = 0 (3)

where ρ stands for the density of the fluid, u the velocity in the x direction, p the thermodynamic

pressure and ht the total enthalpy. In addition the variables A, Q̇, F and W stand for the cross-

section area, an external energy source, the volume-specific force added by the compressor or added

to the turbine, and the volume-specific work done by the compressor or supplied to the turbine,

respectively. In the following the conservation of energy (3), which is function of the total enthalpy

ht, is replaced by the entropy (s) equation:

ρT

(

∂s

∂t
+ u

∂s

∂x

)

− Q̇ = 0 (4)

All variables in Eqs. (1), (2) and (4) are decomposed in mean and fluctuating quantities

(φ(x, t) = φ̄(x)+φ′(x, t)) and only first order terms are kept. Subsequently, harmonic perturbations

are considered (φ′ = φ̂e−jωt). The quasi 1D Linearized Euler Equations LEE for a calorically perfect

gas read:

(

∂ū

∂x
+ ū

∂

∂x
+

ū

A

∂A

∂x

)

ρ̂ +

(

∂ρ̄

∂x
+ ρ̄

∂

∂x
+

ρ̄

A

∂A

∂x

)

û − jωρ̂ = 0 (5)

(

1

ρ̄

∂c̄2

∂x
+

ū

ρ̄

∂ū

∂x
+

c̄2

ρ̄

∂

∂x

)

ρ̂ +

(

∂ū

∂x
+ ū

∂

∂x

)

û + (γ − 1)T̄

(

1

p̄

∂p̄

∂x
+

∂

∂x

)

ŝ −
F̂

ρ̄
− jωû = 0 (6)
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γr ¯̇
Q

ρ̄p̄
ρ̂ +

∂s̄

∂x
û +

(

ū
∂

∂x
+ (γ − 1)

¯̇
Q

p̄

)

ŝ −
r

p̄
ˆ̇
Q− jωŝ = 0 (7)

where the linearized state equation and entropy expression (Eq. (8)) have been considered, i.e.

p̂

p̄
−

ρ̂

ρ̄
−

T̂

T̄
= 0 and

ŝ

cp
=

p̂

γp̄
−

ρ̂

ρ̄
. (8)

This system of equations can be expressed as an algebraic linear system in the form

A

















ρ̂

û

ŝ

















=

















0

F̂

ρ̄

r
p̄

ˆ̇
Q

















(9)

where

A =

















∂ū
∂x + ū ∂

∂x + ū
A

∂A
∂x − jω ∂ρ̄

∂x + ρ̄ ∂
∂x + ρ̄

A
∂A
∂x 0

1
ρ̄

∂c̄2

∂x + ū
ρ̄

∂ū
∂x + c̄2

ρ̄
∂
∂x

∂ū
∂x + ū ∂

∂x − jω (γ − 1)T̄
(

1
p̄

∂p̄
∂x + ∂

∂x

)

γr ¯̇
Q

ρ̄p̄
∂s̄
∂x ū ∂

∂x + (γ − 1)
¯̇
Q

p̄ − jω

















(10)

Note that this system of linearized equations models propagation of plane acoustic waves through

a calorically perfect medium. These expressions are, nevertheless, very suitable when modeling

the upstream or downstream region of typical aeronautical combustion chambers. Combustion

instabilitiy, a phenomenon highly dependent on boundary conditions, takes place generally at low

frequencies, i.e. at frequencies where only plane acoustic waves are present. Moreover, under normal

operating conditions, reactions only takes place within the confinement of a combustion chamber.

Accordingly, assuming a constant heat capacity cp either upstream or downstream of the combustion

chamber is fairly correct. Note however that the assumption can be easily relaxed as far as Eq. (9)

is solved numerically.

Within the computational domain, the Quasi-1D LEE (Eqs. 5, 6 and 7) are discretized by finite

differences (FD) with a second order centered scheme. At the inlet, a first order FD downwind

scheme is applied, whereas at the outlet a first order FD upwind scheme is used. A staggered grid
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arrangement (velocity fluctuations stored at the cell edges, density and entropy fluctuations stored

at the cell centers as shown in Fig. 1.) has been used in order to avoid the pressure field to be

contaminated by the classical odd-even decoupling phenomenon [29, 30].

i

i + 1

i − 2 i + 2

i − 1

1

2 n − 1

n

û

ρ̂, ŝ

(i + 1)/2 − 1 (i + 1)/2 n/21
cellcell cell cell

∆x

Fig. 1 Staggered grid

For the (i+1)/2 cell, equations of continuity, momentum and entropy are discretized as follows:

• continuity equation (node i + 1)

ρ̂i+1
∂ūi+1

∂x
+ ūi+1

(ρ̂i+3 − ρ̂i−1)

4∆x
+ ρ̄i+1

(ûi+2 − ûi)

2∆x
+

(ûi+2 + ûi)

2

∂ρ̄i+1

∂x
+

(ûi+2 + ûi)

2

ρ̄i+1

Ai+1

∂Ai+1

∂x
+

ρ̂i+1
ūi+1

Ai+1

∂Ai+1

∂x
− jωρ̂i+1 = 0

(11)

• momentum equation (node i)

(ρ̂i+1 + ρ̂i−1)

2ρ̄i

∂c̄2
i

∂x
+

(ρ̂i+1 + ρ̂i−1)ūi

2ρ̄i

∂ūi

∂x
+

c̄2
i

ρ̄i

(ρ̂i+1 − ρ̂i−1)

2∆x
+ ûi

∂ūi

∂x
+ ūi,1

(ûi+2 − ûi−2)

4∆x
+

(γ − 1)
T̄i(ŝi+1 + ŝi−1)

2p̄i

∂p̄i

∂x
+ (γ − 1)T̄i

(ŝi+1 − ŝi−1)

2∆x
− jωûi =

F̂i

ρ̄i

(12)

• entropy equation(node i + 1)

γrq̄i+1

ρ̄i+1p̄i+1
ρ̂i+1 +

(ûi+2 + ûi)

2

∂s̄i+1

∂x
+ ūi+1

(ŝi+3 − ŝi−1)

4∆x
+ (γ − 1)

q̄i+1

p̄i+1
ŝi+1 −

r

p̄i+1
q̂i+1ŝi+1 − jωŝi+1

= ˆ̇
Qi+1

(13)
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The resulting discretized matrix A for the previous system of equations is a sparse rectangular

matrix of size m×m size, in which m = 3n/2 and n/2 is the number of cells of the system. A Jacobi

preconditioner is used to improve the conditioning of matrix A and the linear system is solved by

inverting the preconditioned matrix through the LU factorization. The resulting numerical tool is

termed ‘SNozzle’.

