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A Comparison of Nonlinear Mixing Models for
Vegetated Areas Using Simulated and Real

Hyperspectral Data
Nicolas Dobigeon, Senior Member, IEEE, Laurent Tits, Ben Somers, Yoann Altmann,Member, IEEE, and Pol Coppin

Abstract—Spectral unmixing (SU) is a crucial processing step
when analyzing hyperspectral data. In such analysis, most of the
work in the literature relies on the widely acknowledged linear
mixing model to describe the observed pixels. Unfortunately, this
model has been shown to be of limited interest for specific scenes, in
particular when acquired over vegetated areas. Consequently, in
the past few years, several nonlinear mixing models have been
introduced to take nonlinear effects into account while performing
SU. These models have been proposed empirically, however, with-
out any thorough validation. In this paper, the authors take advan-
tage of two sets of real and physical-based simulated data to validate
the accuracy of various nonlinear models in vegetated areas. These
physics-based models, and their corresponding unmixing algo-
rithms, are evaluated with respect to their ability of fitting the
measured spectra and providing an accurate estimation of
the abundance coefficients, considered as the spatial distribution
of the materials in each pixel.

Index Terms—Hyperspectral imagery, nonlinear spectral
mixtures, ray tracing, spectral unmixing (SU), vegetated areas.

I. INTRODUCTION

S PECTRAL unmixing (SU) of hyperspectral images con-
sists of extracting the spectral responses of the

macroscopic materials (or endmembers) present in the imaged
scene and, for each pixel of the image ( ),
estimating the corresponding proportions (or
abundances) that represent the spatial distributions of these
materials over the area of interest [1]. The first automated
unmixing techniques have been proposed in the early 1990 s
[2]. When no prior knowledge is available regarding the studied
scene, SU can be usually decomposed into two successive steps:
1) the endmembers are extracted from the image and 2) the
proportions of the materials are estimated in the so-called

inversion step. A vast majority of the endmember extraction
algorithms (EEAs) and inversion techniques exploit some geo-
metrical concepts that are intrinsically related to an assumption of
a linear mixing process to explain the observed pixels. In other
words, under this linear mixing model (LMM), each observed
pixel of a given image is assumed to result from the linear
combination of the endmember spectra

where denotes the proportions of the
materials in the th pixel, is the endmember
matrix, and stands for an additive residual term accounting for
the measurement noise and modeling error. Since the mixing
coefficients are expected to represent the actual
spatial distribution of the materials in the th pixel, they are
commonly subject to the following positivity and sum-to-one (or
additivity) constraints

This LMM has received a considerable attention in the image
processing and remote sensing literature since it represents an
acceptable first-order approximation of the physical processes
involved inmost of the scenes of interest [2]. Consequently, it has
motivated a lot of research works that aim at developing efficient
EEA, designed to recover pure spectral signatures in the image,
and inversion techniques to estimate the abundance coefficients
for a given (estimated or a priori known) set of endmembers.
Comprehensive overviews of these EEA and inversion methods
can be found in [1]–[3]. Specifically, two main approaches have
been advocated to solve the inversion step, that can be formulated
as a constrained optimization problem solved by fully con-
strained least square (FCLS) algorithms [4]–[6] or as a statistical
estimation problem solvedwithin a Bayesian framework [7]–[9].

However, for specific applications, LMM has demonstrated
some difficulties to accurately describe real mixtures [10].
Notably, intimate mixtures of minerals are characterized by
spatial scales typically smaller than the path length followed by
the photons, which violates one fundamental assumption for
considering a linear model. Analyzing such mixtures, e.g.,
composed of minerals, requires to resort to complex physical
models coming from the radiative transfer theory. Various
approximating models have been proposed in the spectroscopic
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literature, such as the popular Hapke’s model [11]. More
recently, this model or related alternatives have been exploited
in the hyperspectral literature to derive unmixing algorithms
dedicated to remotely sensed images [12], [13]. Broadwater and
Banerjee derived various kernel-based unmixing techniques that
implicitly relied on the Hapke model [14]–[16]. In [17]–[19],
Close et al. combined linear and intimate mixing processes in
single models to improve flexibility.

