
HAL Id: hal-01056399
https://hal.science/hal-01056399

Submitted on 20 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate 3D Action Recognition using Learning on the
Grassmann Manifold

Rim Slama, Hazem Wannous, Mohamed Daoudi, Anuj Srivastava

To cite this version:
Rim Slama, Hazem Wannous, Mohamed Daoudi, Anuj Srivastava. Accurate 3D Action Recognition
using Learning on the Grassmann Manifold. Pattern Recognition, 2015, 48 (2), pp.556-567. �hal-
01056399�

https://hal.science/hal-01056399
https://hal.archives-ouvertes.fr


Accurate 3D Action Recognition using Learning on the

Grassmann Manifold

Rim Slamaa,b, Hazem Wannousa,b, Mohamed Daoudib,c, Anuj Srivastavad

a
University Lille 1, Villeneuve d’Ascq, France

b
LIFL Laboratory / UMR CNRS 8022, Villeneuve d’Ascq, France

c
Institut Mines-Telecom / Telecom Lille, Villeneuve d’Ascq, France

d
Florida State University, Departement of Statistics, Tallahassee, USA

Abstract

In this paper we address the problem of modelling and analyzing hu-

man motion by focusing on 3D body skeletons. Particularly, our intent is

to represent skeletal motion in a geometric and e�cient way, leading to an

accurate action-recognition system. Here an action is represented by a dy-

namical system whose observability matrix is characterized as an element

of a Grassmann manifold. To formulate our learning algorithm, we pro-

pose two distinct ideas: (1) In the first one we perform classification using

a Truncated Wrapped Gaussian model, one for each class in its own tangent

space. (2) In the second one we propose a novel learning algorithm that

uses a vector representation formed by concatenating local coordinates in

tangent spaces associated with di↵erent classes and training a linear SVM.

We evaluate our approaches on three public 3D action datasets: MSR-action

3D, UT-kinect and UCF-kinect datasets; these datasets represent di↵erent
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kinds of challenges and together help provide an exhaustive evaluation. The

results show that our approaches either match or exceed state-of-the-art per-

formance reaching 91.21% on MSR-action 3D, 97.91% on UCF-kinect, and

88.5% on UT-kinect. Finally, we evaluate the latency, i.e. the ability to

recognize an action before its termination, of our approach and demonstrate

improvements relative to other published approaches.

Keywords: Human action recognition, Grassmann manifold, observational

latency, depth images, skeleton, classification.

1. Introduction1

Human action and activity recognition is one of the most active research2

topics in the computer vision community due to its many challenging issues.3

The motivation behind the great interest granted to action recognition is4

the large number of possible applications in consumer interactive entertain-5

ment and gaming [1], surveillance systems [2], life-care and home systems6

[3]. An extensive literature around this domain can be found in a number of7

fields including pattern recognition, machine learning, and human-machine8

interaction [4, 5].9

The main challenges in action recognition systems are the accuracy of10

data acquisition and the dynamic modelling of the movements. The major11

problems, which can alter the way actions are perceived and consequently12

be recognized, are: occlusions, shadows and background extraction, lighting13

condition variations and viewpoint changes. The recent release of consumer14

depth cameras, like Microsoft Kinect, has significantly lighten these di�-15

culties that reduce the action recognition performance in 2D video. These16
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cameras provide in addition to the RGB image a depth stream allowing to17

discern changes in depth in certain viewpoints.18

More recently, Shotton et al. [6] have proposed a real-time approach for19

estimating 3D positions of body joints using extensive training on synthetic20

and real depth-streams. The accurate estimation obtained by such a low-21

cost acquisition depth sensor has provided new opportunities for human-22

computer-interaction applications, where popular gaming consoles involve23

the player directly in interaction with the computer. While these acquisition24

sensors and their accurate data are within everyone’s reach, the next research25

challenge is activity-driven.26

In this paper we address the problem of modelling and analyzing human27

motion in the 3D human joint space. Particularly, our intent is to represent28

skeletal joint motion in a compact and e�cient way that leads to an accurate29

action recognition. Our ultimate goal is to develop an approach that avoids30

an overly complex design of feature extraction and is able to recognize actions31

performed by di↵erent actors in di↵erent contexts.32

Additionally, we study the ability of our approach for reducing latency:33

in other words, to quickly recognize human actions from the smallest number34

of frames possible to permit a reliable recognition of the action occurring.35

Furthermore, we analyze the impact of reducing the number of actions per36

class in the training set on the classifier’s accuracy.37

In our approach, the spatio-temporal aspect of the action is considered38

and each movement is characterized by a structure incorporating the intrinsic39

nature of the data. We believe that 3D human joint motion data captures40

useful knowledge to understand the intrinsic motion structure, and a manifold41
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representation of such simple features can provide discriminating structure42

for action recognition. This leads to manifold-based analysis, which has43

been successfully used in many computer vision applications such as visual44

tracking [7] and action recognition in 2D video [8, 9, 10, 11].45

Our overall approach is sketched in Figure 1, which has the following46

modules:47
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Figure 1: Overview of the approach. The illustrated pipeline is composed of two main
modules: (1) temporal modelling of time series data and manifold representation (2)
learning approach on the Control Tangent spaces on Grassman manifold, using Local
Bundle Tangent representation of data.

First, given training videos recorded from depth camera, motion trajecto-48

ries from the 3D human joint in Euclidean space are extracted as time series.49

Then, each motion represented by its time series is expressed as an autore-50

gressive and moving average model (ARMA) in order to model its dynamic51

process. The subspace spanned by columns of the observability matrix of52

this model represents a point on a Grassmann manifold.53

Second, using the Riemannian geometry of this manifold, we present a so-54

lution for solving the classification problem. We studied statistical modelling55
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of inter- and intra-class variations in conjunction with appropriate tangent56

vectors on this manifold. While class samples are presented by a Grass-57

mann point cloud, we propose to learn Control Tangent (CT) spaces which58

represent the mean of each class.59

Third, each observation of the learning process is projected on all CTs60

to form a Local Tangent Bandle (LTB) representation. This step allows61

obtaining a discriminative parameterization incorporating class separation62

properties and providing the input to a linear SVM classifier.63

While given an unknown test video, to recognize its belonging to one of64

N action classes, we apply the first step on the sequence to represent it as65

a point on the Grassmann manifold. Then, this point is presented by its66

LTB as done in learning step. In order to recognize the input action, SVM67

classifier is performed.68

The rest of the paper is organized as follows: In section 1, the state-of-69

the-art is summarized and main contributions of this paper are highlighted.70

In section 2, parametric subspace-based modelling of 3D joint-trajectory is71

discussed. In Section 3, statistical tools developed on a Grassmann manifold72

are presented and a new supervised learning algorithm is introduced. In73

Section 4, the strength of the framework in term of accuracy and latency on74

several datasets are demonstrated. Finally, concluding remarks are presented75

in Section 5.76

2. Related works77

In this section two categories of related works are reviewed from two78

points of view: manifold-based approache and depth data representation.79
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We first review some related manifold based approaches for action analysis80

