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3D Human Action Recognition by Shape Analysis
of Motion Trajectories on Riemannian Manifold

Maxime Devanne, Hazem Wannous, Stefano Berretti, Pietro Pala, Mohamed Daoudi, and Alberto Del Bimbo

Abstract—Recognizing human actions in 3D video sequences is
an important open problem that is currently at the heart of many
research domains including surveillance, natural interfaces and
rehabilitation. However, the design and development of models
for action recognition that are both accurate and efficient is a
challenging task due to the variability of the human pose, clothing
and appearance. In this paper, we propose a new framework to
extract a compact representation of a human action captured
through a depth sensor, and enable accurate action recognition.
The proposed solution develops on fitting a human skeleton model
to acquired data so as to represent the 3D coordinates of the joints
and their change over time as a trajectory in a suitable action

space. Thanks to such a 3D joint-based framework, the proposed
solution is capable to capture both the shape and the dynamics of
the human body simultaneously. The action recognition problem
is then formulated as the problem of computing the similarity
between the shape of trajectories in a Riemannian manifold.
Classification using kNN is finally performed on this manifold
taking advantage of Riemannian geometry in the open curve
shape space. Experiments are carried out on four representative
benchmarks to demonstrate the potential of the proposed solution
in terms of accuracy/latency for a low-latency action recognition.
Comparative results with state-of-the-art methods are reported.

Index Terms—3D human action, activity recognition, temporal
modeling, Riemannian shape space.

I. INTRODUCTION

IMAGING technologies have recently shown a rapid ad-
vancement with the introduction of consumer depth cam-

eras (RGB-D) with real-time capabilities, like Microsoft
Kinect [1] or Asus Xtion PRO LIVE [2]. These new ac-
quisition devices have stimulated the development of various
promising applications, including human pose reconstruction
and estimation [3], scene flow estimation [4], hand gesture
recognition [5], and face super-resolution [6]. A recent review
of kinect-based computer vision applications can be found
in [7]. The encouraging results shown in these works take
advantage of the combination of RGB and depth data enabling
simplified foreground/background segmentation and increased
robustness to changes of lighting conditions. As a result,
several software libraries make it possible to fit RGB and depth

M. Devanne is with the University Lille 1 (Telecom Lille), Laboratoire
d’Informatique Fondamentale de Lille (LIFL - UMR CNRS 8022), Lille,
France and with the Media Integration and Communication Center, University
of Florence, Florence, Italy (e-mail: maxime.devanne@telecom-lille.fr).

H. Wannous is with the University Lille 1, Laboratoire d’Informatique
Fondamentale de Lille (LIFL - UMR CNRS 8022), Lille, France (e-mail:
hazem.wannous@telecom-lille.fr).

M. Daoudi is with Telecom Lille/Institut Mines-Telecom, Laboratoire
d’Informatique Fondamentale de Lille (LIFL - UMR CNRS 8022), Lille,
France (e-mail: mohamed.daoudi@telecom-lille.fr).

S. Berretti, P. Pala and A. Del Bimbo are with the Media Integration
and Communication Center, University of Florence, Florence, Italy (e-mail:
stefano.berretti@unifi.it, pietro.pala@unifi.it, delbimbo@dsi.unifi.it).

models to the data, thus supporting detection and tracking
of skeleton models of human bodies in real time. However,
solutions which aim to understand the observed human actions
by interpreting the dynamics of these representations are still
quite limited. What further complicates this task is that action
recognition should be invariant to geometric transformations,
such as translation, rotation and global scaling of the scene.
Additional challenges come from noisy or missing data, and
variability of poses within the same action and across different
actions. In this paper, we address the problem of modeling and
analyzing human motion from skeleton sequences captured
by depth cameras. Particularly, our work focuses on building
a robust framework, which recasts the action recognition
problem as a statistical analysis on the shape space manifold of
open curves. In such a framework, not only the geometric ap-
pearance of the human body is encoded, but also the dynamic
information of the human motion. Additionally, we evaluate
the latency performance of our approach by determining the
number of frames that are necessary to permit a reliable
recognition of the action.

A. Previous Work

In recent years, recognition of human actions from the
analysis of data provided by RGB-D cameras has attracted the
interest of several research groups. The approaches proposed
so far can be grouped into three main categories, according
to the way they use the depth channel: skeleton-based, depth
map-based and hybrid approaches. Skeleton based approaches,
estimate the position of a set of joints of a human skeleton
fitted to depth data. Then they model the pose of the human
body in subsequent frames of the sequence using the position
and the relations between joints. Depth map based approaches
extract volumetric and temporal features directly from the
overall set of points of the depth maps in the sequence.
Hybrid approaches combine information extracted from both
the joints of the skeleton and the depth maps. In addition to
these approaches, there are also some multi-modal methods
that exploit both depth and photometric information to improve
results [8]. Following this categorization, existing methods for
human action recognition using depth information are shortly
reviewed below.

Skeleton based approaches have become popular thanks
to the work of Shotton et al. [3]. This describes a real-
time method to accurately predict the 3D positions of body
joints in individual depth maps, without using any temporal
information. Results report the prediction accuracy for 16
joints, although the Kinect tracking system developed on top
of this approach is capable of estimating the 3D positions of 20
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joints of the human skeleton. In [9], an approach is described
to support action recognition based on the histograms of the
position of 12 joints provided by the Kinect. The histograms
are projected using LDA and clustered into k posture visual
words, representing the prototypical poses of the actions.
The temporal evolution of these visual words is modeled
by discrete Hidden Markov Models. In [10], human action
recognition is obtained by extracting three features for each
joint, based on pair-wise differences of joint positions: in the
current frame; between the current frame and the previous
frame; and between the current frame and the initial frame
of the sequence. This latter is assumed to correspond to the
neutral posture at the beginning of the action. Since the number
of these differences results in a high dimensional feature
vector, PCA is used to reduce redundancy and noise, and to
obtain a compact EigenJoints representation of each frame.
Finally, a naı̈ve-Bayes nearest-neighbor classifier is used for
multi-class action classification. Recent works address more
complex challenges in on-line action recognition systems,
where a trade-off between accuracy and latency becomes
an important goal. For example, Ellis et al. [11] target this
trade-off by adopting a Latency Aware Learning method for
reducing latency when recognizing human actions. A logistic
regression-based classifier is trained on 3D joint position
sequences to search a single canonical posture for recognition.

Methods based on depth maps rely on the extraction of
meaningful descriptors from the entire set of points of depth
images. Different methods have been proposed to model the
dynamics of the actions. The approach in [12] employs 3D
human silhouettes to describe salient postures and uses an
action graph to model the dynamics of the actions. In [13],
the action dynamics is described using Depth Motion Maps,
which highlight areas where some motion takes place. Other
methods, such as Spatio-Temporal Occupancy Pattern [14],
Random Occupancy Pattern [15] and Depth Cuboid Similarity
Feature [16], propose to work on the 4D space divided
into spatio-temporal boxes to extract features representing
the depth appearance in each box. Finally, in [17] a method
is proposed to quantize the 4D space using vertices of a
polychoron and then model the distribution of the normal
vectors for each cell. Depth information can also be used in
combination with color images as in [18].

Hybrid solutions use strengths of both skeleton and depth
descriptors to model the action sequence. For example, in [19]
a Local Occupancy Pattern around each 3D joint is proposed.
In [20], actions are characterized using pairwise affinity mea-
sures between joint angle features and histogram of oriented
gradients computed on depth maps.

