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Abstract

In machine learning, the domain adaptation problem arrives when the test (target) and the train
(source) data are generated from different distributions. A key applied issue is thus the design of
algorithms able to generalize on a new distribution, for which we have no label information. We
consider the specific PAC-Bayesian situation focused on learning classification models defined as a
weighted majority vote over a set of real-valued functions. In this context, we present PV-MinCq
a new framework that generalizes the non-adaptive algorithm MinCq. PV-MinCq follows the next
principle. Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target
sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the
source and target marginals appear similar. We also study the influence of our self-labeling, from
which we deduce an original process for tuning the hyperparameters. Finally, our experiments show
very promising results.

Keywords: Machine learning; Classification; Domain adaptation; Majority vote; PAC-Bayes

1 Introduction

Nowadays, due to the expansion of Internet a large amount of data is available. Then, many applications
need to make use of supervised machine learning methods able to transfer knowledge from different
information sources, which is known as transfer learning1. In such a situation, we cannot follow the
strong standard assumption in machine learning that supposes the learning and test data drawn from
the same unknown distribution. For instance, one of the tasks of the common spam filtering problem
consists in adapting a model from one user to a new one who receives significantly different emails. This
scenario, called domain adaptation (DA), arises when we aim at learning from a source distribution a well
performing model on a different target distribution, for which one considers an unlabeled sample (or few
labels)2. In this paper we design a new DA framework when we have no target label. This latter situation
is known to be challenging (Ben-David and Urner, 2012).

To address this kind of issues, several approaches exist in the literature3. Among them, the instance
weighting-based methods allow us to deal with the covariate-shift where the distributions differ only in
their marginals (e.g. Huang et al. (2007)). Another technique is to exploit self-labeling procedures.
However, it often relies on iterative and heavy self-labeling. For example, one of the reference methods is
DASVM (Bruzzone and Marconcini, 2010). Concretely at each iteration, DASVM learns a SVM classifier
from the labeled source examples, then some of them are replaced by target data auto-labeled with this
SVM classifier4. A third popular solution is to take advantage of a distance between distributions, with
the intuition that we want to minimize this divergence while preserving good performance on the source

∗Most of the work in this paper was carried out while Emilie Morvant was affiliated with Institute of Science and
Technology (IST) Austria, 3400 Klosterneuburg.

1See (Pan and Yang, 2010; Quionero-Candela et al., 2009) for surveys on transfer learning
2The task with few target labels is sometimes referred to as semi-supervised DA, and the one without target label as

unsupervised DA.
3See (Margolis, 2011) for a survey on DA.
4In DASVM, the self-labeled points correspond to those with the lowest confidence, and the deleted source points are

those with the highest confidence.
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data: If the distributions are close under this measure, then generalization ability may be “easier” to
quantify. The most popular divergences, such as the H∆H-divergence of Ben-David et al. (2007, 2010)
and the discrepancy of Mansour et al. (2008), involve the disagreement between classifiers. Although
they lead to different analyses, they enhance to the same conclusion that is the disagreement between
classifiers must be controlled while keeping a good source performance. Obviously, other divergences for
evaluating how much two distributions differ exist in the literature and could be investigated in a DA
scenario. For example, we can cite the perturbed variation (PV) (Harel and Mannor, 2012) on which we
will pay our attention for designing a non-iterative self-labeling process. This measure is based on the
following principle: Two samples are similar if each instance of one sample is close to an instance of the
other sample.

In this work, we investigate the special issue of PAC-Bayesian DA introduced by Germain et al.
(2013), which focuses on learning target weighted majority votes over a set of classifiers (or voters). Their
analysis stands in the class of approaches based on a divergence between distributions. This latter, called
the domain disagreement, has been justified by a tight bound over the risk of the majority vote— the
C-bound (Lacasse et al., 2007) —and has the advantage to take into account the expectation of the
disagreement between pairs of voters. Although their theoretical analysis is elegant and well-founded, the
algorithm derived is restricted to linear classifiers. We then intend to design a learning framework able to
deal with weighted majority votes over real-valued voters in this PAC-Bayesian DA scenario. With this
aim in mind and knowing the C-bound has lead to a simple and well performing algorithm for supervised
classification, called MinCq (Laviolette et al., 2011), we extend it to DA thanks to a non-iterative self-
labeling. Firstly, we propose a new formulation of the C-bound suitable for every self-labeling function
(which associates a label to an example). Then, we design such a function with the help of the empirical
PV. Concretely, our PV-based self-labeling focuses on the regions where the source and target marginals
are closer, then it labels the (unlabeled) target sample only in these regions (see Figure 1, in Section 3.2).
This self-labeled sample is then provided to MinCq. Afterwards, we highlight the influence of our self-
labeling, and deduce an original validation procedure. Finally, our framework, named PV-MinCq, implies
good and promising results, better than a nearest neighborhood-based self-labeling, and than other DA
methods.

