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Abstract

Increasing mobility and congestion result in an increase in travelviémiebility and in a decrease in reliability. Reliability
becomes an important performance measure for transportation facilitieariety of performance measures have been
proposed to quantifit. Many of these indicators are based on percentiles of travel timekritiwledge of the distribution of
travel time is needed to properly estimate these values. Congestion distontstiibution and particular statistical
distributions are needed. Different distributions have h@eposed in the literature. In a previous paper, we presented a
comparison of six statistical distributions used to model travel timeseT$ig distributions are the Lognormal, Gamma, Burr,
Weibull, a mixture of two Normal distributions and a mixtureved tGamma distributions

In this paper a probabilistic modeling of travel time which takes intoumtdbe levelsf-service is given. Levels of service
are identified, then travel time distributions are modeled by levekwfice. This result in a very good fit between the
empirical and modeled distributions Moreovitre adjustment was improved, thankshe calibration of “Bureau of Public
Roads” functions, linking the travel time to the traffic flow by level of service.

The superiority of the Singh-Maddala distribution appears in masgsc This has been validated, thanks to travel time data
from the same site at another period. However the parameters of thieutsts vary from one year to another, due to
changes in infrastructure. The transferability of the approach enimrmed, will be based on travel time data on another site.

Keywords:congestion; traffic flow; travel time; motorway; mdidg; statistics; reliability; distribution; Buread Bublic Roads.

1. Introduction

Traffic congestion impacts speed, thus travel time. When traffic inareaskapproaches the full capacity of
the network, the flow becomes unstable and much more vulnerablddents, road works or bad weather. This
increases the variability of travel time, to which users are very sensitiveefaitegrtravel time reliability has
become an important performance criterion for transportation facilitiegpleoranting the traditional measures
such as delay and average travel time. In recent research, a variety of pecmeasures have been proposed
to quantify reliability and monetize it. This includes planning time, buffee tstandard deviation, coefficient of
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variation, skewness. - an overview is given in (Lomax, Schrank, Tyrmer & Margio2@03). These indicators
are based on percentiles of travel time. The knowledge of the travel timeutiistrils then needed.

Different distributions are presented in the literature as the best way to modeduvitletime distribution.
(Richardson & Taylor, 1978), (Rakh&hawarby, Arafeh & Dion, 2006), (Pu, 2010) and (Arezoutna2011)
concluded for a Lognormal distribution. Polus (1979) concluded féamma distribution; however Al-Deek and
Eman (2006) proposed a Weibull one. In (Taylor & Susilawati p@b@ (Susilawati et al., 2012) the Burr XII
distribution is adopted, the advantage of this latter method is that itoftaiis fit the empirical ones. Aron
Bhouri and Guessous (2012) presehd comparison of six statistical distributions used to model travel time.
Tests were conducted to identify the parameters of these different statistidalitioss on the basis of real time
data collected on a weaving section of the A4-A86 French urban motorway

Based on the same data, this paper uses the Burr Xl distribution, completexstée parameter introduced
by Singh and Maddala (1976) to model travel time over five levels of sefMigenext section is dedicated to
data collection. A method for levetd-service extraction using the fundamental diagiamiven in section 3.
Calculation of the travel time and modeling of its distribution over five levketgervice are presented in section
4. In section 5the travel time distribution calibration is improved, using relations linkiage! time to flow.

Nomenclature

i (resp.j) index for lanes (resp. sections)

n (resp.m) number of lanes (resp. sections)

q traffic flow (number of vehicles per hour)

k traffic density (number of vehicles per kilometre)
% speed (kilometre/hour)

2. Data collection

The data used in this paper was collected on a weaving section of-th&6Mrench urban motorway. A two-
lane urban motorway ring (A86) round Paris and a three-lane Bésstarban motorway (A4) meet in the east of
Paris and share a four-lane 2.3 km-long section. Traffic is particudarige at some hours, and causes the
greatest traffic bottleneck in Europe. Data used in this paper were collected eath2092, on a 3-km long
stretch (2.3 on the weaving section, 0.7 km downstream), in theobadthlirection. Four inductive loops (three
on the weaving section, one downstream) provide every six mifiovgsoccupancy and average speed by lane.