and recognition in 2D video. Then we focus on the most recent methods of81

action recognition from depth cameras.82

2.1. Manifold approaches in 2D videos83

Human action modelling from 2D video is a well studied problem in the84

literature. Recent surveys can be found in the work of Aggarwal et al. [12],85

Weinland et al. [13], and Poppe [4]. Beside classical methods performed86

in Euclidean space, a variety of techniques based on manifold analysis are87

proposed in recent years.88

In the first category of manifold based approaches, each frame of action89

sequence (pose) is represented as an element of a manifold and the whole90

action is represented as a trajectory on this manifold. These approaches give91

solutions in the temporal domain to be invariant to speed and time using92

techniques like Dynamic Time Warping (DTW) to align action trajectories93

on the manifold. Also probabilistic grammatical models like Hidden Markov94

Model (HMM) are used to classify these actions presented as trajectories.95

Indeed, Veeraraghavan et al. [14] propose the use of human silhouettes ex-96

tracted from video images as a representation of the pose. Silhouettes are97

then characterized as points on the shape space manifold and modelled by98

ARMA models in order to compare sequences using a DTW algorithm. In99

another manifold shape space, Abdelkader et al. [15] represent each pose100

silhouette as a point on the shape space of closed curves and each gesture is101

represented as a trajectory on this space. To classify actions, two approaches102

are used: a template-based approach (DTW) and a graphical model approach103

(HMM). Other approaches use skeleton as a representation of each frame, as104
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works presented by Gong et al. [16]. They propose a spatio-Temporal Man-105

ifold (STM) model to analyze non-linear multivariate time series with latent106

spatial structure and apply it to recognize actions in the joint-trajectories107

space. Based on STM, they propose a Dynamic Manifold Warping (DMW)108

and a motion similarity metric to compare human action sequences both in109

2D space using a 2D tracker to extract joints from images and in 3D space110

using Motion capture data. Recently, Gong et al. [17] propose a Kernelized111

Temporal Cut (KTC) as an extension of their previous work [16]. They incor-112

porate Hilbert space embedding of distributions to handle the non-parametric113

and high dimensionality issues.114

Some manifold approaches represent the entire action sequence as a point115

on an other special manifold. Indeed, Turaga et al. [18] involve a study of116

the geometric properties of the Grassmann and Stiefel manifolds, and give117

appropriate definitions of Riemannian metrics and geodesics for the purpose118

of video indexing and action recognition. Then, in order to perform the clas-119

sification as a probability density function, a mean and a standard-deviation120

are learnt for each class on class-specific tangent spaces. Turaga et al. [19]121

use the same approach to represent complex actions by a collection of sub-122

sequence. These sub-sequences correspond to a trajectory on a Grassmann123

manifold. Both DTW and HMM are used for action modelling and com-124

parison. Guo et al. [20] use covariance matrices of bags of low-dimensional125

feature vectors to model the video sequence. These feature vectors are ex-126

tracted from segments of silhouette tunnels of moving objects and coarsely127

capture their shapes.128

Without any extraction of human descriptor as silhouette and neither an129
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explicit learning, Lui et al. [21] introduce the notion of tangent bundle to130

represent each action sequence on the Grassmann manifold. Videos are ex-131

pressed as a third-order data tensor of raw pixel from action images, which132

are then factorized on the Grassmann manifold. As each point on the mani-133

fold has an associated tangent space, tangent vectors are computed between134

elements on the manifold and obtained distances are used for action clas-135

sification in a nearest neighbour fashion. In the same way, Lui et al. [22]136

factorize raw pixel from images by high-order singular value decomposition137

in order to represent the actions on Stiefel and Grassmann manifolds. How-138

ever, in this work where raw pixels are directly factorized as manifold points,139

there is no dynamic modelling of the sequence. In addition, only distances140

obtained between all tangent vectors are used for action classification and141

there is no training process on data.142

Kernels [23, 24] are also used in order to transform subspaces of a man-143

ifold onto a space where Euclidean metric can be applied. Shirazi et al.144

[23] embed Grassmann manifolds upon a Hilbert space to minimize cluster-145

ing distortions and then apply a locally discriminant analysis using a graph.146

Video action classification is then obtained by a Nearest-Neighbour classi-147

fier applied on Euclidean distances computed on the graph-embedded kernel.148

Similarly, Harandi et al. [24] propose to represent the spatio-temporal as-149

pect of the action by subspaces elements of a Grassmann manifold. Then,150

they embed this manifold into reproducing kernel of Hilbert spaces in order151

to tackle the problem of action classification on such manifolds. Gall et al.152

[25] use multi-view system coupling action recognition on 2D images with153

3D pose estimation, were the action-specific manifolds are acting as a link154
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between them.155

All these approaches cited above are based on features extracted from156

2D video sequences as silhouettes or raw pixels from images. However, the157

recent emergence of low-cost depth sensors opens the possibility of revisiting158

the problem of activity modelling and learning using depth data-driven.159

2.2. Depth data-driven approaches160

Maps obtained by depth sensors are able to provide additional body shape161

information to di↵erentiate actions that have similar 2D projections from a162

single view. It has therefore motivated recent research works, to investigate163

action recognition using the 3D information. Recent surveys [26, 27] are re-164

porting works on depth videos. First methods used for activity recognition165

from depth sequences have tendency to extrapolate techniques already de-166

veloped for 2D video sequences. These approaches use points in depth map167

sequences as a gray pixels in images to extract meaningful spatiotemporal168

descriptors. In Wanqing et al. [28], depth maps are projected onto the three169

orthogonal Cartesian planes (X � Y , Z � X, and Z � Y planes) and the170

contours of the projections are sampled for each frame. The sampled points171

are used as bag-of-points to characterize a set of salient postures that corre-172

spond to the nodes of an action graph used to model explicitly the dynamics173

of the actions. Local feature extraction approaches like spatiotemporal inter-174

est points (STIP) are also employed for action recognition on depth videos.175

Bingbing et al.[29] use depth maps to extract STIP and encode Motion His-176

tory Image (MHI) in a framework combining color and depth information.177

Xia et al [30] propose a method to extract STIP a on depth videos (DSTIP).178

Then around these points of interest they build a depth cuboid similarity179
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feature as descriptor for each action. In the work proposed by Vieira et al.180