The rest of the paper is organized as follows. Section 2 recalls the PAC-Bayesian DA setting of
(Germain et al., 2013), and then MinCq and its theoretical basis in the supervised setting (Laviolette
et al., 2011). In Section 3 we present PV-MinCq, our adaptive MinCq based on a PV-based self-labeling
procedure. Before conlude, we experiment our framework on a synthetic problem in Section 4.

2 Notations and background

In this section, we first review the PAC-Bayesian setting in a non-adaptive setting, and then the results
of Germain et al. (2013) and Laviolette et al. (2011).

2.1 PAC-Bayesian setting in supervised learning

We recall the usual setting of the PAC-Bayesian theory—introduced by McAllester (1999)—which offers
generalization bounds (and algorithms) for weighted majority votes over a set of real-valued functions,
called voters.

Let X ⊆ R
d be the input space of dimension d and Y = {−1,+1} be the output space, i.e. the set of

possible labels. PS is an unknown distribution over X × Y , that we called a domain. (PS)
ms =

⊗ms

s=1 PS

stands for the distribution of a ms-sample. The marginal distribution of PS over X is denoted by DS .
We consider S = {(xs, ys)}

ms

s=1 a ms-sample independent and identically distributed (i.i.d.) according to
(PS)

ms , commonly called the learning sample. Let H be a set of n (bounded) real-valued voters such that:
∀h ∈ H, h : X → R. Given H, the ingredients of the PAC-Bayesian approache are a prior distribution
π over H, a learning sample S and a posterior distribution ρ over H. Prior distribution π models an a
priori belief on what are the best voters from H, before observing the learning sample S. Then, given the
information provided by S, the learner aims at finding a posterior distribution ρ leading to a ρ-weighted
majority vote Bρ over H with nice generalization guarantees. Bρ and its true and empirical risks are
defined as follows.

Definition 1. Let H be a set of real-valued voters. Let ρ be a distribution over H. The ρ-weighted
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majority vote Bρ (sometimes called the Bayes classifier) is:

∀x ∈ X, Bρ(x) = sign

[
E

h∼ρ
h(x)

]
.

The true risk of Bρ on a domain PS and its empirical risk5 on a ms-sample S are respectively:

RPS
(Bρ) =

1

2

(
1− E

(xs,ys)∼P
ysBρ(xs)

)
,

RS(Bρ) =
1

2

(
1−

1

ms

ms∑

s=1

ysBρ(xs)

)
.

Usual PAC-Bayesian analyses6 do not directly focus on the risk of Bρ, but bound the risk of the closely
related stochastic Gibbs classifier Gρ. It predicts the label of an example x by first drawing a classifier h
from H according to ρ, and then it returns h(x). The risk of Gρ corresponds thus to the expectation of
the risks over H according to ρ:

RP (Gρ) = E
h∼ρ

RP (h) =
1

2

(
1− E

(xs,ys)∼P
E

h∼ρ
ysh(xs)

)
. (1)

Note that it is well-known in the PAC-Bayesian literature that the deterministic Bρ and the stochastic
Gρ are related by:

RP (Bρ) ≤ 2RP (Gρ). (2)

2.2 PAC-Bayesian domain adaptation of the Gibbs classifier

Throughout the rest of this paper, we consider the PAC-Bayesian DA setting introduced by Germain et al.
(2013). The main difference between supervised learning and DA is that we have two different domains
over X × Y : the source domain PS and the target domain PT (DS and DT are the respective marginals
over X). The aim is then to learn a good model on the target domain PT knowing that we only have label
information from the source domain PS . Concretely, in the setting described in Germain et al. (2013), we
have a labeled source ms-sample S = {(xs, ys)}

ms

t=1 i.i.d. from (PS)
ms and a target unlabeled mt-sample

T = {xt}
mt

t=1 i.i.d. from (DT )
mt . One thus desires to learn from S and T a weighted majority vote with

lowest possible expected risk on the target domain RPT
(Bρ), i.e. with good generalization guarantees

on PT . Recalling that usual PAC-Bayesian generalization bound study the risk of the Gibbs classifier,
Germain et al. (2013) have done an analysis of its target risk RPT

(Gρ). Their main result is the following
theorem.