These RGB-D based approaches also benefit from the large
number of works published in the last two decades on human
activity recognition in 2D video sequences (see for example
the recent surveys in [21], [22], [23], [24]). Besides methods
in Euclidean spaces [25], [26], [27], some emerging and
interesting techniques reformulate computer vision problems,
like action recognition, over non-Euclidean spaces. Among
these, Riemannian manifolds have recently received increased
attention. In [28] human silhouettes extracted from video

images are used to represent the pose. Silhouettes are then
represented as points in the shape space manifold. In this way,
they can be matched using a Dynamic Time Warping, a state-
of-the-art algorithm for sequence comparison. In [29] several
experiments on gesture recognition and person re-identification
are conducted, comparing Riemannian manifolds with several
state-of-the-art approaches. Results obtained in these works
indicate considerable improvements in discrimination accu-
racy. In [30], a Grassmann manifold is used to classify human
actions. With this representation, a video sequence is expressed
as a third-order data tensor of raw pixels extracted from action
images. One video sequence is mapped onto one point on
the manifold. Distances between points are computed on the
manifold and used for action classification based on nearest
neighbor search.

B. Overview of Our Approach

A human action is naturally characterized by the evolution
of the pose of the human body over time. Skeleton data
containing the 3D positions of different parts of the body
provide an accurate representation of the pose. These skeleton
features are easy to extract and track from depth maps, and
they also provide local information about the human body.
This makes it possible to analyze only some parts of the
human body instead of the global pose. Even if accurate 3D
joint positions are available, the action recognition task is still
difficult due to significant spatial and temporal variations in
the way of performing an action.

These challenges motivated the study an original approach
to recognize human actions based on the evolution of the
position of the skeleton joints detected on a sequence of
depth images. To this end, the full skeleton is modeled as a
multi-dimensional vector obtained by concatenating the three-
dimensional coordinates of its joints. Then, the trajectory
described by this vector in the multi-dimensional space is
regarded as a signature of the temporal dynamics of the move-
ments of all the joints. These trajectories are then interpreted
in a Riemannian manifold, so as to model and compare their
shapes using elastic registration and matching in the shape
space. In so doing, we recast the action recognition problem as
a statistical analysis on the shape space manifold. Furthermore,
by using an elastic metric to compare the similarity between
trajectories, robustness of action recognition to the execution
speed of the action is improved. Figure 1 summarizes the
proposed approach. The main considerations that motivated
our solution are: (1) The fact that many feature descriptors
typically adopted in computer vision applications lie on curved
spaces due to the geometric nature of the problems; (2) The
shape and dynamic cues are very important for modeling
human activity, and their effectiveness have been demonstrated
in several state-of-the-art works [30], [31], [32], [33]; (3)
Using such manifold offers a wide variety of statistical and
modeling tools that can be used to improve the accuracy of
gesture and action recognition.

The main contributions of the proposed approach are:
• An original translation and rotation invariant represen-

tation of an action sequence as a trajectory in a high
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Fig. 1: Overview of our approach: First, skeleton sequences
are represented as trajectories in a n-dimensional space; These
trajectories are then interpreted in a Riemannian manifold
(shape space); Recognition is finally performed using kNN
classification on this manifold.

dimensional space. By concatenating the 3D coordinates
of skeleton joints, data representation encodes the shape
of the human posture at each frame. By modeling the se-
quence of frame features along the action as a trajectory,
we capture the dynamics of human motion;

• An elastic shape analysis of such trajectories that extends
the shape analysis of curves [34] to action trajectories,
thus improving robustness of action recognition to the
execution speed of actions.

The rest of the paper is organized as follows: Sect. II de-
scribes the proposed spatio-temporal representation of actions
as trajectories; Sect. III discusses the Riemannian framework
used for the analysis and comparison of shape trajectories;
In Sect. IV, we present some statistical tools applicable on a
Riemannian manifold and introduce the supervised learning
algorithm performed on points of this manifold; Sect. V
describes the experimental settings, the dataset used and also
reports results in terms of accuracy and latency of action
recognition in comparison with state of the art solutions;
Finally, in Sect. VI conclusions are drawn and future research
directions discussed.

II. SPATIO-TEMPORAL REPRESENTATION OF ACTIONS AS
TRAJECTORIES IN THE ACTION SPACE

Using RGB-D cameras, such as the Microsoft Kinect, a
3D humanoid skeleton can be extracted from depth images in
real-time by following the approach of Shotton et al. [3]. This
skeleton contains the 3D position of a certain number of joints
representing different parts of the human body. The number
of estimated joints depends on the SDK used in combination
with the device. Skeletons extracted with the Microsoft Kinect
SDK contain 20 joints, while 15 joints are estimated with the
PrimeSense NiTE. For each frame t of a sequence, the real-
world 3D position of each joint i of the skeleton is represented
by three coordinates expressed in the camera reference system
pi(t) = (xi(t), yi(t), zi(t)). Let Nj be the number of joints
the skeleton is composed of, the posture of the skeleton at
frame t is represented by a 3Nj dimensional tuple:

v(t) = [x1(t) y1(t) z1(t) . . . xNj (t) yNj (t) zNj (t)]
T . (1)

For an action sequence composed of Nf frames, Nf feature
vectors are extracted and arranged in columns to build a feature
matrix M describing the whole sequence:

M =
�
v(1) v(2) . . . v(Nf )

�
. (2)

This feature matrix represents the evolution of the skeleton
pose over time. Each column vector v is regarded as a sample
of a continuous trajectory in R3Nj representing the action in a
3Nj dimensional space called action space. The size of such
feature matrix is 3Nj ⇥Nf .

To reduce the effect of noise that may affect the coordi-
nates of skeleton joints, a smoothing filter is applied to each
sequence. This filter weights the coordinates of each joint
with the coordinates of the same joint in the neighboring
frames. In particular, the amount of smoothing is controlled
by a parameter � that defines the size Ws = 1 + 2 ⇥ � of a
temporal window centered at the current frame. For each joint
i = 1, . . . , Nj at frame t = 1 + �, . . . , Nf � � the new x
coordinate is:

xi(t) =
1

Ws

t+�X

⌧=t��

xi(⌧) . (3)

The same applies to y and z. The value of � is selected
by performing experiments on a set of training sequences.
The best accuracy is obtained for � = 1, corresponding to
a window size of 3 frames.

A. Invariance to Geometric Transformations of the Subject
A key feature of action recognition systems is the invariance

to the translation and rotation of the subject in the scene: Two
instances of the same action differing only for the position and
orientation of the person with respect to the scanning device
should be recognized as belonging to the same action class.
This goal can be achieved either by adopting a translation
and rotation invariant representation of the action sequence
or providing a suitable distance measure that copes with
translation and rotation variations. We adopt the first approach
by normalizing the position and the orientation of the subject
in the scene before the extraction of the joint coordinates.
For this purpose, we first define the spine joint of the initial
skeleton as the center of the skeleton (root joint). Then, a new
base B is defined with origin in the root joint: it includes
the left-hip joint vector

�!
hl , the right-hip joint vector

�!
hr, and

their cross product �!nB =
�!
hl ⇥

�!
hr. This new base is then

translated and rotated, so as to be aligned with a reference
base B0 computed from a reference skeleton (selected as the
neutral pose of the sequence). The calculation of the optimal
rotation between the two bases B and B0 is performed using
Singular Value Decomposition (SVD). For each sequence,
once the translation and the rotation of the first skeleton is
computed with respect to the reference skeleton, we apply the
same transformations to all other skeletons of the sequence.
This makes the representation invariant to the position and
orientation of the subject in the scene. Figure 2a shows an
example of two different skeletons to be aligned. The bases B1

and B2 computed for the two skeletons are shown in Fig. 2b,
where the rotation required to align B2 to B1 is also reported.
In Fig. 2c, the two aligned skeletons are shown.
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(a) (b) (c)

Fig. 2: Invariance to geometric transformations: (a) Two
skeletons with different orientations. The skeleton on the
left is the reference one. The skeleton on the right is the
first skeleton of the sequence that should be aligned to the
reference skeleton; (b) Bases B0 and B are built from the
two corresponding hip vectors and their cross product. The
base B0 corresponds to B aligned with respect to B0; (c) The
resulting skeleton (right) is now aligned with respect to the
first one (left). The transformations computed between these
two bases are applied to all skeletons of the sequence.