[31], each depth map sequence is represented as a 4D grid by dividing the181

space and time axes into multiple segments in order to extract SpatioTempo-182

ral Occupancy Pattern features (STOP). Also in Wang et al. [32], the action183

sequence is considered as a 4D shape but Random Occupancy Pattern (ROP)184

is used for features extraction. Yang et al.[33] employ Histograms of Oriented185

Gradients features (HOG) computed from Depth Motion Maps (DMM), as186

the representation of an action sequence. These histograms are then used as187

input to SVM classifier. Similarly, Oreifej et al. [34] compute a 4D histogram188

over depth, time, and spatial coordinates capturing the distribution of the189

surface normal orientation. This histogram is created using 4D projectors190

allowing quantification in 4D space.191

The availability of 3D sensors has recently made possible to estimate 3D192

positions of body joints. Especially thanks to the work of Shotton et al.193

[6], where a real-time method is proposed to accurately predict 3D positions194

of body joints. Thanks to this work, skeleton based methods have become195

popular and many approaches in the literature propose to model the dynamic196

of the action using these features.197

Xia et al. [35] compute histograms of the locations of 12 3D joints as a198

compact representation of postures and use them to construct posture visual199

words of actions. The temporal evolutions of those visual words are modeled200

by a discrete HMM. Yang et al. [36] extract three features, as pair-wise dif-201

ferences of joint positions, for each skeleton joint. Then, principal component202

analysis (PCA) is used to reduce redundancy and noise from feature, and it203

is also used to obtain a compact Eigen Joints representation for each frame.204
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Finally, a näıve-Bayes nearest-neighbour classifier is used for multi-class ac-205

tion classification. The popular Dynamic Time Warping (DTW) technique206

[37], well-known in speech recognition area, is also used for gesture and action207

recognition using depth data. The classical DTW algorithm was defined to208

match temporal distortions between two data trajectories, by finding an op-209

timal warping path between the two time series. The feature vector of time210

series is directly constructed from human body joint orientation extracted211

from depth camera or 3D Motion Capture sensors. Reyes et al. [38] per-212

form DTW on a feature vector defined by 15 joints on a 3D human skeleton213

obtained using PrimeSense NiTE. Similarly, Sempena et al. [39], by the 3D214

human skeleton model, use quaternions to form a 60-element feature vec-215

tor. The obtained warping path, by classical DTW algorithm, between two216

time series is mainly subjected to some constraints: (1) boundary constraint217

which enforces the first elements of the sequences as well as the last one218

to be aligned to each other (2) monotonicity constraint which requires that219

the points in the warping path are monotonically spaced in time in the two220

sequences. This technique is relatively sensitive to noise as it requires all221

elements of the sequences to be matched to a corresponding elements of the222

other sequence. It also has a drawback related to its computational complex-223

ity incurring in quadratic cost. However, many works have been proposed to224

bypass its drawbacks by means of probabilistic models [40] or incorporating225

manifold learning approach [17, 16].226

Recent research has carried on more complex challenge of in-line recogni-227

tion systems for di↵erent applications, in which a trade-o↵ between accuracy228

and latency can be highlighted. Ellis et al. [41] study this trade-o↵ and229
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employed a Latency Aware Learning (LAL) method, reducing latency when230

recognizing actions. They train a logistic regression-based classifier, on 3D231

joint position sequences captured by kinect camera, to search a single canon-232

ical posture for recognition. Another work is presented by Barnachon et233

al. [42], where a histogram-based formulation is introduced for recognizing234

streams of poses. In this representation, classical histogram is extended to235

integral one to overcome the lack of temporal information in histograms.236

They also prove the possibility of recognizing actions even before they are237

completed using the integral histogram approach. Tests are made on both 3D238

MoCap from TUM kitchen dataset [43] and RGB-D data from MSR-Action239

dataset [28].240

Some hybrid approaches combining both skeleton data features and depth241

information were recently introduced, trying to combine positive aspects of242

both approaches. Azary et al. [44] propose spatiotemporal descriptors as243

time-invariant action surfaces, combining image features extracted using ra-244

dial distance measures and 3D joint tracking. Wang et al. [45] compute245

local features on patches around joints for human body representation. The246

temporal structure of each joint in the sequence is represented through a tem-247

poral pattern representation called Fourier Temporal Pyramid. In Oreifej et248

al. [34], a spatiotemporal histogram (HON4D) computed over depth, time,249

and spatial coordinates is used to encode the distribution of the surface nor-250

mal orientation. Similarly to Wang et al. [45], HON4D histograms [34] are251

computed around joints to provide the input of an SVM classifier. Althloothi252

et al. [46] represent 3D shape features based on spherical harmonics repre-253

sentation and 3D motion features using kinematic structure from skeleton.254
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Both feature are then merged using multi kernel learning method.255

It is important to note that, to date, few works have very recently pro-256

posed to use manifold analysis for 3D action recognition. Devanne et al. [47],257

propose a spatiotemporal motion representation to characterize the action as258

a trajectory which corresponds to a point on Riemannian manifold of open259

curves shape space. These motion trajectories are extracted from 3D joints,260

and the action recognition is performed by K-Nearest-Neighbor method ap-261

plied on geodesic distances obtained on open curve shape space. Azary et al.262

[48] use a Grassmannian representation as an interpretation of depth motion263

image (DMI) computed from depth pixel values. All DMI in the sequence264

are combined to create a motion depth surface representing the action as a265

spatiotemporal descriptor.266

2.3. Contributions and proposed approach267

On the one hand, approaches modelling actions as elements of manifolds268

[49, 50, 9] prove that it is an appropriate way to represent and compare269

videos. On the other hand, very few works deal with this task using depth270

images and it is still possible to improve learning step using these models.271

Besides, linear dynamic systems [51] show more and more promising results272

on the motion modelling since they exhibit the stationary properties in time,273

so they fit for action representation.274

In this paper, we propose the use of geometric structure inherent in the275

Grassmann manifold for action analysis. We perform action recognition by276

introducing a manifold learning algorithm in conjunction with dynamic mod-277

elling process. In particular, after modelling motions as a linear dynamic sys-278

tems using ARMA models, we are interested in a representation of each point279
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on the manifold incorporating class separation properties. Our representa-280