Theorem 1 (Theorem 4 of (Germain et al., 2013) applied to real-valued voters). Let H be a set of real-valued
voters. For every distribution ρ over H, we have:

RPT
(Gρ) ≤ RPS

(Gρ) + disρ(DS , DT ) + λρ, (3)

where disρ(DS , DT ) is the domain disagreement between the marginals DS and DT , and is defined by:

disρ(DS , DT )=

∣∣∣∣ E
(h,h′)∼ρ2

(
E

xt∼DT

h(xt)h
′(xt)− E

xs∼DS

h(xs)h
′(xs)

)∣∣∣∣ , (4)

and λρ is related7 to the true labeling on PS and PT .

Note that this bound reflects the usual philosophy in DA: It is well known that a favorable situation for
DA arrives when the divergence between the domains is small while achieving good source performance
(Ben-David et al., 2007, 2010; Mansour et al., 2008). Germain et al. (2013) have then derived a first

5We express the risk with the linear loss since we deal with real-valued voters, but in the special case of Bρ the linear
loss is equivalent to the 0−1-loss.

6Usual PAC-Bayesian analyses can be found in (McAllester, 2003; Seeger, 2002; Langford, 2005; Catoni, 2007; Germain
et al., 2009).

7In practice, we cannot compute λρ, since it depends greatly on the unavailable target labels. We then suppose that it
is negligible. Thus, we do not develop this point here, but more details can be found in (Germain et al., 2013).
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promising algorithm called PBDA for minimizing this trade-off between source risk and domain disagree-
ment. Although PBDA has shown the usefulness of PAC-Bayes for tackling DA, it remains specific to
linear classifiers, it does not directly focus on the majority vote, and does not provide the best empirical
results regarding to state-of-the-art methods.

In this paper, our goal is to tackle this drawbacks to propose a novel algorithm for learning an adaptive
weighted majority vote over a set of real-valued voters. To do so, the point which calls our attention here
is the domain disagreement of Equation (4). Indeed, it finds its root in the theoretical bound (the C-bound
(Lacasse et al., 2007)) over the (source) risk of the majority vote, from which (Laviolette et al., 2011) have
derived an elegant and performing non-adaptive algorithm for learning a weighted majority vote over a
set of real-valued voters (MinCq). We recall now these non-DA results, then we extend them to DA in
Section 3.1.

2.3 MinCq a supervised algorithm for learning majority votes

The classical relation between the stochastic Gρ and the majority vote Bρ (Equation (2)) can be very
loose. To tackle this drawback, Lacasse et al. (2007) and Laviolette et al. (2011) have proven a recent
tighter relation stated in the following in Theorem 2 (the C-bound). This result is based on the notion of
ρ-margin defined as follows.

Definition 2 (Laviolette et al. (2011)). The ρ-margin of an example (x, y) ∈ X × Y realized on the
distribution ρ of support H is given by: E

h∼ρ
yh(x).

By definition of Bρ, it is easy to see that Bρ correctly classifies an example xs if the ρ-margin is strictly
positive. Thus, under the convention that if ysEh∼ρ h(xs) = 0, then Bρ commits an error on (xs, ys), for
every domain PS on X × Y , we have:

RPS
(Bρ) = Pr

(xs,ys)∼PS

(
E

h∼ρ
ysh(xs) ≤ 0

)
.

Knowing this, Lacasse et al. (2007) and Laviolette et al. (2011) have proven the following C-bound over
RP (Bρ) by making use of the Cantelli-Chebitchev inequality.

Theorem 2 (The C-bound as expressed in Laviolette et al. (2011)). For all distribution ρ over H, for all
domain PS over X × Y of marginal (over X) DS, if E

h∼ρ
E

(xs,ys)∼PS

ysh(xs) > 0, then:

RPS
(Bρ) ≤ 1−

(
E

h∼ρ
E

(xs,ys)∼PS

ysh(xs)

)2

E
(h,h′)∼ρ2

E
xs∼DS

h(xs)h′(xs)
.