III. Definition of waves

In the frequency domain, acoustic and entropy waves ŵ are defined by an amplitude B and a

phase φ, so that ŵ = B ejφ. They read [25, 31]

ŵ+ = B+ejωx/c̄(1+M̄) =
p̂

γp̄
+

û

c̄
(14)

ŵ− = B−e−jωx/c̄(1−M̄) =
p̂

γp̄
−

û

c̄
(15)

ŵS = BSejωx/c̄M̄ =
ŝ

cp
(16)

where ŵ+ and ŵ− represent the non-dimensional acoustic waves propagating respectively in

the direction of the flow at speed (ū + c̄), and against the flow at speed (ū − c̄). ŵS stands for the

entropy wave that is convected at the mean flow velocity (ū). Inversely, the variables p̂ and û are

expressed in terms of acoustic waves as

p̂

γp̄
=

1

2

(

ŵ+ + ŵ−
)

and
û

c̄
=

1

2

(

ŵ+ − ŵ−
)

(17)

The waves ŵ, that can appear in a 1D system, are shown in Fig. (2). Indices 1 and 2 identify

the upstream and downstream state respectively.

RAA → ŵ−

1 /ŵ+

1 → with ŵS
1 = 0

RSA → ŵ−

1 /ŵS
1 → with ŵ+

1 = 0

TAA → ŵ+

2 /ŵ+

1 → with ŵS
1 = 0

TSA → ŵ+

2 /ŵS
1 → with ŵ+

1 = 0

Table 1 Wave coefficients definition
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w−
1

w+
1

ws
1 ws

2

w−
2

w+
2

M̄1 M̄2

Subsonic region

!

! !

Compact domain

Subsonic region

!

! !

w−
1

w+
1

ws
1 ws

2

w−
2

w+
2

M̄1 M̄2

Subsonic region Supersonic region

!

!

!

!

Compact domain

! !

(a) (b)

Fig. 2 Configurations under the compact assumption. (a) subsonic-subsonic. (b) subsonic-

supersonic.

The reflection R and transmission T coefficients are now defined as shown in table 1. The

coefficient RAA is the reflection coefficient that measures the amplitude of the outgoing upstream

traveling acoustic wave ŵ−
1 with respect to an incoming downstream traveling wave ŵ+

1 when no

incoming entropy waves are assumed present (ŵS
1 = 0). Similarly RSA relates the amplitude of an

upstream outgoing traveling acoustic wave ŵ−
1 with respect to an incoming downstream traveling

entropy wave ŵS
1 . In this case, no incoming acoustic waves are present (ŵ+

1 = 0). The transmitted

waves, defined by the tranmission coefficient T , are determined in a similar way. Being these

acoustic parameters defined for a downstream boundary condition, they are used to characterize

systems such as nozzles or turbines. The definition of these parameters should be inverted if an

upstream boundary condition is taken as the reference, which is the case for intakes and compressors.

In the next two sections attention is paid to two of these cases. First, nozzles are treated as

isentropic systems in which no enthalpy expansion is present, i.e. no turbines stages are considered.

In this manner, analytical solutions found in the literature for the acoustic response of compact

nozzles to incoming acoustic or entropy waves [23] can be compared to the solution of the quasi

1D LEE in the zero frequency limit (ω ≈ 0). Second, the acoustic response of an ideal compact

compressor embedded in a constant section duct is evaluated. This simplified case permits to

compare the results obtained by the quasi 1D LEE to the solutions given by analytical relations

which are indeed a generalization of analytical models such as the one exposed in [4, 23].
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IV. Response of isentropic nozzles

As already stated in the introductory part of this work, determining appropriate acoustic bound-

ary conditions for combustion chambers is crucial in order to correctly predict combustion instabil-

ities. These acoustic boundary conditions depend, among others, on the mean flow either upstream

(compressor stages) or downstream (turbine stages). As a first approximation, it is useful to con-

sider the flow in these regions as isentropic ( ¯̇
Q, ˆ̇

Q = 0) and isenthalpic (F̄ , F̂ = 0). This means that

the combustion chamber is only surrounded by perfect diffusers and nozzles.

A. Compact Nozzles

The continuity and energy relations in the framework of the 1D linearized Euler equations for

compact systems (see Eqs. (62) and (64) in appendix) reduce to:

ρ̂1

ρ̄1
+

û1

ū1
=

ρ̂2

ρ̄2
+

û2

ū2
(18)

T̂t1

T̄t1
=

T̂t2

T̄t2
(19)

in which it has been assumed that the fluid has a constant specific heat cp and therefore ĥ = cpT̂ .

Expressing the instantaneous total temperature as Tt = T (1 + [(γ − 1)/2]M2), in which M = u/c

represents the instantaneous Mach number, the following relation results

T̂t

T̄t
=

T̂

T̄
+

(γ − 1)M̄M̂

1 + γ−1
2 M̄2

=
T̂

T̄
+

(γ − 1)

1 + γ−1
2 M̄2

(

M̄2
û

ū
− M̄2

ĉ

c̄

)

, (20)

where ĉ/c̄ = T̂ /2T̄ . Replacing Eq. (20) in Eq. (19) and considering also the relations exposed

in Eq. (8), the following expression yields:

1

1 + γ−1
2 M̄1

2

(

M̄1
û1

c̄1
+

ρ̂1

ρ̄1
+

γ

(γ − 1)

ŝ1

cp

)

=
1

1 + γ−1
2 M̄2

2

(

M̄2
û2

c̄2
+

ρ̂2

ρ̄2
+

γ

(γ − 1)

ŝ2

cp

)

(21)

Finally, substituting the definition all variables into a wave description (Eq. (17)) at x = 0 into

Eqs. (18) and (21) results in:

10



1

2

(1 + M̄1)

M̄1
ŵ+

1 −
1

2

(1 − M̄1)

M̄1
ŵ−

1 + ŵS
1 =

1

2

(1 + M̄2)

M̄2
ŵ+

2 −
1

2

(1 − M̄2)

M̄2
ŵ−

2 + ŵS
2 (22)

1

2

(1 + M̄1)

ζ1
ŵ+

1 +
1

2

(1 − M̄1)

ζ1
ŵ−

1 +
1

ζ1(γ − 1)
ŵS

1 =
1

2

(1 + M̄2)

ζ2
ŵ+

2 +
1

2

(1 − M̄2)

ζ2
ŵ−

2 +
1

ζ2(γ − 1)
ŵS

2

(23)

in which the notation ζ = 1 + [(γ − 1)/2]M̄2 has been introduced.

Now the analytical relations concerning the acoustic response of compact nozzles [23, 31] are

recalled. An unchoked nozzle, which is characterized by a subsonic flow everywhere, needs to be

acoustically constrained both at the inlet and at the outlet. In order to acoustically characterize the

nozzle independently from boundary conditions, the outlet is fixed as totally non-reflecting (ŵ−
2 = 0).