Conversely, scenes acquired over vegetated areas are also
known to be subjected to more complex interactions that cannot
be properly taken into account by a simple LMM [20]–[27].
Indeed, for these specific scenarios addressed in this paper,
differences in elevation between the transparent 3D vegetation
canopies and the relatively flat soil surfaces submit photons to
multipath and scattering effects. Similar interaction effects have
been also encountered when analyzing urban scenes [28]–[30].
Therefore, various attempts have been conducted to overcome
the intrinsic limitations of the LMM. A large family of nonlinear
models that have been proposed to analyze vegetated areas can
be described as

¹

In (3), the observed pixel is composed of a linear contribution
similar to the LMM and an additive nonlinear term¹ that may
depend on the endmember matrix , the abundance coefficients
in , and additional nonlinearity coefficients introduced to
adjust the amount of nonlinearity in the pixel. This class of
models includes the bilinear models [31], the quadratic–linear
model [30], the postnonlinear model [32], and the bilinear–
bilinear model [33] (the most commonly used will be fully
described in Section II).

However, to our knowledge, most of these models have been
derived following physical or intuitive considerations, without
any careful and thorough analysis of their ability to properly
describe real mixtures while performing SU. In this article, we
propose to fill this gap by evaluating the relevance of various
nonlinear models when used for SU of images acquired over
vegetated areas. Specifically, requirements for ensuring the
quality of a model in this specific applicative context are
threefold: 1) themodel should not depend on external parameters
related to the studied scene (e.g., leaf index area, geometry, or
illumination incidence) since this prior knowledge is generally
not available; 2) this model should be still sufficiently flexible to
fit the real observations in various external conditions, despite the
ignorance of these unknown external parameters; and 3) it should
be able to account for the relative spatial distribution of the
materials in the pixel, with the prime objective to estimate the
abundance coefficients. In particular, mainly because of the two
first requirements enounced above, advanced nonlinear models
proposed in the remote sensing literature (e.g., [20]) will not be
considered in this study since they need a detailed prior knowl-
edge regarding the analyzed scene.

Tomeet this challenge, we take advantage of an interesting set
of simulated and in situ collected hyperspectral data. First, we use
a detailed virtual orchard and forest model constructed in a
physically based ray-tracing environment using detailed sub-
models for the description of tree geometry, leaf and soil
bidirectional reflectance, and diffuse illumination [34]–[36].

Themodel has been thoroughly validated with field observations
[34], andmore recentlywe could provide, based on a comparison
with in situ data, strong evidence that our ray tracing model
realistically describes the spectral scattering and thus nonlinear-
ity observed in vegetated areas [27]. Second, we use data from an
in situ experiment in a commercial citrus orchard. This experi-
ment comprised in situmeasuredmixed pixel reflectance spectra,
pixel specific endmember spectra and subpixel cover fraction
distributions. This unique dataset of in situ measured mixed
pixel reflectance spectra has previously been used to study
nonlinearity in fruit orchards [25].

The paper is organized as follows. Section II introduces the
main nonlinear models that have been proposed in the literature
to describe mixtures encountered in vegetated areas. The ray-
tracer-based simulated data and the in situmeasurements used to
validate these models are described in Section III. The experi-
ment results obtained by using the previously introduced non-
linear models on the two sets of data are reported in Section IV.
A comprehensive discussion on these results is conducted in
Section V. Section VI concludes the paper.

II. NONLINEAR MIXING MODELS

A. Bilinear Models

To take into account the scattering effects the photons are
subjected to before reaching the sensor, a wide class of nonlinear
models are derived by defining the nonlinear component
¹ in (3) as a sum of bilinear terms [31]

¹ ≜

where the operator stands for a termwise product

≜

The set of nonlinearity coefficients allows the
amount of nonlinearity in the th pixel to be adjusted between
each pair of materials and . Most of the various bilinear
models of the literature mainly differ by the definition of
these coefficients and the associated constraints they are
subject to. The most common models, that will be evaluated in
Section IV, are recalled below.

The model derived in [37] and [25] proposes to include the
nonlinearity coefficients within the set of constraints (2)
defined by the LMM, leading to

≜

with



Note that this model, denoted NM for Nascimento’s model in
this paper, reduces to the LMMwhen , . This is an
interesting property since the LMM is known to be an admissible
first approximation of the actually involved physical processes.1

However, in a more general case (i.e., ), the abundance

coefficients are not subject to the sum-to-one con-
straints defined in (2).