The numerator of this bound corresponds in fact to the first moment of the ρ-margin of Bρ realized
on PS , which is related to the risk of the Gibbs classifier (Equation (1)). The denominator is the second
moment of this ρ-margin, which can be seen as a measure of disagreement between the voters from H
(the lowest this value is, the more the voters disagree) and can be related to the domain disagreement
(Equation (4)).

In the supervised setting, Laviolette et al. (2011) have then proposed to minimize the empirical coun-
terpart of the C-bound for learning a good majority vote over H, justified by an elegant PAC-Bayesian
generalization bound. Following this principle the authors have derived a quadratic program called MinCq
and described in Algorithm 1. Concretely, MinCq learns a weighted majority vote by optimizing the em-
pirical C-bound measured on the learning sample S: It minimizes the denominator, i.e. the disagreement
(Equation (5)), given a fixed numerator i.e. a fixed risk of the Gibbs classifier (Equation (6)), under a
particular regularization (Equation (7))8. Note that, MinCq has showed good performances on supervised
classification tasks.

The key point here is that, through a DA point of view, the C-bound, and thus MinCq, focus on
the trade-off suggested by Theorem 3. Indeed, the definition of the domain disagreement (Equation (4))
is related to the C-bound according to the following statement: If source and target risks of the Gibbs

8For more technical details on MinCq please see (Laviolette et al., 2011).
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Algorithm 1 MinCq(S,H, µ)

input A ms-sample S={(xs, ys)}
ms
s=1∼(PS)

ms , a set of n voters H = {h1, . . . , hn}, a desired margin µ>0

output Bρ(·) = sign

[
n∑

j=1

(
2ρj −

1

n

)
hj(·)

]

Solve argmin
ρ

ρ
T
Mρ−A

T
ρ, (5)

s.t. m
T
ρ =

µ

2
+

1

2nms

n∑

j=1

ms∑

s=1

yshj(xs), (6)

∀j ∈ {1, . . . , n}, 0 ≤ ρj ≤
1

n
, (7)

where ρ = (ρ1, . . . , ρn)
⊤ is a weight vector, and M is the n × n matrix formed by

ms∑

s=1

hj(xs)hj′ (xs)

ms
for

(j, j′)∈{1, . . . , n}2,

and m =

(
1

ms

ms∑

s=1

ysh1(xs), . . . ,
1

ms

ms∑

s=1

yshn(xs)

)
⊤

,

and A =

(
n∑

j=1

ms∑

s=1

h1(xs)hj(xs)

nms

, . . . ,
n∑

j=1

ms∑

s=1

hn(xs)hj(xs)

nms

)⊤

classifier are similar, then the source and target risks of the majority vote are similar when the deviation
between the source and target voters’ disagreement tends to be low.

We thus now propose to make use of the C-bound and MinCq for designing an original and general
framework for learning a majority vote over a set of real-valued voters in a DA scenario.

3 An adaptive MinCq

In this section, we introduce our new DA framework for learning a weighted majority vote over a set of
real-valued voters. In order to take advantage of the algorithm MinCq, we first extend the C-bound to
the DA setting.

3.1 A C-bound suitable for DA with self-labeling

Given a labeling function l : X → Y , which associates a label y ∈ Y to an unlabeled (target) example
xt ∼ DT , we propose to rewrite the C-bound as follows.

Corollary 3. For all distribution ρ over H, for all domain PT over X ×Y of marginal (over X) DT , for
all labeling functions l : X → Y such that E

h∼ρ
E

xt∼DT

l(xt)h(xt) > 0, we have:

RPT
(Bρ) ≤ 1−

(
E

h∼ρ
E

x∼DT

l(xt)h(xt)

)2

E
(h,h′)∼ρ2

E
xt∼DT

h(xt)h′(xt)
+

1

2

∣∣∣ E
(xt,yt)∼PT

(
yt − l(xt)

)∣∣∣.

Proof. The result comes directly from:∣∣∣RPT
(Bρ)−R

P̂T
(Bρ)

∣∣∣ = 1
2

∣∣ E
(xt,yt)∼PT

(yt − l(xt))
∣∣,

where: R
P̂T

(Bρ) =
1
2

(
1− E

xt∼DT

l(xt)Bρ(xt)
)
.

We can recognize the C-bound of Theorem 2 where the true label yt of an example xt is substituted by
l(x). The term 1

2

∣∣E(xt,yt)∼PT
(yt − l(xt))

∣∣ can be seen as a divergence between the true labeling and the
one provided by l, since it computes the gap between the labeling function and the true labeling one: The
more similar l and the true labeling functions, the tighter the bound is. Note that generalization bounds
provided by Laviolette et al. (2011) are still valid.