Note that this procedure also simplifies the final mathematical expressions. If the acoustic wave ŵ−
2

is of relevance, it can be considered in the equations through a reflection coefficient R = ŵ−
2 /ŵ+

2 .

Particularly, an expression for RAA for an arbitrary value of R = ŵ−
2 /ŵ+

2 can be found in the work

of Lamarque and Poinsot [27]. Since neither heat nor work is added to the system, entropy waves

remain constant along the nozzle (ŵS
1 = ŵS

2 ). Eqs. (22) and (23) are combined in order to obtain

the following expressions:

RAA =

(

M̄1 − M̄2

M̄1 + M̄2

)(

M̄1 + 1

M̄1 − 1

)(

1 − 1
2 (γ − 1)M̄1M̄2

1 + 1
2 (γ − 1)M̄1M̄2

)

with ŵS
1 , ŵ−

2 = 0 (24)

RSA = −

(

M̄2 − M̄1

1 − M̄1

)(

M̄1

1 + 1
2 (γ − 1)M̄1M̄2

)

with ŵ+
1 , ŵ−

2 = 0 (25)

TAA =

(

2M̄2

1 + M̄2

)(

1 + M̄1

M̄1 + M̄2

)(

1 + 1
2 (γ − 1)M̄2

2

1 + 1
2 (γ − 1)M̄1M̄2

)

with ŵS
1 , ŵ−

2 = 0 (26)

TSA =

(

M̄2 − M̄1

1 + M̄2

)(

M̄2

1 + 1
2 (γ − 1)M̄1M̄2

)

with ŵ+
1 , ŵ−

2 = 0 (27)

In a choked nozzle, when assuming the outlet pressure low enough, the flow becomes supersonic

downstream the throat. In this case only acoustic boundary conditions at the inlet of the system
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should be imposed. Imposing acoustic boundary conditions at the outlet leads to an ill-posed

problem: setting a given reflecting condition (for instance (ŵ−
2 = 0)) is physically not correct. In

order to find the different wave coefficients shown in table 1, the problem is divided into two. First,

the subsonic region is solved. Accordingly, the throat of the nozzle is established as the outlet with

M̄2 = 1. Second, the entire domain is solved by accounting for the results obtained in the first step.

The final coefficients are then obtained yielding:

RAA =
1 − 1

2 (γ − 1)M̄1

1 + 1
2 (γ − 1)M̄1

with ŵS
1 = 0 (28)

RSA =
−M̄1

1 + 1
2 (γ − 1)M̄1

with ŵ+
1 = 0 (29)

TAA =
1 + 1

2 (γ − 1)M̄2

1 + 1
2 (γ − 1)M̄1

with ŵS
1 = 0 (30)

TSA =
1
2 (M̄2 − M̄1)

1 + 1
2 (γ − 1)M̄1

with ŵ+
1 = 0 (31)

Equations (24) to (31) are classical equations for compact nozzles, first encountered in the work

of Marble and Candel [23]. It is interesting to observe that the coefficients RAA and RSA do not

depend on the Mach number M̄2 at the supersonic outlet. Indeed, as expected, they only depend

on M̄1 and on the flow conditions at the the throat, where M̄ = 1.

B. Non compact nozzles

The compact assumption is very useful to study the acoustic response of a nozzle when the

acoustic wave length λ is much larger than the nozzle length. Nevertheless, when acoustic and

entropy disturbances fluctuate at large frequencies the jump conditions showed previously become

unsuited since they do not account for phase changes across the nozzle. In order to study the

influence of ‘non-compactness’, different methods are found in the literature [23–25, 32]. Marble

and Candel [23] stated that the main influence of the nozzle finiteness is to alter the phase between

the two wave trains. They showed it analytically by considering that the mean flow velocity changes

linearly through the nozzle. Nevertheless, this assumption is too restrictive for real systems. In this

12



section, the response of non compact nozzles is computed by solving numerically the Linearized

Euler Equations under the quasi-1D assumption (see section II).

Two different nozzle configurations are studied. They are shown in Figure 3 and the mean flow

and geometrical parameters are given in table 2.
A

1
 

A
c
 

A
2
 

M̄1 M̄2

A
1
 

A
2
 

M̄1 M̄2

(a) (b)

Fig. 3 Choked and Unchoked configurations studied

Unchoked Choked

Case Case

A1/Ac 5.651 5.873

A2/Ac 1.000 1.032

M̄2 0.8 1.2

M̄1 0.1

T̄1 1300K

p̄1 800 kPa

Table 2 Mean flow inlet conditions and geometrical parameters

In order to test the reliability of the SNozzle tool (see section II), the results given by this solver

are compared to those obtained by solving the complete set of Euler Equations using a numerical

solver for the unsteady fluid flow equations. Besides, they are compared to the analytical results

obtained under the compact assumption. More precisely, the following approaches are compared in

what follows:

• Analytics: The acoustic parameters RAA, RSA, TAA, TSA are computed through the relations

proposed by Marble & Candel [23]. Equations (24) to (27), and (28) to (31) are then used.

• Quasi-1D LEE (SNozzle): The inlet Mach number M̄1, temperature T̄1 and pressure p̄1

13



are given as inputs to SNozzle as well as the geometry (x coordinate and variable section area

A). The outlet is taken as totally non reflecting (ŵ−
2 = 0) for the non-choked case and is

simply non constrained for the choked case. At the inlet either ŵ+
1 or ŵS are imposed. Two

thousand points are used for both geometries. Note that it was checked that grid convergence

is reached for this level of spatial resolution up to a reduced frequency Ω = 1. Results were

validated against the analytical quasi-1D solver proposed in the work of Duran and Moreau

[26].

• The 3D Euler Equations (AVBP): The LES solver AVBP [33] is used, in which the viscous

terms of the Navier Stokes equations have been neglected. This numerical tool, developed at

CERFACS, is second order accurate in space and time. The Euler equations are spatially

discretized under the finite volume formulation with a cell-vertex approach. Care has to be

taken specially with the use of the inlet/outlet boundary conditions, since both the mean flow

and either the entropy or acoustic wave must be imposed [34]. Special attention should be

paid on how these waves are introduced into the problem since, on the one hand, a totally

non-reflecting inlet/outlet are sought (the imposed and reflected waves, ŵ+
1 and ŵ−

1 , should

be completely evacuated) and, on the other hand, the mean flow must remain constant. In

AVBP, a NSCBC approach [35] is used for the treatment of waves crossing the boundaries.