In [24], Fan et al. have defined the nonlinearity coefficients
as the product of the abundances, ≜ , under the

LMM-based constraints in (2), leading to the so-called Fan’s
model (FM)

≜

The main motivation for relating the amount of nonlinear
interactions (governed by ) to the amount of linear contri-
bution (governed by and ) is straightforward: the more a
given material is present in the pixel, the more nonlinear inter-
actions may occur. In particular, if a component is absent in
the th pixel, then and consequently , which
means that there are no interactions between the material and
any other materials ( ). Note, however, that this bilinear
model does not extend the LMM.

To cope with this latter limitation, the generalized bilinear
model (GBM) [38] weights the products of abundances
by additional free parameters that tune the amount
of nonlinear interactions, leading to ≜ and

≜

The GBM has the nice properties of 1) generalizing the LMM
by enforcing ( ), similarly to NM but contrary to
FM and 2) having the amount of nonlinear interactions to be
proportional to the material abundances, similarly to FM but
contrary to NM.

B. Postnonlinear Mixing Model

Inspired by pioneered works in blind source separation [39],
Altmannetal.have introduced in[32]anonlinearmodel that relies
on a second-order polynomial expansion of the nonlinearity

¹ ≜

leading to the following polynomial postnonlinearmixingmodel
(PPNM)

The PPNM has demonstrated a noticeable flexibility to model
various nonlinearities not only for unmixing purposes [32] but
also to detect nonlinearmixtures in the observed image [40]. This
model has also the great advantage of having the amount of
nonlinearity to be governed by a unique parameter in each
pixel, contrary to NM or GBM. Equation (9) also shows PPNM
includes bilinear terms ( ) similar to those in-
volved in the NM, FM, and GBM, and also quadratic terms

, which may account for interactions between similar
materials.

C. Unmixing Algorithms

To evaluate the accuracy of the mixing models of interest, the
pixels of the in situ and simulated data are unmixed with respect
to each model. When analyzing the pixels with the LMM, the
nonlinear contribution ¹ is set to zero. Based on the
prior knowledge of the endmember signatures , the abundance
vector associated with each pixel is estimating by solving
the constrained minimization problem

In this work, to solve this problem, the FCLS algorithm [4]
is used.

Moreover, when analyzing the pixels with nonlinear mixing
models, the abundance vector and the nonlinearity parameter
vector associated with each pixel are estimated by solving
the following constrained optimization problem

¹

Depending on the considered model, the set of constraints
imposed to the abundance vector and the possible nonlinear
coefficient vector may differ. For the FM, GBM, and PPNM,
the abundance vector should satisfy the LMM-based con-
straints (2), while for theNM, this constraint is applied to the joint
vector . Similarly, the nonlinear coefficient vector for
the GBM and PPNM should satisfy constraints that depend on
the considered model and the nonlinearity component ¹

in (4) or (9) depends also on the considered nonlinear
model.

For the experimental results reported in Section IV, the FCLS
algorithm is used to solve theNM-based unmixing problem since
NM can be interpreted as a linear mixture of an extended set of
endmembers, as shown in [37]. The FMparameters are estimated
with the algorithm detailed in [24], based on a first-order Taylor
series expansion of the nonlinearity ¹ . Finally, the
gradient descent and the subgradient descend algorithms devel-
oped in [41] and [32] are used to solve the GBM- and PPNM-
based unmixing problems, respectively. Interested readers are
invited to refer to these works for detailed information regarding
the optimization schemes.

III. DATA DESCRIPTION

The mixing models and corresponding unmixing algorithms
detailed in the previous sections are compared using simulated
and real hyperspectral images. It is worth noting that, for both

1It is widely admitted that the pixel spectrum measured by the sensor can be
accurately described by the LMM when 1) the photons are not subjected to
multipath effects and 2) the materials are arranged side-by-side in the scene (as a
checkerboard structure) [2].



kinds of datasets, actual pure component spectral signatures (i.e.,
endmember spectra) and quantitative spatial distributions of
these components (i.e., abundances) are available as ground
truth in each pixel of the considered images. These datasets2

are described in this section.