With a DA point of view, it is important to note that only one domain appears in this bound. If we
suppose this domain is the target one, it is required to compute a relevant labeling function by making
use of the information carried by the source labeled sample S. To tackle the issue of defining this labeling
function, that we called a self-labeling function, we follow the intuition that given a labeled source instance

Author’s draft 5
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Algorithm 2 P̂ V (S, T, ǫ, d)

input S={xs}
ms
s=1, T ={xt}

mt
t=1 are unlabeled samples, a radius ǫ>0, a distance measure d :X×X→R

+

output P̂ V (S, T, ǫ, d)

1. G←
(
V =(A,B), E

)
, A={xs∈S}, B={xt∈T}, est∈E if d(xs,xt) ≤ ǫ

2. MST← Maximum matching on G

3. (Su, Tu)← number of unmatched vertices in S, resp. in T

4. Return P̂ V (S, T, ǫ, d) = 1

2

(
Su

ms
+ Tu

mt

)

Algorithm 3 PV-MinCq(S, T,H, µ, ǫ, d)

input S={(xs, ys)}
ms
s=1 a source sample, T ={xt}

mt
t=1 a target sample, a set of voters H, a margin µ>0, a radius

ǫ>0, a distance d :X×X→R
+

output Bρ(·)

1. MST ← Step 1. and 2. P̂ V (S, T, ǫ, d)

2. T̂ ← {(xt, ys) : (xt,xs)∈MST ,xt∈T, (xs, ys)∈S}

3. return MinCq(T̂ ,H, µ)

(xs, ys) ∈ S, we want to transfer its label ys to an unlabeled target point xt close to xs. We thus propose
to investigate the perturbed variation (PV) (Harel and Mannor, 2012), a recent measure of divergence
between distributions based on this intuition. This gives rise, in the following, to a PV-based self-labeling
function, then to a self-labeled target sample on which we can apply MinCq (justified by Corollary 3).

3.2 Adaptive MinCq via PV-based self-labeling

Before designing our self-labeling, we recall the definition of the PV proposed by Harel and Mannor
(2012).

Definition 3 (Harel and Mannor (2012)). Let DS and DT be two marginal distributions over X and
M(DS , DT ) be the set of all joint distributions over X ×X with marginals DS and DT . The PV w.r.t. a
distance d : X ×X → R

+ and ǫ > 0 is:

PV (DS , DT , ǫ, d) = inf
ν∈M(DS ,DT )

Pr
ν

[d(X ,X ′) > ǫ] ,

over all pairs (DS , DT ) ∼ ν, such that the marginal of X (resp. X ′) is DS (resp. DT ).

In other words, two samples are similar if every target instance is close to a source instance. Note that
this measure is consistent and its empirical counterpart P̂ V (S, T, ǫ, d) can be efficiently computed by a
maximum graph matching procedure described in Algorithm 2 (Harel and Mannor, 2012).

In our self-labeling goal, we make use of the maximum graph matching MST computed at step 2 of
Algorithm 2. Concretely, we label the unlabeled target examples from T thanks to MST , with the intuition
that if xt ∈ T belongs to a pair (xt,xs) ∈ MST , then xt is affected by the true label ys of xs. Else, we

remove xt from T . The self-labeled sample T̂ constructed is:

T̂ = {(xt, ys) : (xt,xs)∈MST ,xt ∈ T, (xs, ys) ∈ S}.

Actually, we restrict the adaptation to region where the source and target marginals coincide under d.
Then we provide T̂ to MinCq. Our PV-based self-labeling is illustrated on Figure 1, our framework, called
PV-MinCq, is presented in Algorithm 3.

3.3 Analysis of the PV-based self-labeling

In this section, we discuss the impact of our PV-based self-labeling and the choice of the distance d. Given
a DA task, we first define the notion of a good distance.

Definition 4. Given a set of voters H and ǫ > 0, a distance d : X ×X → R
+ is ǫ(H)-good for the DA

task from PS to PT , if there exists ǫ(H) ≥ 0 such that:

ǫ(H) = max
h∈H, (xt,xs)∼DS×DT , d(xt,xs)≤ǫ

|h(xs)− h(xt)| .