C. Results

The value of both transmission and reflection coefficients are shown in Fig. (4). They are plotted

against the non-dimensional frequency Ω = fln/c̄1 where f is the frequency, ln the length of the

nozzle and c̄1 the speed of sound at the inlet. It is observed that analytical results are well suited

when considering small frequencies (Ω → 0). Both numerical tools converge to Marble & Candel

expressions when λ ≫ ln for all coefficients.

At small frequencies, it is observed that the main influence of a choked nozzle is the increase of

noise (ŵ+
2 ր) due to entropy waves, as already stated in [31]. This can be seen in the value of TSA

(ŵ+
2 /ŵS

1 ) which is as twice as large when the nozzle is choked. The reflected wave ŵ−
1 also increases,

but to a lesser extent. On the other hand, the acoustic response of the nozzle caused by an incoming

14
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Fig. 4 Reflection and Transmission coefficients for both unchoked and choked cases

acoustic wave remains quite similar (TAA and RAA) for both unchoked and choked configurations.

When the reduced frequency increases, the value of the acoustic coefficients starts to move away

smoothly from the analytical results. On the one hand, when taking into account the unchoked case,

it can be observed that results coming from both numerical solvers can be considered similar up to

Ω ≈ 0.2. For larger frequencies, the 3D Euler solver curves representing RAA, TSA and RSA start to

decrease faster, the largest differences appearing for RAA . On the other hand both numerical solvers

give similar results when considering the choked case for the values of Ω under consideration. It is

interesting to notice that AVBP, a numerical tool used in this study to solve the 3D Euler equations

with second order of accuracy in space and time, is able to retrieve quite well the acoustic response

of a chocked nozzle whereas underestimates the acoustic reflection RAA occurring in an unchoked

nozzle. This is probably due to the numerical scheme used in the 3D Euler solver, which appears

to be dissipative for small length waves, which is the case for the downstream travelling waves ŵS
1

and ŵ+
1 in an unchoked nozzle for high values of Ω. Recall that the mesh is kept unchanged when
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Ω increases, so that numerical errors increase.

V. Response of an ideal compressor

In the previous sections, focus was made on the acoustic response of ducts with varying sections

causing a change in the mean flow: the nozzle case. The purpose of this section is to focus on the

acoustic response of a system when the changes in the mean flow are caused by enthalpy jumps.

An ideal compact compressor is considered here. The first step when modeling a compressor is to

consider it as an element that creates a difference in both the total pressure and the kinetic energy

in the flow, i.e., an element that exerts a work on the flow by changing its total enthalpy. As

represented in Fig. 5, a jump of total enthalpy is considered in the middle of the constant section

duct. This jump comes from the characteristic curve of the turbo-machinery.

w−
2

w+
2

!

!M̄1 M̄2

Compact compressor−
→

Imposed→

Atmosphere
−
→Rin

l1
1 2

Fig. 5 Scheme of the compact compressor configuration

In this configuration an upstream traveling acoustic wave ŵ−
2 is imposed at the outlet while

an acoustic reflection Rin is imposed at the inlet. This analytical/numerical setup is a simplified

representation of the inlet air circuit and compressor of an aeronautical engine. The acoustic waves,

produced in the combustion chamber, travel upstream through the inlet air circuit and the compact

compressor until reaching the atmosphere which is considered as a partial reflecting acoustic con-

dition. A downstream acoustic traveling wave is subsequently reflected and propagates all the way

through the inlet air circuit and compact compressor until arriving at the inlet of the combustion

chamber. The acoustic reflection coefficient Rout = ŵ+
2 /ŵ−

2 is then estimated. As done before, this

study is carried out both analytically and numerically (SNozzle).

It should be noted that, although not explicited in this paper, a similar methodology can be

applied for the acoustic response of a system composed by several turbines stages and a nozzle.
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Yet, some simplifications in the acoustic model can be made when evaluating the impedance at

the combustion chamber outlet. Indeed, the flow is generally choked at the first high pressure

turbine stage [36]. In such a case only the upstream flow influences the acoustic impedance at the

outlet of the combustion chamber. Moreover, a simple expression for the acoustic impedance of

such a boundary condition can be retrieved analytically in the low frequency limit [27]. A stronger

simplification and still satisfactory model can be made as well if acoustics of this choked outlet is

seen as a wall: an acoustic boundary where perturbations of velocity are not allowed.

A. Modeling of the compact compressor element

The compressor may be seen as an element that exerts a change in the total enthalpy of the flow.

In a two dimensional model, this jump of total enthalpy through the compressor can be properly

modeled by the conservation of rothalpy I as follows:

I = ht,1 − U1vθ,1 = ht,2 − U2vθ,2 or ht,1 − ht,2 = U1vθ,1 − U2vθ,2 (32)

where U is the angular velocity of the compressor and vθ is the projection of the velocity vector

v on the plane of U . In a one dimensional model, however, tangential velocities vθ, which are normal

to the flow stream u, do not count among the unknowns and cannot be used to model the rotor

effect. The modeling strategy carried out in this work relies on the characteristic curves, i.e. the

compressor map, which relates the total pressure ratio πc to the mass flow ṁ [37] as shown in Fig. 6.

mass flux ṁ

πc

Su
rg

e
lin

e

1.0

−
→ dπc

dṁ

π
′
c

π
c
=

aṁ
2 +

bṁ
+

c

Ope
ra

tin
g
lin

e

Fig. 6 Map of a typical compressor

The total enthalpy ratio is then given by:
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ht,2

ht,1
=

Tt,2

Tt,1
= πT where πT = π(γ−1)/ηpγ

c (33)

where πT and ηp stand for the total temperature ratio and the polytropic efficiency respectively.

The total pressure ratio πc is defined by a second order polynomial πc = aṁ2 + bṁ + c and clearly

depends on the performance characteristics of the compressor. The logarithmic derivative of Tt can

be then computed as:

ηpγ

γ − 1

(

T̂t,2

T̄t,2
−

T̂t,1

T̄t,1

)

=
π̂c

π̄c
where

π̂c

π̄c
=

2a ¯̇m2 + b ¯̇m

a ¯̇m2 + b ¯̇m + c

(

ˆ̇m
¯̇m

)

= K
ˆ̇m
¯̇m

and ¯̇m = ρ̄ūA (34)

Adding a compact one dimensional compressor to the system is therefore equivalent to add an

additional term to the left hand side of the energy equation (19), as follows :

T̂t,1

T̄t,1
+

γ − 1

ηpγ
K

(

ρ̂1

ρ̄1
+

û1

ū1

)

=
T̂t,2

T̄t,2
(35)

in which the constant K characterizes the compressor at a given operating point. As function

of the Mach number M̄ and the frequency ω of the acoustic perturbations, the continuity (Eq. (18))

and energy (Eq. (35)) equations read respectively:

(1 + M̄1)

M̄1
B+

1 ejωx/c̄1(1+M̄1) −
(1 − M̄1)

M̄1
B−

1 e−jωx/c̄1(1−M̄1) =

(1 + M̄2)

M̄2
B+

2 ejω(x−l1)/c̄2(1+M̄2) −
(1 − M̄2)

M̄2
B−

2 e−jω(x−l1)/c̄2(1−M̄2)

(36)

[

(1 + M̄1)

ζ1
+

K(1 + M̄1)

ηpγM̄1

]

B+
1 ejωx/c̄1(1+M̄1) +

[

(1 − M̄1)

ζ1
−

K(1 − M̄1)

ηpγM̄1

]

B−
1 e−jωx/c̄1(1−M̄1) =

(1 + M̄2)

ζ2
B+

2 ejω(x−l1)/c̄2(1+M̄2) +
(1 − M̄2)

ζ2
B−

2 e−jω(x−l1)/c̄2(1−M̄2)

(37)

The inlet acoustic condition (at x = 0) is given by the inlet reflection coefficient as Rin =

B+
1 /B−

1 . Combining Eqs. (36) and (37) with the inlet acoustic condition and making the incoming

perturbation to be ŵ−
2 = 1 leads to a 4 × 4 system as follows:
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C

























B+
1

B−
1

B+
2

B−
2

























=

























0

0

0

1

























(38)

where the matrix C, for a compact compressor placed at x = l1, is given by

C =

























1 −Rin 0 0

(1+M̄1)
M̄1

ejωl1/c̄1(1+M̄1) −
(1−M̄1)

M̄1

e−jωl1/c̄1(1−M̄1) −
(1+M̄2)

M̄2

(1−M̄2)
M̄2

[

(1+M̄1)
ζ1

+ K(1+M̄1)
ηpγM̄1

]

ejωl1/c̄1(1+M̄1)
[

(1−M̄1)
ζ1

−
K(1−M̄1)

ηpγM̄1

]

e−jωl1/c̄1(1−M̄1) −
(1+M̄2)

ζ2

−
(1−M̄2)

ζ2

0 0 0 1

























(39)

B. Inlet acoustic condition

The acoustic flux fac, normalized by the mean value of the energy flux, is defined as

fac

¯̇mh̄t
=

ṁ′

¯̇m

T ′
t

T̄t
(40)

Replacing now the definition of fac by the left handside of Eqs. (22) and (23) and neglecting

entropy waves (ŵS = 0) leads to a definition of the acoustic flux written in the form:

finlet ,ac

¯̇m1h̄1,t
=

[

(1 + M̄1)

2M̄1
ŵ+

1 −
(1 − M̄1)

2M̄1
ŵ−

1

] [

(1 + M̄1)

2ζ1
ŵ+

1 +
(1 − M̄1)

2ζ1
ŵ−

1

]

(41)

In order to focus on the effect of the acoustic energy generated inside the system on the outlet

reflection coefficient Rout, it is mandatory to assure that no acoustic flux is being imposed at the

inlet of the configuration. For that purpose, one may assume either ṁ′ = 0 or Ṫt
′
= 0. For open

apertures (not a wall), the second alternative is better suited. Satisfying T ′
1,t/T̄1,t = 0 leads to a

ratio between the downstream and upstream acoustic waves given by:

Rin =
w+

w−
= B+/B−ejφ =

(1 − M̄1)

(1 + M̄1)
ejπ (42)
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This reflection coefficient acts as a totally reflecting condition (Rin = 1ejπ) for zero Mach

number flows and tends to zero for inlet flows reaching a choked condition.

C. Compressor modeling in Snozzle.

ii − 2 i + 2

Compressor

Fig. 7 Compact compressor in Snozzle

The compressor is modeled in Snozzle as an isentropic compact element, which is placed between

the nodes i − 1 and i as illustrated in Fig. 7. Between these two nodes, the fluctuating mass and

energy are related by:

ρ̂i−1

ρ̄i−1
+

ûi−1

ūi−1
=

ρ̂i

ρ̄i
+

ûi

ūi
(43)

1

ζi−1

(

M̄i−1
ûi−1

c̄i−1
+

ρ̂i−1

ρ̄i−1

)

+
γ − 1

ηpγ
K

(

ρ̂i−1

ρ̄i−1
+

ûi−1

ūi−1

)

=
1

ζi

(

M̄i
ûi

c̄i
+

ρ̂i

ρ̄i

)

(44)

where ζ = 1 + 1
2 (γ − 1)M̄2 and K, defined in Eq. (34), is a constant related to the character-

istics of the compressor and the mass flux at the operating point. The fluctuating velocity at the

compressor inlet ûi,2 and the fluctuating density at the compressor outlet ρ̂i+1,1 are expressed as

function of neighboring parameters:

ûups = ûi−1 = Γ · ûi + Λ · ρ̂i−1 (45)

ρ̂down = ρ̂i = Υ · ûi + Ω · ρ̂i−1 (46)

After combining Eqs. (43) and (44) with Eqs. (45) and (46) , it can be found that the constants

Γ, Λ, Υ and Ω are defined by:

Γ =
ūi−1c̄

2
i−1ζi−1ηpγ(ū2

i − c̄2
i )

ūic̄2
i Θ

(47)
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Cases Studied π̄c = 1.0 π̄c = 2.0 π̄c = 5.0

π̂c = 0 A01 A02 A03

π̂c = −1.0 A04

π̂c = −1.5 A05

Table 3 Five different configurations as function of π̄c and π̂c. For this cases the polytropic

efficiency ηp is considered equal to one. Values of π̂c and π̄c are taken from typical values of

actual aeronautical compressors.

Λ =
ūi−1c̄

2
i−1 [ηpγ(ζi−1 − ζi) − ζiζi−1K(γ − 1)]

ρ̄i−1Θ
(48)

Υ =
ρ̄i

[

ū2
i c̄

2
i−1ζi−1ηpγ − ū2

i−1c̄
2
i ζiηpγ − c̄2

i c̄
2
i−1ζiζi−1K(γ − 1)

]

c̄2
i ūiΘ

(49)

Ω =
ρ̄i

[

ζiηpγ(ū2
i−1 − c̄2

i−1) − c̄2
i−1K(γ − 1)(ζ2

i − ζiζi−1)
]

ρ̄i−1Θ
(50)

where

Θ = ū2
i−1ζiηpγ + c̄2

i−1ζiζi−1K(γ − 1) − c̄2
i−1ζi−1ηpγ (51)

These parameters are injected into the discretized equations of continuity Eq. (11) and momen-

tum Eq. (12) at nodes i− 1 and i. In addition to validate the numerical tool Snozzle by comparing

its results to the analytical ones, this section aims at studying the effect of a compact compressor on

the outlet reflection coefficient defined as Rout = ŵ+
2 /ŵ−

2 of a constant section intake. Five cases are

evaluated as shown in table 3 and Fig. 8. No π̂c > 0 is considered here as it corresponds to unstable

operating points. For the cases shown in table 3, the downstream mean values of temperature,

pressure and Mach number are T̄2 = 600 K, p̄2 = 200 kPa and M̄2 = 0.1, respectively.