A. Simulated Dataset

Two types of synthetic hyperspectral image data were gener-
ated from a ray tracing experiment. First, synthetic but realistic
fully calibrated virtual scenes, namely citrus orchards and a
forest, have been designed using methods developed in [34]
and [42], respectively, which will be explained in more detail in
the following paragraphs. Then, corresponding hyperspectral
images have been simulated using an extended version of the
physically based ray tracer (PBRT) [43]. In PBRT, a scene is
defined using submodels to describe the various components of
the scene: illumination sources, sensor platform, material optical
properties, integrator, and geometry descriptions. For the differ-
ent generated images, the illumination has been modeled
to closely agree with the average circadian illumination from
April until September, corresponding to a midlatitude northern
hemisphere growing season. The illumination has been com-
posed of a combination of direct and diffuse light calculated
from 350 to 2500 nm with a 10 nm interval. The citrus trees
and weeds of the orchard scenes (see Section III-A1) and the
trees of the forest scene (see Section III-A2) have been con-
structed as triangular meshes by implementing the algorithm
introduced in [44]. Their material properties have been described
by a bidirectional scattering distribution function (BSDF)
model [34].

1) Orchard Scenes: The fully calibrated virtual citrus orchard
developed in [34] has been used to create two different orchard
scenes: 1) an orchard consisting of citrus trees and a soil
background, leading to two-endmember mixtures and 2) an
orchard consisting of citrus trees, a soil background and weed
patches, leading to three-endmember mixtures. Each orchard
scene consists of pixels, with a pixel size of

. The exact per-pixel abundances are known for
the three components, as well as the reference spectral
signatures. More precisely, for the soil endmember, the pure
spectral signature consisted of the fully sunlit soil
uncontaminated by the surrounding trees. For the tree
endmember, the soil background of the orchard was replaced
by a perfectly absorbing background, to minimize the influence
of the background on the tree signature. A 5-cm resolution image
of was rendered above a canopy with one row. Only
the pixels containing a tree fraction greater than 0.95 were
retained and averaged to provide the pure tree signature. As
such, the tree spectral signatures are an integration of all
components of a tree, including sunlit and shaded leafs,
branches, and stems. For the weed endmember spectral
signature, a similar approach to the tree endmember was used,
replacing the soil background with a perfectly absorbing
background, and removing all trees from the orchard. A

image with 1-cm resolution was rendered over a

weed patch, selecting only those pixels with a weed fraction
greater than 0.95. Finally, these pixels were averaged to provide
the spectral signature of the weeds. The resulting endmember
spectra are depicted in Fig. 1.

The orchards have been constructed with a row spacing
of 4.5 m, tree spacing of 2 m, row azimuth of 7.3 , and an
average tree height of 3 m. This composition is consistent with
the reference orchard, located in Wellington, South Africa
(33.58 , 18.93 ), used to calibrate the virtual orchard [34].
Spectral input data for citrus leaves and stems, soils, and weeds
have been measured using a full-range (350–2500 nm) analytic
spectral devices (ASDs) Fieldspec JR spectroradiometer with a
25 foreoptic. The weed spectrum has been chosen as of the
Lolium sp. A Haplic Arenosol [45] typical for commercial citrus
orchards in the Western Cape Province in South Africa has been
used in the simulations [46]. An example of a high-resolution
image of of the two-endmember orchard is de-
picted in Fig. 2(a), while the three-endmember orchard is shown
in Fig. 2(b). For a detailed description of the design, modalities,
and application of the virtual orchard, the reader is invited to
consult [34].

2) Forest Scene: The virtual forest consisted of a soil
background planted with trees selected from the species-
specific tree pools. More precisely, to simulate the forest scene,
3D tree geometry descriptions were available for beech (Fagus
sylvaticaL.) and poplar (Populus nigraL. var.“italic”Muench).
Each treewas characterizedbya specific structure basedon its age
(i.e., 20 years old). All leaves were assigned a species-specific
reflectance and transmittance spectrum extracted from the leaf
optical properties experiment (LOPEX) dataset [47]. Examples
of the soil, beech, and pop endmember signatures are depicted
in Fig. 3.