Author’s draft 6
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+
+

_
Ɛ

+

_ _
_

Figure 1: Illustration of the PV-based self-labeling. The labeled source examples are in (dark) green, the
unlabeled target examples are in (light) orange. The circles are the candidates for the matching. The
arrows correspond to the matched points MST , and thus to the label transfer: The unmatched target
examples are removed from the target sample. Note that the unmatched source and target samples
indicate the PV.

Put into words, we want the following natural property: If xt and xs are close under d, then for every
voters in H the deviation between the returned values h(xs) and h(xt) is low.

Given a set of voters H, a fixed ǫ > 0 and a ǫ(H)-good distance d : X × X → R
+, we consider the

matching MST computed at step 2 of Algorithm 2. By definition, for every (xt,xs) ∈ MST , xt and xs

share the same label ys and we have d(xt,xs) ≤ ǫ. We now study the influence of d and ǫ(H) on the
PAC-Bayesian DA bound of Theorem 1 restricted to MST . We need of the following notations. The
source and the target subsamples associated to MST are respectively:

Ŝ = {(xs, ys) : (xt,xs)∈MST ,xt ∈ T, (xs, ys) ∈ S},

T̂ = {(xt, ys) : (xt,xs)∈MST ,xt ∈ T, (xs, ys) ∈ S}.

Firstly, we bound the deviation between the risks of Gρ on Ŝ and T̂ . For all ρ on H, for every pair
(xt,xs) ∈ MST we have:

∣∣∣∣ 12
(
1− ys E

h∼ρ
h(xt)

)
− 1

2

(
1− ys E

h∼ρ
h(xs)

)∣∣∣∣ = 1
2

∣∣∣∣ Eh∼ρ
(h(xt)− h(xs))

∣∣∣∣
≤ 1

2 E
h∼ρ

|h(xt)− h(xs)| =
1
2 E
h∼ρ

ǫ(H) = 1
2 ǫ(H).

Then, we have:
∣∣R

T̂
(Gρ)−R

Ŝ
(Gρ)

∣∣ ≤ 1
2 ǫ(H).

Thus the empirical risk of the Gibbs classifier on the source subsample Ŝ and the one on the self-labeled
target sample T̂ differ at most by 1

2ǫ(H). Hence the lower ǫ(H), the closer the risks are, and minimizing
R

T̂
(Gρ) is equivalent to minimize R

Ŝ
(Gρ).

Secondly, similarly to the risks, we can bound the deviation between the voters’ disagreement on Ŝ

and T̂ . For every ρ on H and for every (xt,xs) ∈ MST , we have:

∣∣∣∣ E
(h,h′)∼ρ2

[h(xs)h
′(xs)− h(xt)h

′(xt)]

∣∣∣∣

≤

∣∣∣∣ E
(h,h′)∼ρ2

[
(ǫ(H) + h(xt))(ǫ(H) + h′(xt))− h(xt)h

′(xt)
]∣∣∣∣

=

∣∣∣∣ǫ(H)2 + 2 E
h∼ρ

ǫ(H)h(xt)

∣∣∣∣
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Figure 2: The principle of the reverse validation.

Then, the empirical domain disagreement between Ŝ and T̂ can be rewritten by:

disρ(Ŝ, T̂ ) =

∣∣∣∣ E
(h,h′)∼ρ2

E
(xt,xs)∈MST

[h(xs)h
′(xs)− h(xt)h

′(xt)]

∣∣∣∣

≤ E
(xt,xs)∈MST

∣∣∣∣ E
(h,h′)∼ρ2

[h(xs)h
′(xs)− h(xt)h

′(xt)]

∣∣∣∣

≤ E
(xt)∈T̂

∣∣∣∣ǫ(H)2 + 2 E
h∼ρ

ǫ(H)h(xt)

∣∣∣∣

≤ ǫ(H)

(
1 + 2 E

(xt)∈T̂

∣∣∣∣ Eh∼ρ
h(xt)

∣∣∣∣

)

In this situation, the divergence disρ(Ŝ, T̂ ) between the two samples can be bounded by a term depending

on the confidence of the majority vote over T̂ and on ǫ(H).