B. Representation of Body Parts
In addition to enable the representation of the action using

the whole body, the proposed solution also supports the
representation of individual body parts, such as the legs and
the arms. There are several motivations for focusing on parts
of the body. First of all, many actions involve motion of just
some parts of the body. For example, when subjects answer
a phone call, they only use one of their arms. In this case,
analyzing the dynamics of the arm rather than the dynamics
of the entire body is expected to be less sensitive to the noise
originated by the involuntary motion of the parts of the body
not directly involved in the action. Furthermore, during the
actions some parts of the body can be out of the camera field
of view or occluded by objects or other parts of the body.
This can make the estimation of the coordinates of some joints
inaccurate, compromizing the accuracy of action recognition.
Finally, due the symmetry of the body along the vertical axis,
one same action can be performed using one part of the body
or another. With reference to the action “answer phone call”,
the subject can use his left arm or right arm. By analyzing
the whole body we can not detect such variations. Differently,
using body parts separately, simplifies the detection of this
kind of symmetrical actions. To analyze each part of the
body separately, we represent a skeleton sequence by four
feature sets corresponding to the body parts. Each body part
is associated with a feature set that is composed of the 3D
normalized position of the joints that are included in that part
of the body. Let Njp be the number of joints of a body part,
the skeleton sequence is now represented by four trajectories
in 3 ⇥ Njp dimensions instead of one trajectory in 3 ⇥ Nj

dimensions. The actual number of joints per body part can
change from a dataset to another according to the SDK used
for estimating the body skeleton. In all the cases, Njp < Nj

and the body parts are disjoint (i.e., they do not share any
joint).

III. SHAPE ANALYSIS OF TRAJECTORIES

An action is a sequence of poses and can be regarded as
the result of sampling a continuous curve trajectory in the

3Nj-dimensional action space. The trajectory is defined by
the motion over time of the feature point encoding the 3D
coordinates of all the joints of the skeleton (or by all the
feature points coding the body parts separately). According
to this, two instances of the same action are associated with
two curves with similar shape in the action space. Hence,
action recognition can be regarded and formulated as a shape
matching task. Figure 3 provides a simplified example of
action matching by shape comparison. The plot displays five
curves corresponding to the coordinates of the left hand joint
in five different actions. Three curves correspond to three
instances of the action drawing circle. The remaining two
curves correspond to the actions side boxing and side kick.
This simplified case, in which each trajectory encodes the
coordinates of just one joint, makes it clear that similar actions
yield trajectories with similar shapes in the action space.

Fig. 3: Curves representing the coordinates of the left arm
joint for five actions: From left to right, side kick, side boxing,
and draw circle (three different instances). Points displayed in
bold represent the sample frames along the curves.

Figure 3 also highlights some critical aspects of representing
actions by trajectories. Assuming the actions are sampled
at the same frame rate, performing the same action at two
different speeds yields two curves with a different number
of samples. This is the case of the red and blue curves in
Fig. 3, where samples are highlighted by bold points along the
curves. Furthermore, since the first and the last poses of an
action are not known in advance and may differ even for two
instances of the same action, the measure of shape similarity
should not be biased by the position of the first and last points
of the trajectory. In the following we present a framework to
represent the shape of the trajectories, and compare them using
the principles of elastic shape matching.

A. Representation of Trajectories
Let a trajectory in the action space be represented as a

function � : I ! Rn, being I = [0,1] the function domain.
We restrict the domain of interest to the functions � that
are differentiable and whose first derivative is in L2(I,Rn).
L2(I,Rn) is the vector space of all functions f : I ! Rn

satisfying
R
I kf(x)k

2dx < 1. To analyze the shape of �, we
consider its square-root velocity function (SRVF) q : I ! Rn,
defined as:

q(t)
.
=

�̇(t)q
k�̇(t)k

, (4)
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being k.k the L2 norm. The quantity kq(t)k is the square-root
of the instantaneous speed, and the ratio q(t)

kq(t)k is the instan-
taneous direction along the trajectory. All trajectories � are
scaled so as to be of length 1. This makes the representation
invariant to the length of the trajectory (the number of frames
of the action sequence). The SRVF was formerly introduced
in [34] to enable shape analysis. As described in [34], such
representation captures the shape of a curve � and presents
some advantages. First, it uses a single function to represent
the curve. Then, as described later, the computation of the
elastic distance between two curves is reduced to a simple L2

norm, which simplifies the implementation and the analysis.
Finally, re-parametrization of the curves acts as an isometry.
The SRVF has been successfully used for 3D face recognition
in [35] and for human body matching and retrieval in [36]. In
our approach we propose to extend this metric to the analysis
of spatio-temporal trajectories.

B. Pre-shape Space of Trajectories
We define the set of curves:

C = {q : I ! Rn| kqk = 1} ⇢ L2(I,Rn) , (5)

where k.k represents the L2 norm. With the L2 norm on its
tangent space, C becomes a Riemannian manifold called pre-
shape space. Each element of C represents a trajectory in
Rn. As the elements of this manifold have unit L2 norm,
C is a unit-hypersphere representing the pre-shape space of
trajectories invariant to uniform scaling. Its tangent space at a
point q is given by:

Tq(C) = {v 2 L2(I,Rn)| hv, qi = 0} . (6)

Here, hv, qi denotes the inner product in L2(I,Rn).
Geodesics on spheres are great circles, thus the geodesic

path between two elements q1 and q2 on C is given by the
great circle ↵:

↵(⌧) =
1

sin(✓)
(sin((1� ⌧)✓)q1 + sin(✓⌧)q2) , (7)

where ✓ is the distance between q1 and q2 given by:

✓ = dc(q1, q2) = cos�1(hq1, q2i) . (8)

This equation measures the geodesic distance between two
trajectories q1 and q2 represented in the manifold C. In
particular, ⌧ 2 [0, 1] in Eq. (7) allows us to parameterize the
movement along the geodesic path ↵. ⌧ = 0 and ⌧ = 1,
correspond, respectively, to the extreme point q1 and q2 on
the geodesic path. For intermediate values of ⌧ , an internal
point between q1 and q2 on the geodesic path is considered.

C. Elastic Metric in the Shape Space
As mentioned above, we need to compare the shape of the

trajectories independently of their elasticity. This requires in-
variance to re-parameterization of the curves. Let us define the
parameterization group �, which is the set of all orientation-
preserving diffeomorphisms of I to itself. The elements � 2 �
are the re-parameterization functions. For a curve � : I ! Rn,

� � � is a re-parameterization of �. As shown in [37], the
SRVF of � � � is given by

p
�̇(t)(q � �)(t). We define the

equivalent class of q as:

[q] = {
p

�̇(t)(q � �)(t)| � 2 �} . (9)

The set of such equivalence classes is called the shape space
of elastic curves, noted S = {[q] | q 2 C}. In this framework,
an equivalent class [q] is associated to a shape. Accordingly,
comparison of the shapes of two trajectories q1 and q2, is
performed by the comparison of the equivalent classes [q1] and
[q2]. Computation of the geodesic paths and geodesic lengths,
requires to solve the optimization problem for finding the opti-
mal re-parameterization that best registers the element q2 with
respect to q1. The optimal re-parameterization �⇤ is the one
that minimizes the cost function H(�) = dc(q1,

p
�̇(q2 � �)).