Although the data are generally very good, some are missing, iageau irrelevant. A mean speed for one
lane lower than 2 km/h or higher than 150 km/h, is considered astker. Other anomalies in traffic data are
identified— occupancy greater than 100% or 6-minute flow (by lane) greated@tamehicles. In these cases the
data for the corresponding period and lane are cancelled and considered ag &Mblsim this occurs in 2002
the missing data for a given period and Iasubstituted, when possible, by data from a corresponding period
from the year 2001 or 2000, the same day of the week, the egact time and approximately the same date.

3. Level-Of-Service
3.1.Fundamental Diagram

The three macroscopic traffic variables - traffic flgutraffic densityk and average speedare linked by the
equationg=k.v. Furthermore, when traffic density increases, speed decreases. &hisy@non is modeled by a
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relation between speed and density (or flow), called “Fundamental Diagratn An example of a fundamental
diagram is provided in Figure 1. The first part of the graphessmts the free flow, where the interaction
between vehicles is light; then traffic flow increases along witlidredénsity until the critical density value.
Corresponding flow is the maximal flog,, sustained by the infrastructure. Above this density, vehicles are
bunched and flow decreases. Flow is again equal to zero when deashgs its maximum.

Fundamental diagram is plotted on the basis of experimental data, andaabettsr understanding of traffic.

Fundamental diagram in 2002 lane 1section 1
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Fig. 1. Fundamental diagram in 2002 lane 1 section 1
3.2.Construction of a fundamental diagram for consecutive sections

In order to extract a simple information, the scatter plot is usually ftdnlid line. A division of this line in a
few more homogeneous traffic states or "lexadlservice" is particularly useful.

So as to extract levels-service, we need first to construct a global fundamental diagram, teimatata is
presented by lanes (i=1..n) and section (j=1..m). Aggregation of ,sfleedand density variables must be
performed carefully to reflect reality, and the homogeneity of unitst imel thoroughly checked. We assert here
that speed will be expressed in km/h, traffic flow in vehitiesr and traffic density in vehicles/km.

Aggregation of data over lanes in one section is obtained by applyinte Sipgrations to the three traffic
variables. We add traffic flows to obtain the flow for an entire section andmitursy add traffic densities.
Speed for the entire section is the result of dividing the flow by the deRsityulas are the following:

(s
: 6 1.k IR
. _ I P . _ = j _
qj:ij ; kij_v_ or V——q—,kj—ZKj B; V——n——q— (1)
i=1 i i i=L i Z g i
i=1
The last equation giving the harmonic average speed, weighted by tiaffic Let L; be the length and the
travel time of section j, thuls/v; is and its travel time. Travel times on consecutive sections being addiie
equation of the global average speed, on consecutive sections, is obtained

m m L. m m m
v=YL;/> L AsN=" Lk vehicles are present on the sections, thudehsity is: k=> Lk D" L, @
j=1 j=1 j=1

j=1 j:]_ VJ i i=
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The global flow is the product of speed and dengity:=—- = L= ©)
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The flow is then the average of sections' flows weighted by travestiitis also the total travel time (for all
users) divided by the average travel time.

The global fundamental diagrams in 2002 and 2006 are shownureRi¢g) and 2(b). In 2006 points become
less dense around 160 vehicles/km, whereas in 2002 they do sd aR&fuvehicles/km. That can be interpreted
as the positive effect of opening hard shoulders to vehicles when congestimus a certain level.

Global fundamental diagram in 2002 Global fundamental diagram in 2006
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Figure 2 (a) Global fundamental diagram in 2002 (lop@ fundamental diagram in 2006 direction Paris éoBhst

3.3 Fitting the fundamental diagram

The levels of services are defined with respect to road capacity and criticdl.dBiogd capacity is not
assumed to be the maximum observed traffic flow, which could beitiaroHere road capacity is determined
after fitting, in a first step an analytic curve to the scatter plot; the maxiofitins curve gives the capacity.