Fig. 1. Two- and three-endmember orchard synthetic dataset. Endmember
spectra: soil (black), weed (red), and tree (green).

Fig. 2. High-resolution images of the twoorchardswith (a) two endmembers, i.e.,
tree and soil, and (b) three endmembers, i.e., tree, soil, and weeds.

2Available online at http://www.biw.kuleuven.be/nonlinear-mixing/.



To achieve a nearly 100% canopy cover, the average tree
spacing has been set to 5 m for the beech trees and 1 m for the
poplars. A series of six forest scenes has been rendered providing
a gradual transition from a forest scene completely dominated by
one species to a scene dominated by the other species. More
precisely, 20% of the beech trees have been randomly replaced
by poplar trees in the subsequent scene. Each forest scene con-
sisted of pixels, with a pixel size of .
In Fig. 4, a detail is shown of a 30-m pixel, for the forest consisting
of 60% beech trees and 40% poplars. Note here that the spatial
resolution of the forest scene is significantly larger than the
resolution of the orchard scene detailed in Section III-A1. These
choices allow different plant production systems to be covered,
with various species combinations, sets of endmembers and
spatial resolution scales.

B. In Situ Measurement

In addition, an experiment was conducted in the same orchard
used for the calibration of the virtual orchard described in
Section III-A1. Significant weed cover, dominantly Lolium sp.

L. ( of the inter-row spacing, concentrated in dense
patches) was present. Throughout the orchard, in situ measured
reflectance spectra of 60 mixed ground plots were collected,
i.e., 25 mixtures of tree and soil, 25 mixtures of tree and weed,
and 25 mixtures of tree, soil and weed. Reflectance measure-
ments were performed in August using a spectroradiometer with

a 25 fore-optic, covering the 350–2500 nm spectral domain
(Analytic Spectral Devices, Boulder, CO, USA). The measure-
ments were taken from nadir at a height of 4 m. For each
measured mixed pixel, the plot-specific pure endmember
spectra and ground cover fraction distributions were determined.
Specifically, to mitigate the impact of nonlinear mixing from
endmember variability, plot-specific endmembers were acquired
by measuring a number of pure spectra in each plot, as illustrated
in Fig. 5. One set of soil, weed, and tree endmember spectra is
depicted in Fig. 6.

Information on the ground cover composition of each of the
measured mixed pixels was extracted from digital photographs
(SONYDSC-P8/3.2 megapixel cyber shot camera, positioned in
nadir). A more detailed description on the experimental setup,
depicted in Fig. 5, can be found in [25].

IV. EXPERIMENTAL RESULTS

The relevance of the mixing models under test, namely LMM,
FM, NM, GBM, and PPNM, and associated unmixing algo-
rithms, is evaluated with respect to 1) their ability of accurately
describing the physical processes yielding the considered mix-
tures and 2) their ability of providing meaningful estimations of
the abundance coefficients, to properly account for the spatial
distribution of the materials over each observed pixel. More
precisely, let and denote the abundance and nonlinearity
coefficient vectors estimated by the algorithms introduced in
Section II-C. First, the average square reconstruction error (RE)
is measured as

where stands for the usual Euclidean norm ( ).
In the right-hand side of (13), ( ) are the observed
pixels whereas are the corresponding estimates given by

¹

Fig. 3. Forest synthetic dataset. Example of the generated endmember spectra:
soil (black), beech (red), and pop (green).

Fig. 4. High-resolution detail of a 30 m pixel of the forest with 60% beech trees
and 40% poplars.

Fig. 5. Experimental set-up to determine plot-specific soil and tree endmember
signatures for each plot [25]. The areas T1, T2, and T3 (S1, S2, and S3,
respectively) identify the subplots selected for the measurements of pure tree
(soil) spectra. These measurements are averaged to provide the plot-specific tree
(soil) endmember signature.



where¹ is equal to 0 for the LMM or stands for the additional
nonlinear contribution for the nonlinear models (see Section II).