Thus, the optimization problem is defined as:

�⇤ = argmin
�2�

dc(q1,
p
�̇(q2 � �)) . (10)

In practice, dynamic programming is used for optimal re-
parameterization over �.

Let q⇤2 =
p

�̇⇤(q2 � �⇤) be the optimal element associated
with the optimal re-parameterization �⇤ of the second curve
q2, the geodesic length between [q1] and [q2] in the shape space
S is ds([q1], [q2]) = dc(q1, q⇤2) and the geodesic path is given
by:

↵(⌧) =
1

sin(✓)
(sin((1� ⌧)✓)q1 + sin(✓⌧)q⇤2) , (11)

where ✓ = ds([q1], [q2]). This distance is used to compare the
shape of the trajectories in a way that is robust to their elastic
deformation.

IV. ACTION RECOGNITION ON THE MANIFOLD

The proposed action recognition approach is based on the
K-Nearest Neighbors (kNN) algorithm applied both to full-
body and separate body parts.

A. kNN classifier using an elastic metric
Let {(Xi,yi)}, i = 1, . . . , N , be the training set with

respect to the class labels, where Xi belongs to a Rieman-
nian manifold S , and yi is the class label taking values in
{1, . . . , Nc}, with Nc the number of classes. The objective is
to find a function F (X) : S 7�! {1, . . . , Nc} for clustering
data lying in different submanifolds of a Riemannian space,
based on the training set of labeled items of the data. To
this end, we propose a kNN classifier on the Riemannian
manifold, learned by the points on the open curve shape space
representing trajectories. Such learning method exploits geo-
metric properties of the open curve shape space, particularly
its Riemannian metric. This relies on the computation of the
(geodesic) distances to the nearest neighbors of each data point
of the training set.

The action recognition problem is reduced to nearest neigh-
bor classifier in the Riemannian space. More precisely, given
a set of training trajectories Xi : i = 1, . . . , N , they are
represented by the underlying points qi : i = 1, . . . , N , which



SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 6

map trajectories on the shape space manifold (see Fig. 1).
Then, any new trajectory Xn is represented by its SRVF qn.
Finally, a geodesic-based classifier is used to find the K-
closest trajectories to qn using the elastic metric given by
Eq. (8).

B. Statistics of the Trajectories
An important advantage of using such Riemannian approach

is that it provides tools for the computation of statistics of the
trajectories. For example, we can use the notion of Karcher
mean [38] to compute an average trajectory from several
trajectories. The average trajectory among a set of different
trajectories can be computed to represent the intermediate one,
or between similar trajectories obtained from several subjects
to represent a template, which can be viewed as a good
representative of a set of trajectories.

To classify an action trajectory, represented as a point on
the manifold, we need to compute the total warping geodesic
distances to all points from training data. For a large number
of training data this can be associated to a high computational
cost. This can be reduced by using the notion of “mean” of
class action, and computing the mean of a set of points on
the manifold. As a result, for each action class we obtain an
average trajectory, which is representative of all the actions
within the class. According to this, the mean can be used to
perform action classification by comparing the new action with
all the cluster means using the elastic metric defined in Eq. (8).
For a given set of training trajectories q1, . . . , qn on the shape
space, their Karcher mean can be defined as:

µ = argmin
nX

i=1

ds([q], [qi])
2 . (12)

As an example, Fig. 4a shows the Karcher mean computa-
tion for five training trajectories (q1. . . q5). In the initial step,
q1 is selected as the mean. In an iterative process, the mean
is updated according to elastic metric computation between
all q. After convergence, the average trajectory is given by
qm. Fig. 4b shows skeleton representation of the first two
trajectories and the resulting average trajectory in the action
space. As trajectories are built from joint coordinates, we can
easily obtain the entire skeleton sequence corresponding to a
trajectory. Figure 4b shows four skeletons for each sequence.

By computing such average trajectories for each action
class, we implicitly assume that there is only one way to
perform each action. Unfortunately, this is not the case. In
fact, two different subjects can perform the same action in
two different ways. This variability in performing actions
between different subjects can affect the computation of
average trajectories and the resulting templates may not be
good representatives of the action classes. For this reason,
we compute average trajectories for each subject, separately.
Instead of having only one representative trajectory per action,
we obtain one template per subject per action. In this way,
we keep separately each different way of performing the
action and the resulted average trajectories are not any more
affected by such possible variations. As a drawback, with this
solution the number of template trajectories in the training

(a) (b)

Fig. 4: Computation of the Karcher mean between five action
trajectories: (a) Representation of the trajectories in the shape
space. Applying the Karcher mean algorithm, the mean is first
selected as q1 and then updated until convergence. Finally, the
mean trajectory is represented by qm; (b) Skeleton represen-
tation of corresponding trajectories in the action space. The
two top sequences correspond to points q1 and q2 in the shape
space, while the bottom sequence corresponds to the Karcher
mean qm computed among the five training trajectories.

set increases. Let Nc be the number of classes and NStr the
number of subjects in the training set, the number of training
trajectories is Nc ⇥ NStr. However, as subjects perform the
same action several times, the number of training trajectories
is still lower than using all trajectories.

C. Body parts-based classification
In the classification step, we compute distances between

corresponding parts of the training sequence and the new
sequence. As a result, we obtain four distances, one for
each body part. The mean distance is computed to obtain a
global distance representing the similarity between the training
sequence and the new sequence. We keep only the k smallest
global distances and corresponding labels to take the decision
and associate the most frequent label to the new sequence.
Note that in the case where some labels are equally frequent,
we apply a weighted decision based on the ranking of the
distances. In that particular case, the selected label corresponds
to the smallest distance. However, one main motivation for
considering the body parts separately is to analyze the moving
parts only. To do this, we compute the total motion of each
part over the sequence. We cumulate the Euclidian distances
between corresponding joints in two consecutive frames for
all the frames of the sequence. The total motion of a body
part is the cumulated motion of the joints forming this part.
We compute this total motion on the re-sampled sequences, so
that it is not necessary to normalize it. Let jk : k = 1, . . . , Njp ,
be a joint of the body part, and Nf be the frame number of
the sequence, then the total motion m of a body part for this
sequence is given by:

m =

NjpX

k=1

Nf�1X

i=1

dEuc(j
k
i , j

k
i+1) , (13)

where dEuc(j1, j2) is the Euclidian distance between the 3D
joints j1 and j2, and Njp is the number of joints per body
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part (i.e., this number can change from a dataset to another
according to the SDK used for the skeleton estimation).

Once the total motion for each part of the body is computed,
we define a threshold m0 to separate moving and still parts.
We assume that if the total motion of a body part is below this
threshold, the part is considered to be motionless during the
action. In the classification, we consider a part of the body
only if it is moving either in the training sequence or the
probe sequence (this is the sequence representing the action
to be classified). If one part of the body is motionless in both
actions, this part is ignored and does not concur to compute
the distance between the two actions. For instance, if two
actions are performed only using the two arms, the global
distance between these two actions is equal to the mean of
the distances corresponding to the arms only. We empirically
select the threshold m0 that best separates moving and still
parts with respect to a labeled training set of ground truth
sequences. To do that, we manually labeled a training set of
sample sequences by assigning a motion binary value to each
body part. The motion binary value is set to 1 if the body part
is moving and set to 0 otherwise. We then compute the total
motion m of each body part of the training sequences and
give a motion decision according to a varying threshold. We
finally select the threshold that yields the decision closest to
the ground truth. In the experiments, we notice that defining
two different thresholds for the upper parts and lower parts
slightly improves the accuracy in some cases.