tion takes benefit of statistics in the Grassmann manifold and action classes281

representations on tangent spaces. From spatiotemporal point of view, each282

action sequence is represented in our approach as linear dynamical system283

acquiring the time series of 3D joint-trajectory. From geometrical point of284

view, each action sequence is viewed as a point on the Grassmann manifold.285

In terms of machine learning, a discriminative representation is provided for286

each action thanks to a set of appropriate tangent vectors taking benefit287

of manifold proprieties. Finally, the e�ciency of the proposed approach is288

demonstrated on three challenging action recognition datasets captured by289

depth cameras.290

3. Spatiotemporal modelling of action291

The human body can be represented as an articulated system composed292

of hierarchical joints that are connected with bones, forming a skeleton. The293

two best-known skeletons provided by the Microsoft Kinect sensor, are those294

obtained by o�cial Microsoft SDK, which contains 20 joints, and PrimeSense295

NiTE which contains only 15 joints (see Figure 2). The various joint con-296

figurations throughout the motion sequence produce a time series of skeletal297

poses giving the skeleton movement. In our approach, an action is simply298

described as a collection of time series of 3D positions of the joints in the299

hierarchical configuration.300

3.1. Linear dynamic model301

Let pj
t

denote the 3D position of a joint j at a given frame t i.e., pj =302

[xj, yj, zj]
j=1:J , with J is the number of joints. The joint position time-series303
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Figure 2: Skeleton joint locations captured by Microsof Kinect sensor (a) using Microsoft
SDK (b) using PrimeSense NiTE. Joint signification are: (1) head (2) shoulder center (3)
spine (4) hip center (5/6) left/right hip (7/8) left/ ight knee (9/10) left/right ankle (11/12)
left/right foot (13/14) left/right shoulder (15/16) left/right elbow (17/19) left/right wrist
(19/20) left/right hand.

of joint j is pj
t

= {xj

t

, yj
t

, zj
t

}t=1:T
j=1:J , with T the number of frames. A motion304

sequence can then be seen as a matrix collecting all time-series from J joints,305

i.e., M = [p1p2 · · · pT ], p 2 R3⇤J .306

At this level, we could consider using DTW algorithm [37] to find optimal307

non-linear warping function to match these given time-series as proposed by308

[38, 39, 16]. However, we opted for a system combining a linear dynamic309

modelling with statistical analysis on a manifold, avoiding the boundary and310

the monotonicity constraints presented by classical DTW algorithm. Such a311

system is also less sensitive to noise due to the poor estimation of the joint312

locations, in addition to its reduced computational complexity.313

The dynamic and the continuity of movement imply that the action can314

not be resumed as a simply set of skeletal poses because of the temporal315
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information contained in the sequence. Instead of directly using original316

joint position time-series data, we believe that a linear dynamic system, like317

that often used for dynamic texture modelling, is essential before manifold318

analysis. Therefore, to capture both the spatial and the temporal dynamics319

of a motion, linear dynamical system characterized by ARMA models are320

applied to the 3D joint position time-series matrix M .321

The dynamic captured by the ARMA [52, 53] model during an action322

sequence M can be represented as:323

p(t) = Cz(t) + w(t), w(t) ⇠ N(0, R),

z(t+ 1) = Az(t) + v(t), v(t) ⇠ N(0, Q)
(1)

where z 2 Rd is a hidden state vector, A 2 Rd⇥d is the transition matrix324

and C 2 R3⇤J⇥d is the measurement matrix. w and v are noise components325

modeled as normal with mean equal to zero and covariance matrix R 2326

R3⇤J⇥3⇤J and Q 2 Rd⇥d respectively. The goal is to learn parameters of the327

model (A,C) given by these equations. Let U
P

V T be the singular value328

decomposition of the matrix M . Then, the estimated model parameters A329

and C are given by: Ĉ = U and Â =
P

V TD1V (V TD2V )�1
P�1, where330

D1 = [0 0, I
⌧�1 0], D2 = [I

⌧�1 0, 0 0] and I
⌧�1 is the identity matrix of331

size ⌧ � 1.332

Comparing two ARMA models can be done by simply comparing their333

observability matrices. The expected observation sequence generated by an334

ARMA model (A,C) lies in the column space of the extended observability335

matrix given by ✓T1 = [CT , (CA)T , (CA2)T , ...]T . This can be approximated336

by the finite observability matrix ✓T
m

= [CT , (CA)T , (CA2)T , ..., (CA2)m]T337

16



[18]. The subspace spanned by columns of this finite observability matrix338

corresponds to a point on a Grassmann manifold.339

3.2. Grassmann manifold interpretation340

Grassmannian analysis provides a natural way to deal with the problem of341

sequence matching. Especially, this manifold allows to represent a sequence342

by a point on its space and o↵ers tools to compare and to do statistics on343

this manifold. The classification problem of sets of motions represented by a344

collection of features can be transformed to point classification problem on345

the Grassmann manifold.346

In this work we are interested in Grassmann manifolds which definition347

is as below.348

Definition: The Grassmann manifold G
n⇥d

is a quotient space of orthogonal349

group O(n) and is defined as the set of d-dimensional linear subspaces of Rn

.350

Points on the Grassmann manifold are equivalent classes of n⇥d orthogonal351

matrices, with d < n, where two matrices are equivalent if their columns span352

the same d-dimensional subspace.353

Let µ denotes an element on G
n⇥d

, the tangent space to this element T
µ

on354

G
n,d

is the tangent plane to the surface of the manifold at µ. It is possible355

to map a point U , of the Grassmann manifold, to a vector in the tangent356

space T
µ

using the logarithm map as defined by Turaga et al. [18]. An other357

important tool in statistics is the exponential map Exp
µ

: T
µ

(G
n,d

) ! G
n,d

,358

which allows to move on the manifold.359

Two points U1 and U2 on G
n,d

are equivalent if one can be mapped into360

the other one by d⇥d orthogonal matrix [54]. In other words, U1 and U2 are361

equivalent if the d columns of U1 are rotations of U2. The minimum length362
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curve connecting these two points is the geodesic between them computed363

as:364

d
geod

(U1, U2) =k [✓1, ✓2, · · · , ✓i, · · · , ✓d] k2 (2)

where ✓
i

is the principal angle vector which can be computed through the365

SVD of UT

1 U2.366

4. Learning process on the manifold367

Let {U1, · · ·UN

} be N actions represented by points on the Grassmann368

manifold. A common learning approach on manifolds is based on the use369

of only one-tangent space, which usually can be obtained as the tangent370

space to the mean (µ) of the entire data points {U
i

}
i=1:N without regard371

to class labels. All data points on the manifold are then projected on this372

tangent space to provide the input of a classifier. This assumption provide an373