Since the actual endmember spectra and abundance coeffi-
cients [that satisfy the constraints in (2)] are perfectly known for
each pixel of the considered scenes, these REs can also be
computed from pixels reconstructed following the LMM and
FMwith the actual values of the abundances. These two “oracle”
models are denoted o-LMM and o-FM in what follows. In
particular, the RE associated with the o-LMM provides interest-
ing information regarding the actual level of nonlinearities in the
considered pixels. Note also that such oracle performance cannot
be computed for the other nonlinear models, since NM is based
on a different abundance definition [e.g., they do not follow the
constraints (2)] and GBM and PPNM require the prior knowl-
edge of additional (unknown) parameters.

Moreover, to visualize the reconstruction error as a function of
the wavelength, a signed error, defined as the mean reconstruc-
tion difference in the th band, is also computed as

Finally, to measure the accuracy of the abundance estimation,
the mean square errors (MSE) between the actual abundance
vectors and the corresponding estimated ( )
are computed as follows:

A. Simulated Dataset

1) Virtual Orchard: The unmixing results for the simulated
orchard scenes are shown in Table I in terms of MSE and RE.
From these results, for both two- and three-endmembers, one can
conclude that NM and LMM perform similarly in term of RE,
while PPNM and FM provide the best results and, in particular,
significantly better thanLMM. It is interesting to note that, for the
two-endmember mixtures, GBM does not provide smaller RE
than LMM, as expected. Indeed, as highlighted in Section II-A,
GBM reduces to LMM if , which is supposed to
confer to GBM more flexibility than LMM. This might indicate
that the unmixing algorithm associated with GBM has not
properly converged for this dataset. This point is discussed
in more details in Section V. Regarding the abundance MSE,
NM and LMM provide similar errors for two-endmember
mixtures and all nonlinear models perform better than LMM
for three-endmember mixtures.

In Fig. 7, the RDs are depicted as functions of wavelength, for
the different linear and nonlinear mixing models. From this
figure, it appears that the nonlinearities occurring in spectral
bands ranging from1400 to 2500 nmare of high intensity (see the
plot associated with the oracle-LMM, in black dashed line) but
are rather well described by the various nonlinear models.

2) Virtual Forest: For the simulated forest scenes, the
unmixing results are reported in Table II. These results are
computed for four scene compositions, with increasing
proportions from 20% to 80% of beech trees with respect to
poplars (see Section III-A2). The first three images provided a
sequence of imageswith increasing nonlinearity, as shownby the
RE obtained with the oracle-LMM, ranging from 2.11 to 5.36
( ). The fourth image, composed of 80% of poplars and
20% of beech trees, seems to be subject to nonlinearities of lower
intensity, since the oracle-LMM RE is .

As with the previous dataset, NM together with PPNM
provides the best model fit for all images, i.e., with lowest RE,
and the best abundance estimates in terms of MSE. The abun-
dance estimation performance of the different models is also

Fig. 6. Two- and three-endmember in situ measurements. Example of the
measured endmember spectra: soil (black), weed (red), and tree (green).

TABLE I
TWO- AND THREE-ENDMEMBER ORCHARD SYNTHETIC DATASET

AbundanceMSE ( ) andRE ( ) for various
linear/nonlinearmixingmodels. Best scores and second
best scores appear in blue boldface and in black bold-
face, respectively.

Fig. 7. Two- and three-endmember orchard synthetic dataset. Reconstruction
difference as a function of wavelength for various linear/nonlinear mixing
models: LMM (black), oracle-LMM (black, dashed line), FM (blue), oracle-FM
(blue, dashed line), NM (magenta), GBM (red), and PPNM (green).



decreasing with increasing nonlinear mixing effects in the
images, even though the RE remained almost constant for NM
and PPNM. FM performed poorly and LMM and GBM lead to
similar results.

Fig. 8 shows theRDs as functions ofwavelength. From theRD
associated with the oracle-LMM, it clearly appears that the
nonlinearity effects mostly occur in the spectral range 700–
1400 nm, especially for the 20%–80% and 80%–20% scenes.
All nonlinear mixing models provide good model fits, except the
FM, as already shown by the REs reported in Table II.