V. EXPERIMENTAL EVALUATION

The proposed action recognition approach is evaluated in
comparison to state-of-the-art methods using three public
benchmark datasets. In addition, we measure the capability of
our approach to reduce the latency of recognition by evaluating
the trade-off between accuracy and latency over a varying
number of actions.

A. Datasets
The three benchmark datasets that we use to evaluate the

accuracy of action recognition differ in the characteristics and
difficulties of the included sequences. This allows an in depth
investigation of the strengths and weaknesses of our solution.
For each dataset, we compare our approach to state-of-the-art
methods. A fourth dataset (UCF-kinect) is used for the latency
analysis.

a) MSR Action 3D: This public dataset was collected
at Microsoft research [12] and represents a commonly used
benchmark. It includes 20 actions performed by 10 persons
facing the camera. Each action is performed 2 or 3 times. In
total, 567 sequences are available. The different actions are
high arm wave, horizontal arm wave, hammer, hand catch,
forward punch, high throw, draw X, draw tick, draw circle,
hand clap, two hand wave, side-boxing, bend, forward kick,
side kick, jogging, tennis swing, tennis serve, golf swing, pick
up & throw. These game-oriented actions cover different varia-
tions of the motion of arms, legs, torso and their combinations.
Each subject is facing the camera and positioned in the center
of the scene. Subjects were also advised to use their right

arm or leg when actions are performed with a single arm or
leg. All the actions are performed without any interaction with
objects. Two main challenges are identified: the high similarity
between different groupg of actions and the changes of the
execution speed of actions. For each sequence, the dataset
provides depth, color and skeleton information. In our case, we
only use the skeleton data. As reported in [19], 10 actions are
not used in the experiments because the skeletons are either
missing or too erroneous. For our experiments, we use 557
sequences.

b) Florence 3D Action: This dataset was collected at
the University of Florence using a Kinect camera [39]. It
includes 9 actions: arm wave, drink from a bottle, answer
phone, clap, tight lace, sit down, stand up, read watch, bow.
Each action is performed by 10 subjects several times for a
total of 215 sequences. The sequences are acquired using the
OpenNI SDK, with skeletons represented by 15 joints instead
of 20 as with the Microsoft Kinect SDK. The main challenges
of this dataset are the similarity between actions, the human-
object interaction, and the different ways of performing a same
action.

c) UTKinect: In this dataset, 10 subjects perform 10
different actions two times, for a total of 200 sequences [9].
The actions include: walk, sit-down, stand-up, pick-up, carry,
throw, push, pull, wave and clap-hand. Skeleton data are
gathered using Kinect for Windows SDK. The actions included
in this dataset are similar to those from MSR Action 3D
and Florence 3D Action, but they present some additional
challenges: they are registered from different views; and there
are occlusions caused by human-object interaction or by the
absence of some body parts in the sensor field of view.

d) UCF-kinect: This dataset consists of 16 different
gaming actions performed by 16 subjects five times for a
total of 1280 sequences [11]. All the actions are performed
from a rest state, including balance, climb up, climb ladder,
duck, hop, vault, leap, run, kick, punch, twist left, twist right,
step forward, step back, step left, step right. The locations
of 15 joints over the sequences are estimated using Microsoft
Kinect sensor and the PrimeSense NiTE. This dataset is mainly
used to evaluate the ability of our approach in terms of
accuracy/latency for a low-latency action recognition system.

B. Action Recognition Analysis

In order to fairly compare our approach with the state-of-
the-art methods, we follow the same experimental setup and
evaluation protocol presented in these methods, separately for
each dataset.

1) MSR Action 3D dataset: For this experiment, we test
our approach with the variations mentioned in Sect. III related
to the body parts and Karcher mean. As in this dataset the
subjects are always facing the camera, the normalization of
subjects orientation before computing features is not necessary.
The results are reported in Table I. First, it can be noted that
the best accuracy is obtained using the full skeleton and the
Karcher mean algorithm applied per action and per subject
(92.1%). In this case, we use k = 4 in the classification
process. Note that this improvement of the accuracy using
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the Karcher mean is not expected. Indeed, computation of
average trajectories can be viewed as an indexing of available
sequences and should not add information facilitating the
classification task. An explanation of accuracy improvement
can be given for the case of two similar action classes. In
that case, a sequence belonging to a first class can be very
similar to sequences belonging to a second class, and thus
selected as false positive during classification. Computing
average trajectories can increase the inter-class distance and
thus improve the classification accuracy. For instance, the
first two actions (high arm wave and horizontal high arm
wave) are very similar. Using such average trajectories reduces
the confusion between these two actions, thus improving the
accuracy. Second, these results also show that the analysis
of body parts separately improves the accuracy from 88.3%
to 91.1%, in the case where only the kNN classifier is used.
When the Karcher mean algorithm is used in addition to kNN,
the values of the accuracy obtained by analyzing body parts
separately or analyzing the full skeleton are very similar.

TABLE I: MSR Action 3D. We test our approach with its
different variations (full skeleton, body parts without and with
motion thresholding), and classification methods (kNN only,
kNN and Karcher mean (Km) per action, kNN and Karcher
mean per action and per subject).

Method Acc. (%)

Full Skeleton & kNN 88.3
Full Skeleton & kNN & Km per action 89.0
Full Skeleton & kNN & Km per action/subject 92.1
Body Parts & kNN 80.8
Body Parts & kNN & Km per action 87.6
Body Parts & kNN & Km per action/subject 89.7
Body parts + motion thres. & kNN 91.1
Body parts + motion thres. & kNN & Km per action 89.7
Body parts + motion thres. & kNN & Km per action/subject 91.8

Table II reports results of the comparison of our approach to
some representative state-of-the-art methods. We followed the
same experimental setup as in Oreifej et al. [17] and Wang et
al. [19], where the actions of five actors are used for training
and the remaining actions for test. Our approach outperforms
the other methods except the one proposed in [20]. However,
this approach uses both skeleton and depth information. They
reported that using only skeleton features an accuracy of
83.5% is obtained, which is lower than our approach.

TABLE II: MSR Action 3D. Comparison of the proposed
approach with the most relevant state-of-the-art methods.

Method Accuracy (%)

EigenJoints [10] 82.3
STOP [14] 84.8
DMM & HOG [13] 85.5
Random Occupancy Pattern [15] 86.5
Actionlet [19] 88.2
DCSF [16] 89.3
JAS & HOG2 [20] 94.8
HON4D [17] 88.9
Ours 92.1

Furthermore, following a cross validation protocol, we per-

form the same experiments exploring all possible combinations
of actions used for training and for test. For each combination,
we first use only kNN on body parts separately. We obtain an
average accuracy of 86.09% with standard deviation 2.99%
(86.09 ± 2.99%). The minimum and maximum values of the
accuracy are, respectively, 77.16% and 93.44%. Then, we
perform the same experiments using the full skeleton and
the Karcher mean per action and per subject, and obtain an
average accuracy of 87.28 ± 2.41% (mean ± std). In this
case, the lowest and highest accuracy are, respectively, 81.31%
and 93.04%. Compared to the work in [17], where the mean
accuracy is also computed for all the possible combinations,
we outperform their result (82.15 ± 4.18%). In addition, the
small value of the standard deviation in our experiments shows
that our method has a low dependency on the training data.

In order to show the accuracy of the approach on individual
actions, the confusion matrix is also computed. Figure 5 shows
the confusion matrix when we use the kNN and the Karcher
mean per action and per subject with the full skeleton (Fig. 5a)
and with body parts (Fig. 5b).
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Fig. 5: MSR Action 3D. Confusion matrix for two variations
of our approach: (a) Full skeleton with kNN and Karcher
mean per action and per subject; (b) Body parts with kNN
and Karcher mean per action and per subject.