accommodated solution to use a classical supervised learning on the manifold.374

However, this flattening of the manifold through tangent space is not e�cient375

since the tangent space on the global mean can be far from other points.376

A more appropriate way is to consider separate tangent spaces for each377

class at the class-mean. The classification is then performed in these indi-378

vidual tangent spaces as in [18].379

Some other approaches explore the idea of tangent bundle as in Lui et380

al. [21, 22], in which all tangent planes of all data points on the manifold381

are considered. Tangent vectors are then computed between all points on382

a Grassmann manifold and action classification is performed thanks to ob-383

tained distances.384

We believe that using several tangent spaces, obtained for each class of385
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the training data points, is more intuitive. However, the question here is how386

to learn a classifier in this case?387

In the rest of the section, we present a statistical computation of the mean388

in the Grassmann manifold [55]. Then, we propose two learning methods on389

this manifold taking benefit from tangent space class specific and tangent390

bundle [21]: Truncated Wrapped Gaussian (TWG) [56] and Local Tangent391

Bundle SVM (LBTSVM).392

4.1. Mean computation on the Grassmann manifold393

The Karcher mean [55] enables computation of a mean representative for394

a cluster of points on the manifold. This mean should belong to the same395

space as the given points. In our case, we need Karcher mean to compute396

averages on the Grassman manifold and more precisely means of each action397

class which represents the action at best. The algorithm exploits log and exp398

maps in a predictor/corrector loop until convergence to an expected point.399

The computation of a mean can be used to perform an action classification400

solution. This can be done by a s simple comparison of an unknown action,401

represented as a point on the manifold, to all class-means and assigning it to402

the nearest one using the distance presented in Equation 2.403

4.2. Truncated Wrapped Gaussian404

In addition to the mean µ computed by Karcher mean on {U
i

}
i=1:N , we405

look for the standard deviation value � between all actions in each class of406

training data. The � must be computed on {V
i

}
i=1:N where V = exp�1

µ

(U
i

)407

are the projections of actions from the Grassmann manifold into the tangent408
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space defined on the mean µ. The key idea here is to use the fact that the409

tangent space T
µ

(G
n,d

) is a vector space.410

Thus, we can estimate the parameters of a probability density function411

such as a Gaussian and then use the exponential map to wrap these param-412

eters back onto the manifold using exponential map operator [18]. However,413

the exponential map is not a bijection for the Grassmann manifold. In fact, a414

line on tangent space, with infinite length, can be warpped around the man-415

ifold many times. Thus, some points of this line are going to have more than416

one image on G
n,d

. It becomes a bijection only if the domain is restricted.417

Therefore, we can restrict the tangent space by a truncation beyond a radius418

of ⇡ in T
µ

(G
n,d

). By truncation, the normalization constant changes for mul-419

tivariate density in T
µ

(G
n,d

). In fact, it gets scaled down depending on how420

much of the probability mass is left out of the truncation region.421

Let f(x) denotes the probability density function (pdf) defined on T
µ

(G
n,d

)422

by :423

f(x) =
1p
2⇡�2

e
�x

2

2�2 (3)

After truncation, an approximation of f gives:424

f̂(x) =
f(x)⇥ 1|x|<⇡

z
(4)

where z is the normalization factor :425

z =

Z
⇡

�⇡

f(x)⇥ 1|x|<⇡

dx (5)

Using Monte Carlo estimation, it can proved that the estimation of z is given426
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by:427

ẑ =
1

N

NX

i=1

1|x
i

|<⇡

(6)

In practice, we employ wrapped Gaussians in each class-specific tangent428

space. Separate tangent space is considered for each class at its mean com-429

puted by Karcher mean algorithm. Predicted class of an observation point430

is estimated in these individual tangent spaces. In the training step, the431

mean, standard deviation and normalization factor in each class of actions432

are computed. The predicted label of unknown class action is estimated as433

a function of probability density in class-specific tangent spaces.434

4.3. Local Tangent Bundle435

We intent here to generalize a learning algorithm to work with data points436

which are geometrically lying to a Grassmann manifold. Using multiple class-437

specific tangent spaces is decidedly more relevant than single one. However,438

restrict the learning to only the mean and the standard-deviation in each tan-439

gent space, as in TGW method, is probably insu�cient to classify complex440

actions with small inter-class variation. Our idea is to build a supervised clas-441

sifier on the manifold but without limiting the learning process to distances442

computed on the tangent spaces as in [22].443

We consider such data points to be embedded in higher dimensional rep-444

resentation providing a natural and implicit separation of directions. We445

use the notion of tangent bundle on the manifold to formulate our learning446

algorithm.447

The tangent bundle of a manifold is defined in the literature as the mani-448

fold along with the set of tangent planes taken at all points on it. Each such449
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a tangent plane can be equipped with a local Euclidean coordinate system.450

In our approach, we consider several ”local” bundles, each one represents the451

tangent planes taken at all points belonging to a class from training dataset452

and expressed as class-specific local bundle.453

We generate Control Tangents (CT) on the manifold, which represent454

all class-specific local bundles of data points. Each CT can be seen as the455

tangent space of the Karcher mean of all points belonging to the same class456

of points from only training data. Karcher mean algorithm can be employed457

here for mean computation.458

We introduce an upswing of the manifold learning so-called Local Tangent459

Bundle (LTB), in which proximities are required between each point on the460

manifold and all CTs. The LTB can be viewed as a parameterization of461

a point on the manifold which incorporates implicitly release properties in462

relation to all class clusters, by mapping this point to all CTs using logarithm463

map.464

The LTBs can provide the input of a classifier, like the linear SVM clas-465

sifier as in our case. In doing so, the learning model of the classifier is con-466

structed using LTBs instead of classifying as function of the local distances467

(mean and standard-deviation) of the point from LTBs as in TWG method.468

We finally notice that training a linear SVM classifier on our represen-469

tation of points provided by LTB is more appropriate than the use of SVM470

with classical Kernel, like rbf, on original points on the manifold.471

In experiments, we compare our learning approach LTBSVM to the clas-472

sical one denoted as One-tangent SVM (TSVM), in which the mean is com-473

puted on the entire training dataset regardless to class labels. Then, all474
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points on the manifold are projected on this later to provide the inputs of a475

linear SVM.476

A graphical illustration of the manifold learning by TWG and LTB can477

be shown in Figure 3.478

(a) TWG

(b) LTB

Figure 3: Conceptual TWG and LTB learning methods on the Grassmann manifold.
(a) Actions belonging to the same class, illustrated with same color, are projected to the
tangent space presented with their mean and then Gaussian function is computed on each
tangent space, (b) An action is projected on all CTs, and thus construct a new observation
is represented by its LTB.