D. Results

Figures 9 and 10 show the different values of the reflection coefficient Rout = ŵ+
2 /ŵ−

2 for the

cases shown in table 3. This reflection coefficient is plotted against the non-dimensional frequency
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Fig. 8 Cases evaluated (see table 3). They are given by the intersection between the polynomial

curves and the vertical line at ṁ = 0.1425 kg/s. Dashed lines corresponds to the cases for which

the slope of πc is π̂c = −1.0 (A04) and π̂c = −1.5 (A05).

Ω = fln/c̄2. As a first observation it is seen that numerical results coming from the Helmholtz solver

match the analytical results very well for all cases. On the one hand, the modulus of Rout seems to

be a quantity that does not depend on the mean value of the pressure ratio at all: |R|out = 0.81 for

all cases shown in Fig. 9. This result is actually expected since Eq. (35) tells us that the normalized

fluctuation energy T̂t/T̄t must remain constant through the compact compressor as long as there is

no pressure ratio fluctuations (π̂c = 0 or K = 0). Figure 9 also shows, on the other hand, that the

argument of Rout strongly depends on the value of π̄c. In a reference case (π̄c = 1), the argument of

Rout evolves linearly as expected for an homogeneous mean field. However, as soon as π̄c increases,

the argument of Rout moves away from this linear behavior and takes values that can be actually

phase shifted up to π with respect to the reference case. It will be observed in the next section that

small changes in the argument of R for an intake outlet can lead to very different estimations of the

acoustic modes of a given combustion chamber.

In the low frequency limit, the downstream acoustic wave ŵ+
2 can be analytically described by
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Fig. 9 Reflection coefficient at intake’s outlet. The fluctuating value π′

c is set to zero while

the mean value π̄c varies from 1.0 until 5.0. Symbols and straight lines represent numerical

and analytical results respectively.

the following relation:

ŵ+
2 =

(1 − M̄2)(Kζ2 + γM̄2)

(1 + M̄2)(Kζ2 − γM̄2)
ŵ−

2 (52)

According to Eq. (52), values of ŵ+
2 , and therefore Rout, can be strongly amplified when K →

γM̄2/ζ2. Compressor operating point is most of the time established for cases in which π̂c < 0 (see

Fig. 6 ). For these cases the definition of the downstream acoustic wave ŵ+
2 (Eq. (52)) does not

present any singularity since K is always negative. Attention is only paid then to π̂c ≤ 0. Fig. 10

shows values of π̂c going from 0 until -1.5. On the one hand, it is observed from Fig. 10 that the

values of Rout, for the modulus, are always below those for which π̂c = 0. On the other hand, values

for the argument of Rout vary very little when decreasing the fluctuating quantity π̂c.

E. Model extension to a more general compressor

In the present work the whole compressor is modeled as a compact element that adds energy

to the system by modifying its total pressure and kinetic energy. This can be extended to a non
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Fig. 10 Reflection coefficient at intake’s outlet. The mean value of the pressure ratio remains

constant at π̄c = 2.0 while the fluctuating value π̂c varies from 0.0 until -1.5. Symbols and

straight lines represent numerical and analytical results respectively.

compressor by considering a sum of rotor/stator combinations. On the one hand, each rotor row

could be modeled as a compact element that adds total enthalpy to the system. On the other hand,

each stator row could be modeled as an isentropic element that adds a phase lag to the incoming

acoustic waves. Finally, the sum of the contributions of each individual element would characterize

the acoustics of an entire compressor stage. This a convenient approach in the framework of linear

acoustics.

VI. Computation of the Reflection Coefficient on the Inlet air circuit of an Helicopter

combustor chamber

The numerical tool described above can be used to compute the equivalent impedance of any

air-intake duct with or without total enthalpy change at the compressor location. It is well known

that the resonant modes of any combustion chamber are strongly dependent on the inlet and outlet

acoustic boundary conditions used [13]. On the one hand, the flow at the outlet of the combustion

chamber (the high pressure distributor) is generally choked [36]. In this case, and for low frequencies,

it is known that the reflection coefficient can be considered close to that of a rigid wall. On the

24



other hand, the same cannot be stated at the inlet, as acoustic properties of the combustion chamber

inlet are fully dependent on the upstream configuration of the combustor. Wrong predictions of the

resonant frequencies can be caused by simplified treatment of the inlet impedance.

Aeronautical engines are complex systems in which the combustion chamber is present just in

a small region after the compressor stages. From the point of view of the combustor, the upstream

region is then composed by several compression stages in which acoustics depends on enthalpy

jumps (compressors), the intake inlet acoustic condition (usually related to the atmosphere) and

the geometry of the entire intake system. In the remaining of this paper, the numerical tool discussed

in sections II-V is used to assess the acoustic reflection coefficient at the inlet of the combustion

chamber, i.e outlet of the air-intake duct Rout. The intake belongs to an helicopter combustor and

is shown in Fig. 11. Once this acoustic boundary condition is evaluated, it can be imposed in a

Helmholtz solver computation or in a Large Eddy Simulation [21, 38]

Low Pressure High Pressure
Compressor

Intake’s inlet

Compressor

T̄out = 584.6 K

p̄out = 894320 Pa

M̄out = 0.05

p′ = −ρ̄ūu′

Curvilinear axis

Combustion
chamber

Rout ?

x0

xLP xHP

Fig. 11 Air-intake duct configuration.

A. Mean parameters of the Intake Duct

SNozzle requires the mean temperature and pressure, the mean value of the Mach number at

the outlet and the section area at several points of the curvilinear axis of the air-intake duct. The

position and the total pressure jump of the compressors is also needed in order to characterize

the mean flow. It is assummed, when describing the mean flow along the intake duct, that the
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compressors are acoustically compact. It means that the curvilinear length of the compressors (see

Figs. 11 and 14) is small compared to the acoustic wavelengths of interest. For this reason, the

evolution of the mean flow along the compressors is left aside and, instead, a sudden jump in the

total mean flow quantities is considered at the middle of the curvilinear axis of each compressor

(dashed lines in Fig. 11).