B. In Situ Measurements

Three types of in situmeasured mixed pixels were available to
test the different mixing models, i.e., tree–weed, tree–soil, and
tree–soil–weed mixtures (see Section III-B). In Table III, the
reconstruction error of the mixed signal and the accuracy of the
estimated abundances are depicted. From the RE associated with
the oracle-LMM, it appears that most nonlinearities occur in the
tree-soil mixtures. Once again, PPNM is the mixing model that
reconstructs the mixed signatures the best, while FM performed
worse than the LMM. For the abundance accuracy, MSE results
are less homogeneous than those obtained with the various
simulated datasets. Depending on the type of the mixture, GBM
or PPNM are the best unmixing model, while FM gives the
lowest abundance estimation accuracies.

The RDs obtained on the in situmeasurements are depicted in
Fig. 9. Similarly to the previous analyzed dataset, most of the
nonlinear effects seem to occur in the 700–1400 nm spectral
range, while being very small in the visible range. From these
plots, most of the mixing model appear not sufficiently accurate
to capture the nonlinearities in the observed mixtures, except the
PPNM.

V. DISCUSSION

The various datasets used during the experiments enable the
assessment of the performance of different unmixing models,
and the evaluation of the relevance of using nonlinear mixing
models to properly describe mixtures observed in vegetated
areas. As the exact per-pixel endmembers are known, the effects

of endmember spectral variability can be strongly reduced.
Consequently, the simulated or measured mixed pixels can be
fully characterized by the abundances, and the influence of
the nonlinear mixing effects on the unmixing accuracy could
be evaluated. To qualitatively and quantitatively evaluate the
mixing models and corresponding unmixing algorithms, general

TABLE II
THREE-ENDMEMBER FOREST SYNTHETIC DATASET

Abundance MSE ( ) and RE ( ) for various
linear/nonlinear mixing models.

Fig. 8. Three-endmember forest synthetic dataset. Reconstruction difference
as a function of wavelength for various linear/nonlinear mixing models:

LMM (black), oracle-LMM (black, dashed line), FM (blue), oracle-FM (blue,
dashed line), NM (magenta), GBM (red), and PPNM (green).

TABLE III
TWO- AND THREE-ENDMEMBER IN SITU MEASUREMENTS

Abundance MSE ( ) and RE ( ) for various linear/
nonlinear mixing models.



trends emerge from the results presented in Section IV. These
findings are reported in what follows.

A. Quantifying the Amount of Nonlinearity With o-LMM

Since the endmember signatures as well as the abundance
coefficients are perfectly known for each pixel of the considered
scenes, themodeling error (i.e., the RE) obtained with the oracle-
LMM could be considered as the mis-modeling introduced by
nonlinear mixing effects. For all three data sets, a significant RE
can be observed with the oracle-LMM, demonstrating the pres-
ence of nonlinear mixing effects, as already shown in [20], [25],
[26], for example. In particular, the results reported in Table III
show that the in situ-measurements are submitted to highly
nonlinear effects. Conversely, from Table II, the forest synthetic
dataset seems to be less subjected to these nonlinear effects.
Overall, from the results reported in the previous section, the
mixed pixel signatures seem to be better represented by nonlinear
mixing models, and specifically PPNM and NM. However, all
nonlinear mixing models cannot be advocated to better describe
mixed pixels than LMM, such as the GBM and NM for the
simulated orchard data (see Table I), and the FM for the
simulated forest data (see Table II) and the in situ orchard data
(see Table III). This shows that these nonlinearmixingmodels do
not necessarily better represent the mixed signatures.

B. On theUse of Reconstruction Error to Assess aMixingModel

It is also important to note that a better modeling of the mixed
pixels does not necessarily result in a better estimation of the
abundances. For instance, PPNM, which has been shown to be
the most accurate to model nonlinearly mixed spectral signa-
tures, sometimes lead to less accuracy with respect to the
abundance estimation when compared to LMM, in particular
for the three-endmember mixtures in the simulated orchard data
(see Table I) and for the tree-weedmixtures in the in situ data (see
Table III). In the results of the simulated forest, the same trend
can be observed: in spite of increasing nonlinear mixing effects,
the REs remain almost constant for both the PPNM and the NM,
while the accuracy of the estimated abundances decreases (see
Table II). As a consequence, the model fitting error, widely used
in the remote sensing literature to monitor the performance of the
unmixing algorithm, cannot be used as the uniquefigure-of-merit
to evaluate the relevance of a given mixing model.