These results suggest that we have to minimize ǫ(H), while keeping good performances on T̂ . This confirms
the legitimacy of our framework which (i) transfers labels from the source sample to the target one in
order to move closer the source and target risks of the Gibbs classifier, (ii) and then applies MinCq for
optimizing the voters disagreement on the target sample (given a fixed Gibbs classifier risk on the self-
labels). However, although we can choose ǫ (and thus ǫ(H)) as small as we desire, a low ǫ implies a smaller

matching MST and an higher empirical associated PV. In this case, the size of T̂ tends to decrease, and
then the guarantees of the Gibbs classifier decreases. In order to avoid this behavior, we exploit this
property in the next section for designing a way to tune the hyperparameters.

3.4 Validation of the hyperparameters

A last question concerns the selection of the hyperparameters µ and ǫ. Usually in DA, one can make use
of a reverse/circular validation (Bruzzone and Marconcini, 2010; Zhong et al., 2010), with the idea that
if the domains are close/related then a reverse classifier, learned from the target data labeled with the
current classifier, has to perform well on the source data (see Figure 2 for the intuition). However, for
PV-MinCq our first step is to transfer the source labels. As we have seen previously, our main goal is
then to validate this transfer, and the reverse validation appears less relevant. We thus propose to deal
with our analysis by making use of all the available information,i.e the original samples S and T . In this
context, on the one hand, since we have shown that the domain disagreement can be upper-bounded by
a term depending on the PV-based self-labeling (and the confidence of the majority vote on the target
self-labels), the PV between DS and DT has to be controlled: The lower the PV, the more similar the
samples are. However, minimizing the PV regarding to ǫ can be easy: It is possible to find a high9 value

9
e.g., if ǫ equals to the highest distance between source and target example.
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Figure 3: On the left: the source domain. On the right: a target domain with a 40◦ rotation angle, and
the translated target domain.

for ǫ, leading to a small PV. On the other hand, to compensate this behavior, we thus have to control
the performance. Indeed, the higher ǫ is, the higher the distance between source and target examples
of the same pair (from MST ) is. This implies that these points are less similar, which tends to increase
the deviation between the source and target risks, and could imply a loss of performances on the original
source sample. Therefore, a relevant PV-based self-labeling corresponds to the one enable to optimize the
following trade-off:

RS(Bρ) + P̂ V (S, T, ǫ, d),

where RS(Bρ) is the empirical risk on the source sample, and P̂ V (S, T, ǫ, d) is the empirical PV between
S and T . It is worth noting that this process can also be seen in connection with the philosophy of DA:
We want to minimize the divergence between the domains while keeping good source performance.

Concretely, for every set of possible parameters (µ, ǫ) and given k-folds on the source sample (S =
∪k
i=1Si), PV-MinCq learns a majority vote Bρ from the k−1 labeled folds of S (and T ). Then, we evaluate

Bρ on the last kth fold. Its empirical risk corresponds then to the mean of the error over the k-folds:

RS(Bρ) =
1

k

k∑

i=1

RSi
(Bρ),

and P̂ V (S, T, ǫ, d) is computed by Algorithm 2.

4 Experimental results

In this section, we evaluate our framework PV-MinCq for learning a vote over a set of Gaussian kernels
defined from the learning sample. We compare it to the following methods:
• SVM only from the source sample, i.e. without adaptation;
• MinCq (Laviolette et al., 2011) only from the source sample;
• TSVM, the semi-supervised transductive-SVM10, (Joachims, 1999) learns from the two domains;
• DASVM (Bruzzone and Marconcini, 2010), an iterative self-labeling DA algorithm;
• DASF (Morvant et al., 2012), a DA algorithm minimizing a trade-off between a divergence and a source
risk based on the analysis of Ben-David et al. (2007);
• PBDA (Germain et al., 2013), the PAC-Bayesian DA algorithm for minimizing the bound of Theorem 1;
• PV-SVM, for which we compute the self-labeling of the target data as for PV-MinCq, and then we
apply a classical SVM on these self-labeled data;
• NN-MinCq that uses a k-NN based self-labeling: We label a target point with a k-NN classifier of which
the prototypes comes from the source sample (k is tuned).
To compute the PV-based self-labeling, we make use of the euclidean distance. Each parameter is selected
with a grid search via a classical 5-folds cross-validation for SVM, MinCq and TSVM, a reverse 5-folds
cross-validation for DASVM, DASF, PBDA and NN-MinCq, and the PV-based validation procedure
described in Section 3.4 for PV-SVM and PV-MinCq.