5. Experimental results479

This section summarizes our empirical results and provides an analysis of480

the performances of our proposed approach on several datasets compared to481

the state-of-the-art approaches.482
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5.1. Data and features483

We extensively experimented our proposed approach on three public 3D484

action datasets containing various challenges, including MSR-action 3D [28],485

UT-kinect [35] and UCF-kinect [41]. All details about these datasets: di↵er-486

ent types and number of motions, number of subjects executing these motions487

and the experimental protocol used for evaluation are summarized in Table488

1. Examples of actions from these datasets are shown in Figure 4.489

Dataset Motions Total number of ac-
tions

Experimental
protocol

MSR-action 3D
[28]

RGB + depth (320*240) + 20
joints: high arm wave, horizontal
arm wave, hammer, hand catch,
forward punch, high throw, draw
X, draw tick, draw circle, hand
clap, two hand wave, side-
boxing, bend, forward kick, side
kick, jogging, tennis swing, ten-
nis serve, golf swing, pick up and
throw

10 subjects | 20 ac-
tions | 3 try ) To-
tal of 520 actions

50% Learn-
ing / 50%
Testing

UT-kinect [35] RGB + depth (320*240) + 20
joints: walk, sit down, stand up,
pick up, carry, throw, push, pull,
wave and clap hands

10 subject | 10 ac-
tions | 2 try ) To-
tal of 200 actions

leave-one-
out cross-
validation

UCF-kinect [41] 15 joints: balance, climb up,
climb ladder, duck, hop, vault,
leap, run, kick, punch, twist left,
twist right , step forward, step
back, step left, step right

16 subjects | 16 ac-
tions | 5 try ) To-
tal of 1280 actions

70% Learn-
ing / 30%
Testing

Table 1: Overview of the datasets used in the experiments.

In all these datasets, a normalization step is performed in order to make490

the skeletons scale-invariant. For each frame, the hip center joint is first491

placed at the origin of the coordinate system. Then, a skeleton template is492

taken as reference and all the other skeletons are normalized such that their493
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(a) MSR-action 3D

(b) UT-Kinect

(c) UCF-kinect

Figure 4: Examples of human actions from datsets used in our experiments: (a) ’hand
clap’ from MSR-action 3D , (b) ’walk’ from UT kinect and (c) ’climb ladder’ from UCF-
kinect.
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body part lengths are equal to the corresponding lengths of the reference494

skeleton. Each 3D joint sequence is represented as time series matrix of size495

F ⇥ T with T the number of frames in the sequence and F the number496

of features per frame. The number of features depends on the number of497

estimated joints (60 values for Microsoft SDK skeleton and 45 for PrimeSense498

NiTE skeleton). The dynamic of the activity is then captured using an499

ARMA model. In this process, a dimensionality reduction is needed and best500

subspace dimension ”d” have been chosen using a 5-fold cross-validation on501

the training dataset. The parameter giving the best accuracy on the training502

set is kept for all experiments.503

Each action is an element of the Grassmann manifoldG
n⇥d

with n = m⇥J504

where J represents the number of joints and d is the subspace dimension505

learnt on the training data. We set m = d, while m represents the truncation506

parameter of observation.507

In our LTBSVM approach, we train a linear SVM on our LTB represen-508

tations of points on the Grassmann manifold. We use a multi-class SVM509

classifier from LibSVM library [57], where the penalty parameter C is tuned510

using a 5-fold cross-validation on the training dataset.511

We evaluate the performance of our approach for action recognition and512

explore the latency on recognition by evaluating the trade-o↵ between accu-513

racy and latency over varying number of actions. To allow a better evalua-514

tion of our approach, we conducted experiments respecting those made in the515

state-of-the-art approaches. We note here that other interesting datasets are516

available, like TUM kitchen dataset [43] which presents challenging short and517

complex actions. In our experiments we concentrated on three other datasets518
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from depth sensors (such as kinect), chosen according to the challenges they519

contain, as occlusion, change of view and possibility to compare the latency.520

Details of the experiments are presented in the following sections.521

5.2. MSR-Action 3D dataset522

MSR-Action 3D [28] is a public dataset of 3D action captured by a depth523

camera. It consists of a set of temporally segmented actions where subjects524

are facing the camera and they are advised to use their right arm or leg if525

an action is performed by a single limb. The background is pre-processed526

clearing discontinuities and there is no interaction with objects in performed527

actions. Despite of all of these facilities, it is also a challenging dataset528

since many activities appear very similar due to small inter-class variation.529

Several works have already been conducted on this dataset. Table 2 shows530

the accuracy of our approach compared to the state-of-the-art methods. We531

followed the same experimental setup as in Oreifej et al. [34] and Jiang et532

al. [45], where first five actors are used for training and the rest for testing.533

Our results obtained in this table correspond to four learning methods:534

simple Karcher Mean (KM), one Tangent SVM (TSVM), TruncatedWrapped535

Gaussian (TWG) and Local Tangent Bundle SVM (LTBSVM). Our approach536

using LTBSVM achieves an accuracy of 91.21%, exceeding the best method537

from the state-of-the-art proposed by Oreifej et al. [34]. We note that our538

approach is based on only skeletal joint coordinates as motion features, com-539

pared to other approaches, such as Oreifej et al. [34] and Wang et al. [32]540

which use the depth map or depth information around joint locations.541

To evaluate the e↵ect of the changing of the subspace dimensions, we542

conduct several tests on MSR-Action 3D dataset with di↵erent dimensions543
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Method accuracy %
Histograms of 3D Joints [58] 78.97
Eigen Joints [36] 82.33
DMM-HOG [33] 85.52
HON4D [34] 85.80
Random Occupancy patterns [32] 86.50
Actionlet Ensemble [45] 88.20
HOH4D + Ddisc [34] 88.89
TSVM on one tangent space 74.32
KM 77.02
TWG 84.45
LTBSVM 91.21

Table 2: Recognition accuracy (in %) for the MSR-Action 3D dataset using our approach
compared to the previous approaches.

of subspaces. Figure 5 shows the variation of recognition performances with544

the change of the subspace dimension. We remark that until dimension 12,545

the recognition rate generally increase with the increase of the size of the546

subspaces dimensions. This is expected, since a small dimension causes a547

lack of information but also a big dimension of the subspace keeps noise and548

brings confusion between inter-classes. We also compare in this figure, our549

new introduced learning algorithm LBTSVM to TWG and KM.550

To better understand the behavior of our approach according to the action551

type, the confusion matrix is illustrated in Figure 6. For most actions, about552