Numerous models are used to fit the fundamental diagram. Some are sumimaraiele 1 :

Table 1. Statistical models for fundamental diagrams

Model Equation
Greenshields g=a*k+b*k"2
Generalized power g=a*k+b*k"alpha
Underwood g=a*k*exp(-b*k)

Generalized exponentia g=a*k*exp(-b*k"alpha)

For each model we appiynonlinear regression analysis, based on the least-square method pwavicles
acceptable results. All computations in this article are performed using Beassource statistical software.

Fundamental diagram
Fundamental diagram
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traffic flow
6000

1

traffic flow

02000
0 2000

Parameters;93.64;-0.1;1.22 & Parameters;85.26,-9.6e-06;2.18
T T T T T T T T T T T T T

0 50 100 150 200 250 300 o 50 100 150 200 250 300

traffic density traffic density

Figure 3 Global fundamental diagram in 2002 fitted with (a)eaeralized power model (b) a generalized exponemtael
Number of data: 53677; Residual standard error for 78y .4; for (b) : 696.5
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We compared only the generalized models. Figure 3 above and Figure 4 belowhshadjustments of the
generalized power and exponential models on the global fundamentahdiagz@02 and 2006

Fundamental diagram
Fundamental diagram

10000

10000

6000
I
6000

traffic flow
traffic flow

X ,
5 Paramelers:10/°7;:0.43:099 Parameters;91.65:-8.8e-06;2.25
T T T T T T T T

T T T T T T T T

¢] 50 100 150 200 250 300 350 o] 50 100 150 200 250 300 350

2000
I
2000
|

traffic density traffic density

Figure 4. Global fundamental diagram in 2006 fittethw@) a generalized power model (b) a generalixpdreential model;
Number of data: 53677; Residual standard error for@8}; for (b) : 588.2

The Generalized Exponential, giving the best representation of the gtatftetail, is selected here.
3.4 Levelef-service computation

The road capacity and the critical density appear on the fittedrhemtal diagram; separating the diagram in
levels of service (LOS) is straightforward, using the LOS thresholds iis teroapacity percentage and density.
The six LOS defined by the High Capacity Manual are replaced in Francesibypker categorization of 4
LOS. In this article we are using customized five LOS which are definfdl@sing:
e LOS 1 : density under critical density, and flow under 75% of capacity
e LOS 2 : density under critical density, and flow between 75% and 90% aditap
e LOS 3 : density under critical density, and flow above 90 % of capacity
e LOS 4: density above critical density, and flow above 90% of capacity
¢ LOS 5: density above critical density, and flow under 90% of capacity
Four points separate the five LOS. Point 1 (between LOS 5 and 4); pdiatvizén LOS 4 and 3); point 3
(between LOS 3 and 2); and point 4 (between LOS 2 and 1i. fldw, density and speed are given in Table 2.

Table 2. Flow, density and speed at four points sapgrtite five LOS for 2002 and 2006

2002 2006
Points Flow Density Speed Flow Density Speed
1 6753.8 184.0 36.7 6497.2 161.6 40.2
2 7504.2 139.2 53.9 7219.1 122.8 58.8
3 6753.8 98.0 68.9 6497.2 86.9 74.7
4 5628.2 74.1 75.9 5414.3 65.9 82.1

4. Modeling travel timedistribution by Level Of-Service

Figure 5(a) and 5(b) show the placing of the five LOS and of dhe $eparating points. Furthermora, i
Figure 6 are displayed the travel time histograms by LOS; these are uss#lddbthe distributions required for
modeling.
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Fig. 6. Histogram of travel times separated by LOS ir2200

The likelihood of the lognormal and Singh-Maddala distributions are nigedhon each LOS histogram.. The
cumulative density function F(x) and the probability density functighdf the Singh-Maddala distribution are
given below; any Singh-Maddala percentile)R{f range a (a between 0% and 100%) derived by inverting F(x);

Forx>0: FK)=1-[1+cbS T ;f)=a (@/b [+ (7 T 5 Re)= B/ (@—a) ' —1 @

The F'and 3 parametersa & q are shape parameters, whereas the second parénetescale parameter.
For the first tOhree LOS, a normal mixture model is also fitted. We evdheatpiality of the models by using
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the Akaike informQation criterion (AIC), and select the model that minimizes thisanit@rable 3).