It can be noted that for each variation of our approach, we
obtained very low accuracies for the actions hammer and hand
catch. This can be explained by the fact that these actions are
very similar to some others. In addition, the way of performing
these two actions varies a lot depending on the subject. For
example, for the action hammer, subjects in the training set
perform it only once, while some subjects in the test set
perform it more than once (cyclically). In this case, the shape
of the trajectories is very different. Our method does not deal
with this kind of variations. Figure 6 illustrates an example of
this failure case. As action sequences are represented in high
dimension space, trajectories corresponding to only one joint
(the right hand joint) are plotted. Indeed, the trajectories of
four different samples of the action hammer are illustrated,
where only one hammer stroke or two hammer strokes are
performed. It can be observed that the shape of the trajectories
is different in the two cases. In order to visualize samples
of three different classes in a two-dimensional space, the
Multidimensional scaling (MDS) technique [40] is applied
using distance matrix computed on the shape space. These
classes are shown in the right part of the figure: horizontal arm
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wave (clear blue), hammer (dark blue) and draw tick (green).
We can see that samples of the action hammer are split in
two different clusters corresponding to two different ways of
performing the action. The distribution of data in the hammer
cluster is partly overlapped to data in the draw tick cluster
yielding inaccurate classification of these samples.

(a) (b) (c) (d)

(b)
(c)(d)

(a)

Fig. 6: Visualization of a failure case for the action hammer.
Sample trajectories of the right hand joint are shown on the
left: (a-b) one hammer stroke; (c-d) two hammer strokes. On
the right, clustering of action samples using MDS in a 2D
space is reported for three different classes: horizontal arm
wave (clear blue), hammer (dark blue) and draw tick (green).
The samples of the action hammer are split in two clusters
corresponding to the two different ways of performing the
action. The distribution of data of the hammer cluster is partly
overlapped to data of the draw tick cluster

.

2) Florence 3D Action dataset: Results obtained for this
dataset are reported in Table III. It can be observed that the
proposed approach outperforms the results obtained in [39] us-
ing the same protocol (leave-one-subject-out cross validation),
even if we do not use the body parts variant.

TABLE III: Florence 3D Action. We compare our method with
the one presented in [39].

Method Accuracy (%)

NBNN + parts + time [39] 82.0
Our Full Skeleton 85.85
Our Body part 87.04

By analyzing the confusion matrix of our method using
body parts separately (see Fig. 7a), we can notice that the
proposed approach obtains very high accuracies for most of
the actions. However, we can also observe that there is some
confusion between similar actions using the same group of
joints. This can be observed in the case of read watch and clap
hands, and also in the case of arm wave, drink and answer
phone. For these two groups of actions, the trajectories of the
arms are very similar. For the first group of actions, in most of
the cases, read watch is performed using the two arms, which
is very similar to the action clap hands. For the second group
of actions, the main difference between the three actions is
the object held by the subject (no object, a bottle, a mobile
phone). As we use only skeleton features, we cannot detect and
differentiate these objects. As an example, Figure 8 shows two
different actions, drink and phone call, that in term of skeleton

are similar and difficult to distinguish.
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Fig. 7: Confusion matrix obtained by our approach on (a)
Florence 3D Action and (b) UTKinect. We can see that similar
actions involving different objects are confused.

(a) (b)

Fig. 8: Example of similar actions from Florence action 3D
dataset: (a) drink action where the subject holds a bottle; (b)
phone call action, where the subject holds a phone.

3) UTKinect dataset: In order to compare to the work
in [9], we follow the same experimental protocol (leave one
sequence out cross validation method). For each iteration, one
sequence is used as test and all the other sequences are used
as training. The operation is repeated such that each sequence
is used once as testing. We obtained an accuracy of 91.5%,
which improves the accuracy of 90.9% reported in [9]. This
shows that our method is robust to different points of view
and also to occlusions of some parts of the body. However, by
analyzing the confusion matrix in Fig. 7b, we can notice that
lower accuracies are obtained for those actions that include the
interaction with some object, for instance the carry and throw
actions. These actions are not always distinguished by actions
that are similar in terms of dynamics yet not including the
interaction with some object, like walk and push, respectively.
This result is due to the fact that our approach does not take
into account any informative description of objects.

4) Discussion: Results on different datasets show that our
approach outperforms most of the state-of-the-art methods.
First, some skeleton based methods like [10] use skeleton
features based on pairwise distances between joints. However,
results obtained on MSR Action 3D dataset show that ana-
lyzing how the whole skeleton evolves during the sequence is
more discriminative than taking into consideration the joints
separately. In addition, the method proposed in [10] is not
invariant to the execution speed. To deal with the execution
speed, in [39] a pose-based method is proposed. However, the
lack of information about temporal dynamics of the action
makes the recognition less effective compared to our method,
as shown in Table III. Second, the comparison with depth-
map based methods shows that skeleton joints extracted from



SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 10

depth-maps are effective descriptors to model the motion of the
human body along the time. However, results also show that
using strength of both depth and skeleton data may be a good
solution as proposed in [20]. The combination of both data
can be very helpful especially for the case of human-object
interaction, where skeleton based methods are not sufficient
as shown by the experiments on UTKinect dataset.

C. Representation and Invariance

1) Body Parts Analysis: The experiments above show that
using only the moving parts of the body yields an improve-
ment of the recognition accuracy. In addition, it allows the
reduction of the dimensionality of the trajectories and thus the
computational costs for their comparison. As we do not use
the spine of the skeleton, the dimensionality is reduced at least
to 48D instead of 60D. Furthermore, for the actions that are
performed with only one part of the body, the dimensionality
is reduced to only 12D (in the case of skeletons with four
joints per limb).

2) Invariance to geometric transformations: To demon-
strate the effectiveness of our invariant representation against
translation and rotation, we analyze the distance between
sequences representing the same action class, but acquired
from different viewpoints. To this end, we select two samples
from the UTKinect dataset corresponding to the action wave,
and compute the distance between them with and without
our invariant representation. We can see in Table IV that
the distance drops from 1.1 to 0.6 if we use our invariant
representation. We also compute the distance between actions
belonging to similar classes, like wave and clap. It can be
noticed that if we do not use the invariant representation, the
nearest sample to the test sample belongs to the class clap;
however, if the invariant representation is used, the nearest
sample belongs to the class wave, the same as the test sample.

TABLE IV: Distances between a wave sample and two sam-
ples of the actions wave and clap acquired from different
viewpoints. The columns ‘aligned’ and ‘non-aligned’ report
the distance value computed with the invariant representation
or without it, respectively.

wave sample clap sample

non-aligned aligned non-aligned aligned

wave sample 1.1 0.6 1.0 0.9

3) Rate Invariant: One main challenge in action recog-
nition is robustness to variations in the execution speed of
the action. Without this invariance, two instances of the same
action performed at different velocities can be miss-classified.
That is why temporal matching between two trajectories is
decisive before computing their distance. The Dynamic Time
Warping algorithm is usually employed to solve this problem.
It is a popular tool in temporal data analysis, which is used
in several applications, including activity recognition by video
comparison [28]. In our case, a special version of this algo-
rithm is used to warp similar poses of two sequences at differ-
ent time instants. Before computing the distance between two

trajectories, we search for the optimal re-parametrization of the
second trajectory with respect to the first one. This registration
allows us to compare the shape of two trajectories regardless
of the execution speed of the action. In practice, we use
Dynamic Programming to find the optimal re-parametrization
and perform registration. To show the importance of this step,
we performed the same experiments presented above for two
datasets, but without considering the registration step before
comparison. The obtained results are presented in Table V.

TABLE V: Results of the proposed method in the case the
registration step is considered (R) or not (NR).