11 classes of actions, video sequences are 100% correctly classified.553

The classification error occurs if two actions are very similar, such as554

’horizontal arm wave’ and ’high arm wave’. Besides, one of most problematic555

action to classify is ’hammer’ action which is frequently confused with ’draw556

X’. The particularity of these two actions is that they start in the same557

way but one finishes before the other. If we show only the first part of558

’draw X’ action and the whole sequence of ’hammer’ action we can see that559
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Figure 5: Recognition rate variation with learning approach and subspace dimension.

they are very similar. The same for ’hand catch’ action which is confused560

with ’draw circle’. It is important to note that ’hammer’ action is completely561

misclassified with the approach presented by Oreifej et al. [34] which presents562

the second better recognition rate after our approach.563

While the focus of this paper is mainly on action recognition and latency564

reduction, some applications need to perform training step with a reduced565

amount of data. To study the e↵ect of the amount of training dataset, we566

measured how the accuracy changed as we iteratively reduced the number of567

actions per class in the training dataset. Table 3 shows obtained accuracy568

results with di↵erent size of training dataset.569

These results show that, in contrast to approaches that use HMM which570

require a large number of training data, our approach reveals robustness and571

e�ciency. This robustness is due to the fact that the Control Tangents, which572
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Figure 6: The confusion matrix for the proposed approach on MSR-Action 3D dataset.
It is recommended to view the Figure on the screen.

play an important role in learning process, can be computed e�ciently using573

small number of action points per class on the manifold.574

5.3. UT-Kinect dataset575

Sequences of this dataset are taken using one depth camera (kinect) in576

indoor settings and their length vary from 5 to 120 frames. We use this577

dataset because it contains several challenges:578

• View change, where actions are taken from di↵erent views: right view,579

frontal view or back view.580
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Actions
per class

Training dataset % Accuracy %

5 37.17 73.36
6 44.23 77.64
7 51.13 83.10
8 58.36 84.79
9 65.54 88.51
10 72.49 89.18
11 79.95 87.83
12 86.24 88.85
13 91.07 90.20
14 95.91 90.54
15 100 91.21

Table 3: Recognition accuracy, obtained by our approach using LTBSVM on MSR-Action
3D dataset, with di↵erent size of training dataset.

• Significant variation in the realization of the same action: same action581

is done with one hand or two hands can be used to describe the ’pick582

up’ action.583

• Variation in duration of actions: the mean and standard-deviation are584

respectively for the whole actions 31.1 and 11.61 frames at 30 fps.585

To compare our results with state-of-the-art approaches, we follow experi-586

ment protocol proposed by Xia et al. [35]. The protocol is leave-one-out587

cross-validation. In Table 4, we show comparison between the recognition588

accuracy produced by our approach and the approach presented by Xia et589

al. [35].590

This table shows the accuracy of the five least-recognized actions in UT-591

kinect dataset and the five best-recognized actions. Our system performs592

the worst when the action represents an interaction with an object: ’throw’,593

’push’, ’sit down’ and ’pick up’. However, for the best five recognized actions,594

our approach improves the recognition rate reaching 100%. These actions595
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Action Acc % Xia et al. [35] Acc % LTBSVM
Walk 96.5 100
Stand up 91.5 100
Pick up 97.5 100
Carry 97.5 100
Wave 100 100

Throw 59 60
Push 81.5 65
Sit down 91.5 80
Pull 92.5 85
Clap hands 100 95

Overall 90.92 88.5

Table 4: Recognition accuracy (per action) for the UT-kinect dataset obtained by our
approach using LTBSVM compared to Xia et al. [35].

contain variations in view point and realization of the same action. This596

means that our approach is view-invariant and it is robust to change in action597

types thanks to the used learning approach. The overall accuracy of Xia et al.598

[35] is better than our recognition rate. However on MSR Action3D database,599

the recognition rate obtained by this approach gives only 78.97%. This can600

be explained by the fact that this approach requires a large training dataset.601

Especially for complex actions which a↵ect adversely the HMM classification602

in case of small samples of training.603

5.4. UCF-kinect dataset604

In this experiment, our approach is evaluated in terms of latency, i.e.605

the ability for a rapid (low-latency) action recognition. The goal here is to606

automatically determine when a su�cient number of frames are observed to607

permit a reliable recognition of the occurring action. For many applications,608

a real challenge is to define a good compromise between ”making forced de-609

cision” on partial available frames (but potentially unreliable) and ”waiting”610
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for the entire video sequence.611

To evaluate the performance of our approach in reducing latency, we con-612

ducted our experiments on UCF-kinect dataset [41]. The skeletal joint loca-613

tions (15 joints) over sequences of this dataset are estimated using Microsoft614

Kinect sensor and the PrimeSense NiTE. The same experimental setup as615

in Ellis et al. [41] is followed. For a total of 1280 action samples contained616

in this dataset, a 70% and 30% split is used for respectively training and617

testing datasets. From the original dataset, new subsequences were created618

by varying a parameter corresponding to the K first frames. Each new sub-619

sequence was created by selecting only the first K frames from the video. For620

videos shorter than K frames, the entire video is used. We compare the re-621

sult obtained by our approach to those obtained by Latency Aware Learning622

(LAL) method proposed by Ellis et al. [41] and other baseline algorithms:623

Bag-of-Words (BoW) and Linear Chain Conditional Random Field (CRF),624

also reported by Ellis et al. [41].625

As shown in Figure 7, our approach using LTBSVM clearly achieves im-626

proved latency performance compared to all other baseline approaches. Anal-627

ysis of these curves shows that, accuracy rates for all other approaches are628

close when using small number of frames (less than 10) or a large number of629

frames (more than 40). However, the di↵erence increases significantly in the630

middle range. The table joint to Figure 7 shows numerical results at several631

points along the curves in the figure. Thus, given only 20 frames of input,632

our system achieves 74.37%, while BOW, CRF recognition rate below 50%633

and LAL achieves 61.45%.634

It is also interesting to notice the improvement of accuracy of 92.08%635
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LAL
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CRF
BoW

Approach/frames 10 15 20 25 30 40 60

LTBSVM 21.87 49.37 74.37 86.87 92.08 97.29 97.91
TWG 18.95 40.62 61.45 74.79 82.7 92.29 95.62

LAL [41] 13.91 36.95 64.77 81.56 90.55 95.16 95.94
CRF [41] 14.53 25.46 46.88 67.27 80.70 91.41 94.06
BOW [41] 10.7 21.17 43.52 67.58 83.20 91.88 94.06