Table 3. AC for the five LOS and three distribution models i©2@best distribution highlighted)

LOS  Number of data Singh- Lognormal Normal mixture

Maddala
1 24036 221876.36 230326.73 227150.70(with 2 components)
2 7878 73971.82 74746.84 73530.72 (with 2 components)
3 6599 60821.46 60512.36 59872.96 (with 3 components)
4 10989 101480.51 101325.77 Not performed
5 4144 46622.16 49089.62 Not performed

LOS 3, 4 and 5, are the most interesting ones, because theyneegucapacity or in congestion. Their
adjustments to the models are presented here. Adjustments with a noxtoad mave not been performed for
LOS 4 and 5 because the empirical histograms have a single mode.

yhist

yhist

0010 0.020

0.000

LOS 3 travel time histogram fit by Singh-Maddala

‘ Parameters;13.65,150.68,0.66

yhist

0004 0008

0.000

T T T T T T
120 140 160 180 200 220

xhist

LOS 4 travel time histogram fit by lognormal

Parameters;5.45,0.1

010

0

0.000

200 250 300 350

xhist

LOS 5 travel time histogram fit by lognormal

Parameters;5.81,0.27

T T
500 1000 1500 2000

xhist

Density

yhist

LOS 3 travel time histogram fit by 3 components normal mixture

0000 0005 0010 0015

Travel time (in seconds)

LOS 4 travel time histogram fit by Singh-Maddala

qum‘ Parameters; 18 45228 29,0.79

7

yhist
0010

0.000

LOS 5 travel time histogram fit by Singh-Maddala

Parameters;29.44,260.41,0.13

0008

0.004

0.000

500 1000 1500 2000
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Fig. 7. Histogram of LOS 3, 4 and 5 travel times fit iffedent distributions in 2002

For LOS 3, three modes appear, and normal mixture outperforms-Eimddhala.

For LOS 4, the AIC for the lognormal distribution is better than tlefonthe Singh-Maddala. However, the
difference in this criterion between lognormal and Singh-Maddala is naficagm enough compared to the same
difference in LOS 3. Besides, we do not notice any significant difference graphicall
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For LOS 5, Singh-Maddala outperforms the lognormal distribution fromAltGeand graphics points of view.

With the AIC, the superiority of the Singh-Maddala distribution is cordidrfrom 2006 datfor LOS 1, 4, 5
whereas it is lightly outperformed by normal mixture in LOS 2 aifdable 4) The lognormal distribution lags
far behind Singh-Maddala and normal mixture, except for LOS 4 where it istcl8segh-Maddala.

Table 4. Akaike information criterion for the five 8and three distribution models in 2006

LOS Number of data Singh-Maddala Lognormal Normal mixture

1 23816 165571.60 178098.76 166346.62(with 2 components)
2 9508 73814.98 78407.83 73757.59 (with 2 components)
3 10306 79115.66 82729.76 78913.22 (with 2 components)
4 6248 56111.66 56284.97 Not performed

5 3760 39100.80 40434.25 Not performed

Table 5 provides estimates for Singh-Maddala parameters in 200 (@aeknthesis for 2006, LOS 1 only).

Table 5. Estimates and confidence intervals for Singheldiadparameters (five LOS in 2002 and LOS 1 in 2006

LOS Parameter Lower bound Estimate Upper bound
shapel.a 31.98 (47.87) 32.01 (47.90) 3205(47.92)

1 Scale (in seconds)  115.65 (108.63) 115.65 (108.63) 115.65 (108.63)
Shape 3 0.11 (0.27) 0.15 (0.31) 0.19 (0.34)
shapel.a 16.49 16.53 16.57

2 Scale (in seconds)  136.31 136.32 136.33
Shape 3 0.31 0.38 0.44
shapel.a 13.61 13.65 13.69

3 Scale (in seconds)  150.67 150.68 150.69
Shape 3 0.58 0.66 0.74
shapel.a 18.42 18.45 18.48

4 Scale (in secory) 228.28 228.29 228.29
Shape 3 0.73 0.79 0.85
shapel.a 29.35 29.44 29.52

5 Scale (in seconds)  260.40 260.41 260.42
Shape 3 0.03 0.13 24

Let us recall that Singh-Maddala distribution has 3 parameters, while almoixture with 2 components has
2x2=4 parameters. We recommend using Singh-Maddala distribution: it is shetatde distribution and adapts
to various levelsf-service. It provides a good trade-off between fitting quality and nsaehgllicity.