Method MSR Act. 3D (%) Florence Act. 3D (%)

kNN Full Skeleton - NR 73.9 82.1
kNN Full Skeleton - R 88.3 85.9
kNN Body parts - NR 73.5 84.7
kNN Body parts - R 91.1 87.0

We can notice that skipping the registration step makes
the accuracy much lower, especially for the MSR Action
3D dataset, where the accuracy drops of about 20%. In
this dataset, actions are performed at very different speed.
Figure 9 shows an example of the action high throw performed
by two different subjects at different speed: The first row
represents eight frames of a training sequence; The second
row represents the same eight frames of a new sequence
performed at different speed without registration; The third
row represents the new sequence after registration with respect
to the training sequence. In the reported case, the distance
between sequences decreases from 1.31 (without registration)
to 0.95 (with registration).

Fig. 9: Temporal registration for action high throw. From
the top: the initial sequence; the sequence to be registered
with respect to the initial sequence; the resulting registered
sequence. Black lines connect corresponding poses showing
how the sequence has been stretched and bent.

D. Latency Analysis
The latency is defined as the time lapse between the instant

when a subject starts an action and the instant when the system
recognizes the performed action. The latency can be separated
into two main components: the computational latency and the
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observational latency. The computational latency is the time
the system takes to compute the recognition task from an
observation. The observational latency represents the amount
of time an action sequence needs to be observed in order to
gather enough information for its recognition.

1) Computational Latency: We evaluate the computational
latency of our approach on the MSR Action 3D dataset. Using
a Matlab implementation with an Intel Core i-5 2.6GHz CPU
and a 8GB RAM, the average time required to compare two
sequences is 50 msec (including trajectories representation
in shape space, trajectories registration, distance computation
between trajectories, and sequence labeling using kNN). For a
given new sequence, the total computational time depends on
the number of training sequences. Indeed, distances between
the new sequence and all other training sequences have to
be computed, and the k shortest distances are used to label
the new sequence. For example, using the 50-50 cross subject
protocol on the MSR Action 3D dataset, and using only
the kNN approach, classification of an unknown sequence
requires comparison to 266 training sequences. Thus, with our
approach, the system takes 266 ⇤ 0.05 = 13.3 sec to label
a new sequence. This computational time is large and thus
not suitable for real-time processing. If we use the Karcher
mean per class to have only one representative sequence per
class, the number of training sequences is reduced to 20 and
the computational time decreases to 1 sec, which is more
adequate for real-time applications. As shown in Table I, for
this dataset we obtain our best accuracy using Karcher mean
per action per subject. In that case, the resulted number of
training trajectories is 91. Thus, the computational latency
becomes 91 ⇤ 0.05 = 4.55 sec.

TABLE VI: Average computational time to compare two
sequences of the MSR Action 3D dataset (the average length
of sequences in this dataset is 38 frames). It results that more
than 60% of the time is spent in the registration step.

Step shape-space
representation registration distance kNN

labeling Total

Time (s) 0.011 0.032 0.002 0.005 0.05

2) Observational Latency: To analyze the observational
latency of our approach, we show how the accuracy depends
on the duration of observation of the action sequence. In the
first experiment, the observational latency is analyzed on the
MSR Action 3D dataset, where the accuracy is computed by
processing only a fraction of the sequence. In each case, we
cut the training sequences into shorter ones to create a new
training set. During the classification step, we also cut test
sequences to the corresponding length and apply our method.
We performed experiments using only kNN and also using
Karcher mean per action and per subject. In Fig. 10a, we
can see that an accuracy closed to the maximum one is
obtained even if we use only half of the sequences. This
shows that the computational latency can be masked by the
observational latency in the cases where sequences are longer
than twice the computational latency. In these cases, the
action recognition task can be performed in real-time. This
is particularly convenient for applications like video games

that require fast response of the system before the end of the
performed action to support real-time interaction.
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Fig. 10: Latency Analysis. (a) MSR Action 3D: Our approach
is performed using only the kNN (blue curve), and then using
the Karcher mean (red curve). (b) UCF-Kinect. Values of
the accuracy obtained by our approach using only the kNN,
compared to those reported in [11]. The accuracy at each point
of the curves is obtained by processing only the number of
frames shown in the x-axis.

To compare the observational latency of our approach, we
perform experiments on the UCF-Kinect dataset [11], where
the observational latency of other methods is also evaluated.
The same experimental setup as in Ellis et al. [11] is followed.
To do that, we use only the kNN and a 4-fold cross validation
protocol. Four subjects are selected for test and the others
for training. This is repeated until each subject is used once.
Actually, since there are 16 subjects, four different test folds
are built and the mean accuracy of the four folds is reported.
For a fair comparison to [11], the obtained accuracy is reported
with respect to the maximum number of frames (and not to
a percentage of sequences). For each step, a new dataset is
built cutting the sequences to a maximum number of frames.
The length of the sequences varies from 27 to 269 frames
with an average length equal to 66.1±34 frames. It should be
noticed that, if the number of frames of a sequence is below
the maximum number of frames used in experiments, the
whole sequence is treated. We compare our results with those
reported in [11], including their proposed approach Latency
Aware Learning (LAL), and two baseline solutions: Bag of
Words (BoW) and Conditional Random Field (CRF). The
observational latency on this dataset is also evaluated in [20],
but following a different evalaution protocol (i.e., a 70/30
split protocol instead of the 4-fold cross validation proposed
in [11]), so their results are not reported here.

The curves in Fig. 10b and the corresponding numerical re-
sults in Table VII show that our approach clearly outperforms
all the baseline approaches reported in [11]. This significant
improvement is achieved either using a small or a large number
of frames (see the red curve in Fig. 10b).

We can also notice that only 25 frames are sufficient to
guarantee an accuracy over 90%, while BoW and CRF show
a recognition rate below 68%, and LAL achieves 81.65%. It
is also interesting to notice that using the whole sequences,
we obtain an accuracy of 99.15%, and the same accuracy can
be obtained by processing just 45 frames of the sequence.
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TABLE VII: Numerical results at several points along the
curves in Fig. 10b.

#Frames

Method 10 15 20 25 30 40 60

CRF 14.5 25.5 46.9 67.3 80.7 91.4 94.3
BoW 10.7 21.2 43.5 67.6 83.2 91.9 94.1
LAL 13.9 37.0 64.8 81.6 90.6 95.2 95.9
Our 30.5 60.9 79.9 91.1 95.1 97.8 99.2

VI. CONCLUSIONS AND FUTURE WORK

An effective human action recognition approach is proposed
using a spatio-temporal modeling of motion trajectories in a
Riemannian manifold. The 3D position of each joint of the
skeleton in each frame of the sequence is represented as a
motion trajectory in the action space. Each motion trajectory
is then expressed as a point in the open curve shape space.
Thanks to the Riemannian geometry of this manifold, action
classification is solved using the nearest neighbor rule, by
warping all the training points to the new query trajectory and
computing an elastic metric between the shape of trajectories.
The experimental results on the MSR Action 3D, Florence 3D
Action and UTKinect datasets demonstrate that our approach
outperforms the existing state-of-the-art methods in most of
the cases. Furthermore, the evaluation in terms of latency
clearly demonstrates the efficiency of our approach for a
rapid recognition. In fact, 90% action recognition accuracy
is achieved by processing just 25 frames of the sequence.
Thereby, our approach can be used for applications of human
action recognition in interactive systems, where a robust real-
time recognition at low latencies is required.

As future work, we plan to integrate in our framework other
descriptors based on both depth and skeleton information, so
as to manage the problem of human-object interaction. We also
expect widespread applicability in domains such as physical
therapy and rehabilitation.

ACKNOWLEDGMENTS

A very preliminary version of this work appeared in [41].
The authors would like to thank Professor Anuj Srivastava for
his assistance and the useful discussions about this work.