We tackle the binary classification task called “inter-twinning moon”. The source domain is problem
where each moon corresponds to one label (see Figure 3). We consider seven different target domains by
rotating anticlockwise the source one according to seven rotations angles from 20◦ to 80◦. The higher the
angle, the more difficult the adaptation is. We also consider one target domain as a translation of the
source one. We randomly generate 150 positives examples and 150 negatives examples for each domain. To
estimate the generalization error of our approach, each algorithm is evaluated on an independent test set
of 1, 500 target instances. Each DA task is repeated ten times. We report the average correct classification

10TSVM has not been proposed for DA scenario, but provides in general very interesting results in DA.
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Table 1: Average accuracy results on ten runs for the seven rotations, and for the translation (trans.).
NN-MinCq implies no result for the latter since, in this case, the self-label is the same for all target
examples.

Rot. angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ trans.

SVM 89.6 76 68.8 60 47.2 26.1 19.2 50.6

MinCq 92.1 78.2 69.8 61 50.1 40.7 32.7 50.7

TSVM 100 78.9 74.6 70.9 64.7 21.3 18.9 94.9

DASVM 100 78.4 71.6 66.6 61.6 25.3 21.1 50.1

PBDA 90.6 89.7 77.5 58.8 42.4 37.4 39.6 85.9

DASF 98.3 92.1 83.9 70.2 54.7 43 38.9 82.8

PV-SVM 94.2 82.5 75.1 67.7 55.2 43.6 30.3 97.1

NN-MinCq 97.7 83.7 77.7 69.2 58.1 47.9 42.1 ∅

PV-MinCq 99.9 99.7 99 91.6 75.3 66.2 58.9 97.4

percentage on Table 1. We make the following remarks.
First, PV-MinCq outperforms on average the others, and appears more robust to change of density

(NN-MinCq and MinCq appears also more robust). We also observe that SVM, respectively PV-SVM,
provides lower performance than MinCq, respectively PV-MinCq. These observations confirm the necessity
of taking into account the voters’ disagreement. Second, the PV-based labeling implies better results than
the NN one. For the translation task the labels affected by the NN-based self-labeling are the same for
every target example. Unlike a NN-based labeling, using the matching implied by the PV appears to be
a colloquial way to control the divergence between domains since it clearly focuses on the highest density
region by removing the target points without matched source point, in other words on regions where the
domains are close. These results confirm that the PV coupled with MinCq provides a nice solution to
tackle DA for learning a target majority vote.

5 Discussion and future work

We design a general PAC-Bayesian domain adaptation (DA) framework—PV-MinCq—for learning a tar-
get weighted majority vote over a set of real-valued functions. To do so, PV-MinCq is based on MinCq, a
quadratic program for minimizing the C-bound over the majority vote’s risk by controlling the disagree-
ment between voters known to be crucial in DA. The idea is to focus on regions where the marginals
are closer in order to transfer the source labels to the unlabeled target examples (only in these regions).
Then we apply MinCq on these self-labeled points, justified by a new version of the C-bound formulated
to deal with self-labeling functions. We propose a the self-labeling process which has the originality to
be defined thanks to the perturbed variation (PV) between the source and target marginals. Moreover,
it has the clear advantage to be non-iterative, unlike usual self-labeling DA algorithms that are generally
based on iterative procedures. As a consequence, PV-MinCq is easier to apply. Subsequently, we highlight
the necessity of controlling the trade-off between low empirical PV and low source risk, that leads to
an original hyperparameters selection. Finally, the empirical results are promising, and raise to exciting
directions.

For instance, PV-MinCq could be useful for efficiently combining several data descriptions such as in
multiview or multimodality learning11. Indeed, in such a situation one natural solution consists in (i)
learning a classifier from each description, and (ii) learning12 a majority vote over the learned classifiers.
Thus, for adapting a majority vote from a source corpus to a target one, (ii) can be performed by
PV-MinCq.

Given a DA task, another interesting direction is the design (or the learning) of a ǫ(H)-good distance
(or metric) d to provide a specific self-labeling, allowing a more accurate computation of the PV. Indeed,
our analysis of the self-labeling suggests the requirement of a distance d implying a pertinent measure of
closeness in the semantic space involved by the voters.

Lastly, our results raise the question of the usefulness of the PV to learn shared features or points
across domains (e.g. as done in (Gong et al., 2013; Lin et al., 2013)) by identifying which source samples

11
e.g. a document can be represented by different descriptors.

12Sometimes referred as stacking or classifier fusion.
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are relevant for the target task.
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