In the present helicopter system, the compression of gases is not performed in an isentropic

manner: instead of one, the polytropic coefficient has a value around ηp = 0.88 for both compressor

stages. This value of ηp will be accounted for in one of the three cases considered for the evaluation

of the mean field. This is done in order to illustrate the effect of small changes in the mean field on

the estimation of the reflection coefficient. It should be pointed out that although the compressors

are not anymore considered isentropic for the mean field, they are still taken as isentropic for the

fluctuating field since no entropy waves are assumed to be generated (and therefore ηp = 1 in

Eq. (44)). Figure 12 shows the mean field of total pressure and total temperature corresponding

to the helicopter intake considered for three different cases: a) constant total pressure along the

intake duct, b) isentropic mean flow with isentropic total pressure jumps due to compressors and

c) isentropic mean flow with non-isentropic total pressure jumps due to actual compressors with

ηp < 1.

It should be noted that only by modeling the total enthalpy jumps through the compressors

it is possible to estimate a reliable mean field, notably the Mach number that in fact determines

the acoustic wavelengths. Most of existing quasi 1D -LEE solvers, however, do not account for any

change in total enthalpy [25, 27]. An illustration of the Mach number (normalized by the Mach

number at the outlet of the intake) for the three cases already mentioned is shown in Fig. 13. As

expected the introduction of the two compressor rows induces a strong variation of Mach number.

Accounting for the polytropic efficiency only reduces this parameter slightly mainly in the low

pressure compressor.
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Fig. 12 Total pressure and total temperature profiles normalized by the corresponding values

at the outlet of the air-intake duct.
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Fig. 13 Mach number normalized by the corresponding values at the outlet of the air-intake

duct.

B. Results

As described in section V, the reflection coefficient at the outlet of the intake duct Rout is

estimated by evaluating the ratio between the reflected acoustic wave ŵ+
2 and the imposed acoustic

wave ŵ−
2 as illustrated in Fig. 14. The acoustic reflection at the inlet of the air-intake Rin is

partially reflecting and is associated to Eq. (42), as done in section V for the ideal 1D intake. The

two compressors present in the inlet-air duct are assumed acoustically compact and the associated

total pressure ratio πc, which is direclty related to the mass flow by the characteristic curves (see

Fig. 6), is given by Eq. (34). From section V it was observed, for an ideal 1D intake, that no

significant changes in the estimation of Rout (mainly phase) are obtained when either considering

or not the fluctuating contribution π̂c. Therefore, in this study only the mean contribution of the

total pressure ratio π̄c of each compressor is accounted for.
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Fig. 14 Model of air-intake duct.

Figure 15 shows both the estimated modulus and argument of Rout for the above three cases

studied. These two parameters are function of the frequency that ranges from 0 to 600 Hz. This

upper value is taken assuming that a compressor remains acoustically compact if its length is ten

times smaller than the acoustic wave length. The module of Rout has a constant value of 0.9

when no total pressure ratio is considered whereas it smoothly oscillates between 0.9 and 0.98 when

accounting for compact compressors. In spite of this, it can be considered that there is not any

significative difference between the three cases studied for values of the module of Rout. On the

contrary big changes are found, as expected from the results of the previous section, when observing

the values of the argument of Rout: the phase difference between ŵ+
2 and ŵ−

2 increases faster as the

frequency grows for the two cases accounting for total pressure changes. This fact may influence

the resonance frequency of the combustion chamber dramatically. The influence of considering

a polytropic coefficient when computing the mean field is finally observed. It is seen in Fig. 15

that almost no differences exist for both modulus and argument of Rout if the mean field of the

temperature is modified by applying this value of ηpol.

VII. Helmholtz Solver Computation

AVSP [13, 20, 21, 39] is the Helmholtz solver used here to compute the different acoustic modes

of the aero-engine of interest. Most of the time the outlet of the combustion system is choked, which

corresponds, for low frequencies, to an acoustic condition similar as u′ = 0. The acoustic condition

at the inlet is most of the time unknown. Usually, this boundary condition is also approximated by
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Fig. 15 Reflection Coefficient at the outlet of the helicopter intake duct.

u′ = 0 even though it is actually not correct. The purpose of this section is then to show how the

first two acoustic modes of the chamber under study vary according to the imposed inlet acoustic

condition Rout
[†].

Figure 16 shows the values of the resonance frequency as function of the modulus and argument

of Rout. First, it is assumed an inlet reflection coefficient in which arg(Rout) = 0 and |Rout| varies

from 0.1 to 10. This large range is studied to gain an overview of the associated effects on the

combustion chamber acoustics. Clearly, large values of |Rout| would mean that external acoustic

energy enters the system. Second, |Rout| is maintained equal to 0.9 and arg(Rout) is varied from −π

to π. It is seen that a significant variation is produced on the resonant frequency of the first two

acoustic modes when the phase of Rout is changed at the inlet of the combustor. This is notably

the case for the first mode since this frequency can vary up to 400 when modifying the phase from

−π to π. The same shift of phase can modify the resonant frequency of the second mode until 100

Hz. These results are obtained maintaining |Rout| = 0.9. Similar results are obtained for a fixed

modulus |Rout| = 1.0, and therefore it can be stated that results shown in Fig. 16 are representative

[†] In this section Rout is associated with the inlet of the combustion chamber, i.e. the outlet of the air-intake duct
(see Fig. 11 and Fig. 18) .
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Fig. 16 Dependance on the inlet reflection coefficient (Rout of the Air-intake) of the combustion

chamber resonance frequencies of the first two acoustic modes - Helmholtz solver results.

of the range of |Rout| of interest (Fig. 15).

Varying the modulus of the reflection coefficient Rout does not imply a significative change

in any of the first two acoustic modes of the combustor. These results are expected, since only

the phase of Rout can notably alter the wavelength of the acoustic fluctuations inside the system,

and, therefore, the corresponding resonance frequency. The modulus, on the contrary, does not

alter considerably this wave length but, instead, acts on the amount of acoustic energy subtracted

from the system. This should be clear if the modulus and argument of Rout are thought as the

acoustic resistance (real part of the acoustic impedance) and acoustic reactance (imaginary part of

the acoustic impedance) of the acoustic boundary, respectively.

Results shown in Fig. 16 are obtained for a long range of values of Rout by changing either the

associated module or phase. Now, the reflection coefficient Rout obtained by the procedure of section

VI is used to compute the acoustic modes of the combustion chamber. The effect of compressors at

the air-intake duct can then be assessed.

With this in mind, and in order to get an overall view of the possible resonant frequencies of the
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Fig. 17 Reflection coefficient Rout at the outlet of the helicopter intake duct (grey lines).