C. Mismodeling With Respect to Wavelength

All nonlinear mixingmodels considered in Section II and used
in the experiments reported in Section IV implicitly assume the
same amount of nonlinearity for each wavelength of the spectral
domain. Indeed, they are basically defined by cross-products
between the endmember spectra, without introducing any
weighting functions that would depend on the spectral bands.
However, from the RDs depicted in Figs. 7, 8, and 9, it clearly
appears that the mis-modeling is drastically subjected to the
influence of the wavelength. This corroborates the results of
Somers et al. who also noticed similar behavior for the bilinear
mixing model [27]. Most of the nonlinear models under test lead
to reconstructed mixtures with the same admissible accuracy as
the LMM in the visible range (400–700 nm). Conversely, a clear

degradation of the modeling performance can be observed in the
700–1400 nm spectral range for most linear and nonlinear
models, except for the PPNM. In particular, the RDs associated
with the oracle-LMM demonstrate the important level of non-
linearity in the near-infrared region. This finding has beenwidely
observed in the literature [48]–[50].

D. Dealing With the Unmixing Algorithm Intrinsic Limitations

For both LMM and FM models, oracle measures of perfor-
mance have been computed since these models are fully de-
scribed by the a priori known abundance coefficients, explicitly
considered as the spatial distributions of the materials over the
imaged pixels. However, for the other nonlinear mixing models,
unmixing algorithms need to be used to infer all the parameters
involved in the model specification (e.g., abundances and non-
linearity parameters). Unfortunately, the optimization problems
to be solved, formulated in (11) and (12), to recover the abun-
dance coefficients are not totally straightforward, mainly due to
the constraints and/or the nonlinearity. As a consequence, the
reliability of the obtained results, in terms of RE and abundance
MSE, should be carefully analyzed, indeed mitigated. More
precisely, part of the REs may consist of approximation errors
induced by the unmixing algorithms themselves, in particular
when these iterative algorithms converge toward a stationary
point which is not the global minimizer of the objective function.
Consequently, the abundance estimates may be biased since
subjected to these approximation errors. As a manifest example,
one can consider the fitting performance of the GBM. By
definition, this model generalizes both LMM and FM and, thus,
should provide at least similar RE to the lowest RE among those
obtainedwith LMMand FM.However, this is not the case for the

Fig. 9. Two- and three-endmember in situ measurements. Reconstruction dif-
ference as a function of wavelength for various linear/nonlinear mixing
models: LMM (black), oracle LMM (black, dashed line), FM (blue), oracle FM
(blue, dashed line), NM (magenta), GBM (red), and PPNM (green).



orchard synthetic dataset, as already highlight in Section IV-A1
(see Table I). This is an archetypal instance of the limitations of
the GBM-based unmixing algorithm.

VI. CONCLUSION

This paper attempted to make a first step toward a full
quantitative assessment of linear and nonlinear mixing models
to properly described mixtures observed in hyperspectral images
acquired over vegetated areas. The conducted work exploited
two kinds of hyperspectral data, whose main advantages lies in
the availability of ground truth, that consists of the actualmaterial
signatures (endmember spectra) and their corresponding spatial
repartitions in the pixels (abundance coefficients). The first set of
hyperspectral data consisted of physically based simulated
images, while the second set of hyperspectral data came from
real in situ measurements. Various linear and nonlinear mixing
models were used to analyze these data. They were evaluated in
terms of spectral mis-modeling (i.e., reconstruction error) and
abundance estimation accuracy. From the obtained results, it
clearly appeared that the polynomial PPNM undeniably
provided, by far, the best reconstruction of the mixed pixels. It
also persistently led to admissible abundance estimates, regard-
less of the considered scene. More generally, depending of the
analyzed mixtures, the Nascimento model, the Fan model or the
polynomial postnonlinear model provided the most interesting
results with respect to the abundance estimates. However, it was
worth noting that the results presented in this work needed to be
mitigated by the intrinsic limitations of the resorted unmixing
algorithms, that could induce estimate biases. Finally, it is
important to admit that the results reported in this work are only
valid for two- and three-endmember mixtures. Generalizing or
extending these findings to more complex scenes would require
further investigation.
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