However the numerical values obtained for the Singh-Maddala parameters ardidaiedia2006 values
(given in Table 5 for the first LOS) differ from 2002 values -isTid probably due to changes in infrastructure.

5. Improving travel time models

One way to improve travel time prediction is to find a relationship betwaeel time and flow. The Bureau
of Public Roads (BPR) function (here applied by LOS) is the mostfasedila in this case:
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B
T=T|1ta| I
qma)(

Where (I=1..5) represents the LOS numlbeandp are dimensionless parametdieir values and the quality
of the regressions (in terms of p-value and residual standard ee@nesented in Table 7.

Table 7. Statistical information for the 5 LOS in 200

LOS Number | Residual standard o B
of data error (seconds) estimate p-value Estimate | p-value
1 24036 76.61 1.419 <2el16 0.454 <2el16
2 7878 30.46 0.871 <2el6 0.005 0.87
3 6599 24.32 0.926 <2el6 0.135 7.06e05
4 10989 24.21 1.750 <2el6 -0.255 <2e16
5 4144 139.4 2.606 <2el6 -0.832 <2e16

As p-values are below 0.05 (except for LOS 2), the BPR functiefetjirg travel time and traffic flow are
significant for LOS 1, 3, 4 and 5. Residual standard errors are ggrezediptable (see Table, gjven the fact
that in free-flow (LOS 1) the speed is not constrained by the flow ttzatdby high congestion (LOS 5) the
relation between travel time and flow vanishesrdnear regressions are illustrated for LOS 3 & 5 in Figure 8.

160 200
L
2000
1

500 1000

120
!

Figure 8. Non-linear regression between travel timesapiry) and flows (x) in 2002 for (a) LOS 3 (b) LGS

Then, applying the BPR functions on every travel time, we ohtaiw “adapted” travel times series, more
homogeneous, making possible a better adjustment. This happenéapitvement is very impressive for AIC
values (Table 8). Due to the travel time queue, the slightest improvenfent. OS 5.The improvement remains
slightly visible graphically for this LOS - see Figure 9, providingdhiginal and adapted Singh-Maddala fits.

LOS 5 travel time histogram fit by Singh-Maddala Adapted LOS 5 travel time histogram fit by Singh-Maddala
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| Parameters;29.05;324.45;0.43

0.008
|

yhist
0.004
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0,000 0005 0010 0015

0.000
|

T T
500 1000 1500 2000 400 600 800 1000
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Figure 9. Histogram of original and adapted LOS 5erémes fit by Singh-Maddala distribution in 2002
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Table 8. AIC values for the five LOS travel times (an@s and adapted) fit by Singh-Maddala in 2002

LOS  Number of data Original Adapted
1 24036 221876.36 134976

2 7878 73971.82 24641.99
3 6599 60821.46 20289.9
4 10989 101480.51 66013.44
5 4144 46622.16 40341.57

6. Conclusion

Basing reliability onaggregatedravel times (here on 6-minute periods) and not on individual travebtim
justified because it bases the information which is presented to usershiid is taken into account in
economics studies. The passage lmvelsOf-Service is now widespread in traffic studies because the
homogeneity of a LOS induces more accurate treatments - this fenmh here. TheSingh-Maddala
distribution is both appropriate (given the quality of the fit) andt@c(for deriving percentiles, which are used
in the reliability indicators). The use of BPR functions relating travel timeafbic flow (by LOS) improves the
adjustments. However the numerical values of the parameters werlrletfsom one year to another, due to
changes in the infrastructure. All of this contributea better understanding of travel time and of its reliability.
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