Resonance frequency of the combustion chamber when varying the argument of the reflection

coefficient at its inlet (red lines). Intersection of red and grey lines (marked with crosses)

represent expected resonance frequencies of the combustion chamber when coupled with the

air intake under study.

combustion chamber, Fig. 15 and Fig. 16(b) are merged and represented in Fig. 17. Note that the

axes of Fig. 16(b) are inverted in Fig. 17. The points of intersection between the red and grey lines,

marked with a cross in Fig. 17, may represent the resonance frequency of the combustion chamber

when coupled with the air intake under study. The frequency associated with the second acoustic

mode is practically not altered if Rout corresponds to an intake either with or without compressors:

in both cases it has a value around 500 Hz. In contrast, the frequency corresponding to the first

acoustic mode is clearly influenced by the way Rout is evaluated. Whereas it has values of ≈ 40 Hz

if compressors are included in the computation of Rout, it presents values of ≈ 80 Hz if compressors

are not included in the computation. In order to verify this graphical analysis, computations are

carried out with the Helmholtz solver. Results show that, on the one hand, when compressors are

considered to estimate Rout, the resonant frequencies are 51.5 Hz and 507.4 Hz for the first and

second acoustic mode, respectively. The second acoustic mode is illustrated in Fig. 18. On the other

hand, when compressors are not accounted for in the air-intake, the combustion chamber resonant

frequencies are 86.8 Hz and 506.6 Hz, for the first and second acoustic mode respectivelty. It is then

observed that the value of Rout used to estimate the first acoustic mode of the combustion chamber

is not trivial. The approach described in the present study might be useful in order to reach an

accurate prediction of this frequency of oscillation.
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Fig. 18 Second acoustic mode of the Aeroengine combustor (507.4 Hz). Rout for an air-intake

duct with compressors.

VIII. Conclusions

A numerical tool has been developed to compute the acoustic field of quasi-1D configurations

accounting for total enthalpy jumps. This kind of situation is in fact present in the inlet-air circuit of

actual aeronautical engines. Modeling this total pressure jump is not an easy task in the framework of

a quasi 1D system: the concept of rothalpy cannot be developed. A model is then considered in which

the total pressure ratio πc of each compressor is related to the characteristics curves of this element

at a given operating point. In this way, it is possible to express the mean and fluctuating values of

πc as a function of the mass flow and, as a consequence, to formulate two conservation equations

through this interface. Analytical solutions are subsequently developed for compact compressors

immersed in constant section ducts. These solutions are compared to the results obtained by the

Helmholtz solver for validation purposes. Finally, the outlet reflection coefficient Rout of an air-inlet

circuit of an actual combustion chamber is computed. Significative differences on the estimate of

Rout results when comparing computations in which total pressure jumps are either considered or

not. It has been also observed that the argument of Rout, on the contrary to the modulus of Rout,

plays an important role on the value of the eigenfrequencies of the combustion chamber studied.
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Appendix

In order to validate SNozzle, analytical solutions are derived for compact regions where the mean

enthalpy or entropy may change. The starting point for this derivation are the 1D Euler equations

for mass, momentum and total enthalpy.

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (53)

∂ρu

∂t
+

∂

∂x
(ρu2) = −

∂p

∂x
+ F (54)

∂ρht

∂t
+

∂

∂x
(ρuht) −

∂p

∂t
= Q̇ + W (55)

Integrating over the 1D domain between positions x1 and x2 results in

∫ x2

x1

∂ρ

∂t
dx +

∫ x2

x1

∂

∂x
(ρu)dx = 0

∫ x2

x1

∂ρ

∂t
dx + (ρu)

∣

∣

∣

∣

x2

x1

= 0

(56)

∫ x2

x1

∂ρu

∂t
dx +

∫ x2

x1

∂

∂x
(ρu2)dx +

∫ x2

x1

∂p

∂x
dx −

∫ x2

x1

Fdx = 0

∫ x2

x1

∂ρu

∂t
dx + (ρu2)

∣

∣

∣

∣

x2

x1

+ p

∣

∣

∣

∣

x2

x1

− F = 0

(57)

∫ x2

x1

∂ρht

∂t
dx −

∫ x2

x1

∂p

∂t
dx +

∫ x2

x1

∂

∂x
(ρuht)dx −

∫ x2

x1

Q̇dx −

∫ x2

x1

Wdx = 0

∫ x2

x1

∂ρht

∂t
dx −

∫ x2

x1

∂p

∂t
dx + (ρuht)

∣

∣

∣

∣

x2

x1

− Q̇ − W = 0

(58)

where the following notations have been introduced:
∫

Q̇dx = Q̇,
∫

Fdx = F and
∫

Wdx = W. After

linearizing and considering harmonic oscillations (φ′ = φ̂e−jωt), Eqs. (56), (57) and (58) become

ρ̄ū

(

ρ̂

ρ̄
+

û

ū

) ∣

∣

∣

∣

x2

x1

= jω

∫ x2

x1

ρ̂dx (59)

ρ̄ū2

(

ρ̂

ρ̄
+ 2

û

ū

) ∣

∣

∣

∣

x2

x1

+ p̄

(

p̂

p̄

) ∣

∣

∣

∣

x2

x1

− F̂ = jω

∫ x2

x1

(ρ̄û + ρ̂ū) dx (60)

ρ̄ūh̄t

(

ρ̂

ρ̄
+

û

ū
+

ĥt

h̄t

)

∣

∣

∣

∣

x2

x1

− ˆ̇
Q − Ŵ = jω

∫ x2

x1

(

ρ̄ĥt + ρ̂h̄t − p̂
)

dx (61)
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The contribution of the RHS terms on the above equations goes to zero for a compact region

(x1 → x2) as long as only bounded fluctuations exist within this region, as also assumed in the work

of Dowling [4]. Equations (59), (60) and (61) are then simplified to

ρ̂1

ρ̄1
+

û1

ū1
=

ρ̂2

ρ̄2
+

û2

ū2
(62)

ρ̄1ū
2
1

(

ρ̂1

ρ̄1
+ 2

û1

ū1

)

+ p̄1

(

p̂1

p̄1

)

+ F̂ = ρ̄2ū
2
2

(

ρ̂2

ρ̄2
+ 2

û2

ū2

)

+ p̄2

(

p̂2

p̄2

)

(63)

ρ̄1ū1h̄t1

(

ρ̂1

ρ̄1
+

û1

ū1
+

ĥt1

h̄t1

)

+ ˆ̇
Q + Ŵ = ρ̄2ū2h̄t2

(

ρ̂2

ρ̄2
+

û2

ū2
+

ĥt2

h̄t2

)

(64)

where the indices 1 and 2 denote the regions upstream or downstream of any infinitely thin compact

element; ˆ̇
Q, F̂ and Ŵ being the total heat, force and work associated to this element.
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