Figure 7: Accuracy vs. state-of-the-art approaches over videos truncated at varying maxi-
mum lengths. Each point of this curve shows the accuracy achieved by the classifier given
only the number of frames shown in the x-axis.

obtained by LTBSVM compared to 82.7% obtained by TWG, with maximum636

frame number equal to 30. For a large number of frames, all of the methods637

perform globally a good accuracy with an improvement of the ours (97.91%638

comparing to 95.94% obtained by LAL proposed in Ellis et al. [41]). These639

results show that our approach can recognize actions at the desired accuracy640

with reducing latency.641

Finally, the detail of recognition rates, when using the totality of frames642

in the sequence, are shown through the confusion matrix in Figure 8. Unlike643

what gives LAL, we can observe that the ’twist left’, ’twist right’ actions are644

34



not confused with each others. All classes of actions are classified with a rate645

more than 93.33% which gives a lot of confidence to our proposed learning646

approach.647
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Figure 8: The confusion matrix for the proposed method on UCF-kinect dataset. Overall
accuracy achieved 97.91%. It is recommended to view the figure on the screen.

5.5. Discussion648

Manifold representation and learning. Data representation is one of the most649

important factors in the recognition approach, on which we must take a lot650

of consideration. Our data representation, like many state-of-the-art man-651

ifold techniques [19, 14, 21], consider the geometric space and incorporates652

the intrinsic nature of the data. In our framework, which is 3D joint-based,653

both geometric appearance and dynamic of human body are captured simul-654
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taneously. Furthermore, unlike the manifold approaches using silhouettes655

[14, 15, 18], or directly raw pixels [22, 19], our approach use informative656

geometric features, which capture useful knowledge to understand the in-657

trinsic motion structure. Thanks to recent release of depth sensor, these658

features are extracted and tracked along the action sequence, while classical659

pixel-based manifold approaches relying on a good action localization, or on660

tedious feature extraction from 2D videos like silhouettes.661

In terms of learning method, we generalized a learning algorithm to work662

with data points which are geometrically lying to a Grassmann manifold.663

Other approaches are tested in the learning process on the manifold: one664

tangent space (TSVM) and class-specific tangent spaces (TWG). In the first665

one, recognition rate is low. In fact, the computation of the mean of all666

actions from all classes can be inaccurate. Besides, projections on this plane667

can lead to big deformations. A better solution is to operate on each class by668

computing its proper tangent space, as in TWG [56] which improve TSVM669

results (see Table 2). In our approach (LTBSVM), both Control Tangent670

and statistics on the manifold are used. The purpose was to formulate our671

learning algorithm using a discriminative parametrization which incorporate672

class separation properties. The particularity of our learning model is the673

incorporation of proximities relative to all Control Tangent spaces represent-674

ing class clusters, instead of classifying using a function of local distances.675

The results in Table 2 demonstrate that the proposed algorithm is more e�-676

cient in action recognition scenario when inter-variation classes is present as677

a challenge.678

Furthermore, the analysis of the impact of reducing the number of actions679
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in the training set on the accuracy of the classifier show robustness. Even680

with a small number of actions in the training data recognition rates remain681

good as demonstrated in Table 3. However it is a limitation especially for682

approaches using an HMM learning because they require a large number of683

training dataset. Such as Xia et al. approach [35], which gives only 78.97%684

of recognition rate while performing cross subject test on MSR dataset.685

Latency and Time computation. The evaluations in terms of latency have686

clearly revealed the e�ciency of our approach for a rapid recognition. It687

is possible to recognize actions up to 95% using only 40 frames which is688

a good performance comparing to state-of-the-art approaches presented in689

[41]. Thus, our approach can be used for interactive systems. Particularly,690

in entertainment applications to resolve the problem of lag and improve some691

motion-based games.692

Since the proposed approach is based on only skeletal joint coordinates,693

it is simple to calculate and it needs only a small computation time. In fact,694

with our current implementation written in C++, the whole recognition time695

takes 0.26 sec to recognize a sequence of 60 frames. The joint extraction and696

normalisation take 0.0001 sec, the Grassmann and the LTB representation697

take 0.0108 sec and the prediction on SVM takes 0.251 sec. These computa-698

tion time are reported on UCF dataset, with Grassmann manifold dimension699

n = 540 and d = 12. We also reported the computation time needed to700

recognize actions while incorporating latency on UCF dataset. Figure 9 il-701

lustrates inline time recognition with time progression, after only 40 frames702

the recognition is given at the 0.94 sec within 97.29% of correctness rate.703

After 60 frames, in 1.3 sec the algorithm recognize correctly the action with704
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97.91%. All the computation time experiments are lunched on a PC having705

Intel Core i5-3350P (3.1 GHz) CPU, 4GB RAM and a PrimeSense camera706

for skeleton extraction giving about 60 skeleton/sec.707

0 20 40 60 Frame number

… … …

0 0.66 0.94 1.31 Inline Ɵme recogniƟon
(secondes)

RecogniƟon Ɵme: 0.26 sec

Figure 9: The computation time to perform 20 frames actions sequences is 0.26 sec by
using our approach. The computation time is given for each actions frames sequences (e.g.
0.94 sec for 40 frames).

Limitations. Our proposed approach is a 3D joint-based framework derives708

a human action recognition from skeletal joint sequences. In the case of709

presence of object interaction in human actions, our approach do not provides710

any relevant information about objects and thus, action with and without711

objects are confused. This limitation can be leveraged in future by the use712

of additional features, which can be extracted from depth or color images713

associated to 3D joint locations.714
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6. Conclusion715

In this paper, an e↵ective framework for modelling and recognizing hu-716

man motion in the 3D skeletal joint space is proposed. In this framework,717

sequence features are modeled temporally as subspaces lying to a Grassman-718

nian manifold. A new learning algorithm on this manifold is then introduced.719

It embeds each action, presented as a point on the manifold, in higher dimen-720

sional representation providing natural separation directions. We formulated721

our learning algorithm using the notion of local tangent bundles on class clus-722

ters on the Grassmann manifold. The empirical results and the analysis of723

the performance of our proposed approach show promising results with high724

accuracies superior to 88% on three di↵erent datasets. The evaluation of725

our approach in terms of accuracy/latency reveals an important ability for726

a low-latency action recognition system. Obtained results show that with727

minimum number of frames, it provides the highest recognition rate.728

We would encourage future works to extend our approach to investigate729

more challenging problems like human behaviour recognition. Finally, we730

plan to use additional features from depth or color images associated to 3D731

joint locations to solve the problem of human-object interaction.732
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