REFERENCES

[1] Microsoft Kinect, 2013. [Online]. Available:
http://www.microsoft.com/en-us/kinectforwindows/

[2] ASUS Xtion PRO LIVE, 2013. [Online]. Available:
http://www.asus.com/Multimedia/Xtion PRO/

[3] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. IEEE Int. Conf. on Computer Vision
and Pattern Recognition, Colorado Springs, Colorado, USA, June 2011,
pp. 1–8.

[4] S. Hadfield and R. Bowden, “Kinecting the dots: Particle based scene
flow from depth sensors,” in Proc. Int. Conf. on Computer Vision,
Barcelona, Spain, Nov. 2011, pp. 2290–2295.

[5] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based
on finger-earth mover’s distance with a commodity depth camera,” in
Proc. ACM Int. Conf. on Multimedia, Scottsdale, Arizona, USA, Nov.
2011, pp. 1093–1096.

[6] S. Berretti, A. Del Bimbo, and P. Pala, “Superfaces: A super-resolution
model for 3D faces,” in Proc. Work. on Non-Rigid Shape Analysis and
Deformable Image Alignment, Florence, Italy, Oct. 2012, pp. 73–82.

[7] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision
with microsoft kinect sensor: A review.” IEEE Trans. on Cybernetics,
vol. 43, no. 5, pp. 1318–1334, 2013.

[8] L. Liu and L. Shao, “Learning discriminative representations from RGB-
D video data,” in Proc. of the Twenty-Third Int. Joint Conf. on Artificial
Intelligence, ser. IJCAI’13. AAAI Press, 2013, pp. 1493–1500.

[9] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant human action
recognition using histograms of 3D joints,” in Proc. Work. on Human
Activity Understanding from 3D Data, Providence, Rhode Island, USA,
June 2012, pp. 20–27.

[10] X. Yang and Y. Tian, “Eigenjoints-based action recognition using naive-
bayes-nearest-neighbor,” in Proc. Work. on Human Activity Understand-
ing from 3D Data, Providence, Rhode Island, June 2012, pp. 14–19.

[11] C. Ellis, S. Z. Masood, M. F. Tappen, J. J. La Viola Jr., and R. Suk-
thankar, “Exploring the trade-off between accuracy and observational
latency in action recognition,” Int. Journal on Computer Vision, vol.
101, no. 3, pp. 420–436, 2013.

[12] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3D
points,” in Proc. Work. on Human Communicative Behavior Analysis,
San Francisco, California, USA, June 2010, pp. 9–14.

[13] X. Yang, C. Zhang, and Y. Tian, “Recognizing actions using depth
motion maps-based histograms of oriented gradients,” in Proc. ACM
Int. Conf. on Multimedia, Nara, Japan, Oct. 2012, pp. 1057–1060.

[14] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F.
Campos, “STOP: Space-time occupancy patterns for 3D action recogni-
tion from depth map sequences,” in Iberoamerican Congress on Pattern
Recognition, Buenos Airies, Argentina, Sept. 2012, pp. 252–259.

[15] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3D action
recognition with random occupancy patterns,” in Proc. Europ. Conf. on
Computer Vision, Florence, Italy, Oct. 2012, pp. 1–8.

[16] L. Xia and J. K. Aggarwal, “Spatio-temporal depth cuboid similarity
feature for activity recognition using depth camera,” in Proc. CVPR
Work. on Human Activity Understanding from 3D Data, Portland,
Oregon, USA, June 2013, pp. 2834–2841.

[17] O. Oreifej and Z. Liu, “HON4D: Histogram of oriented 4D normals
for activity recognition from depth sequences,” in Proc. Int. Conf. on
Computer Vision and Pattern Recognition, Portland, Oregon, USA, June
2013, pp. 716–723.

[18] B. Ni, Y. Pei, P. Moulin, and S. Yan, “Multi-level depth and image fusion
for human activity detection,” IEEE Trans. on Cybernetics, vol. 43, no. 5,
pp. 1383–1394, Oct 2013.

[19] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble
for action recognition with depth cameras,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, Providence, Rhode Island,
USA, June 2012, pp. 1–8.

[20] E. Ohn-Bar and M. M. Trivedi, “Joint angles similarities and HOG2

for action recognition,” in Proc. CVPR Work. on Human Activity
Understanding from 3D Data, Portland, Oregon, USA, June 2013, pp.
465–470.

[21] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based meth-
ods for action representation, segmentation and recognition,” Computer
Vision and Image Understanding, vol. 115, no. 2, pp. 224–241, Feb.
2011.

[22] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 18, no. 11, pp. 1473–1488, Nov.
2008.

[23] W. Bian, D. Tao, and Y. Rui, “Cross-domain human action recognition,”
IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 42, no. 2, pp. 298–307, Apr. 2012.

[24] R. Poppe, “A survey on vision-based human action recognition,” Image
Vision Comput., vol. 28, no. 6, pp. 976–990, Jun. 2010.

[25] L. Liu, L. Shao, X. Zhen, and X. Li, “Learning discriminative key poses
for action recognition,” IEEE Trans. on Cybernetics, vol. 43, no. 6, pp.
1860–1870, Dec 2013.

[26] Y. Tian, L. Cao, Z. Liu, and Z. Zhang, “Hierarchical filtered motion for
action recognition in crowded videos,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 3,
pp. 313–323, May 2012.

[27] L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal laplacian pyramid
coding for action recognition,” IEEE Trans. on Cybernetics, vol. 44,
no. 6, pp. 817–827, 2014.



SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 13

[28] A. Veeraraghavan, A. Roy-Chowdhury, and R. Chellappa, “Matching
shape sequences in video with applications in human movement analy-
sis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27,
no. 12, pp. 1896–1909, 2005.

[29] M. T. Harandi, C. Sanderson, A. Wiliem, and B. C. Lovell, “Kernel
analysis over Riemannian manifolds for visual recognition of actions,
pedestrians and textures,” in Proc. IEEE Work. on the Applications
of Computer Vision, ser. WACV’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 433–439.

[30] Y. M. Lui, “Tangent bundles on special manifolds for action recog-
nition,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 22, pp. 930–942, 2012.

[31] S. Shirazi, M. T. Har, C. S, A. Alavi, and B. C. Lovell, “Clustering on
Grassmann manifolds via kernel embedding with application to action
analysis,” in Proc. Int. Conf. on Image Processing, 2012, pp. 781–784.

[32] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Statis-
tical computations on Grassmann and Stiefel manifolds for image and
video-based recognition,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 33, no. 11, pp. 2273–2286, 2011.

[33] M. F. Abdelkader, W. Abd-Almageed, A. Srivastava, and R. Chellappa,
“Silhouette-based gesture and action recognition via modeling trajec-
tories on Riemannian shape manifolds,” Computer Vision and Image
Understanding, vol. 115, no. 3, pp. 439–455, 2011.

[34] S. H. Joshi, E. Klassen, A. Srivastava, and I. Jermyn, “A novel represen-
tation for Riemannian analysis of elastic curves in Rn,” in Proc IEEE
Int. Conf. on Computer Vision and Pattern Recognition, Minneapolis,
MN, USA, June 2007, pp. 1–7.

[35] H. Drira, B. B. Amor, A. Srivastava, M. Daoudi, and R. Slama, “3D face
recognition under expressions, occlusions, and pose variations,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2270–2283, 2013.

[36] R. Slama, H. Wannous, and M. Daoudi, “3D human motion analysis
framework for shape similarity and retrieval,” Image and Vision Com-
puting, vol. 32, no. 2, pp. 131 – 154, 2014.

[37] A. Srivastava, E. Klassen, S. H. Joshi, and I. Jermyn, “Shape analysis
of elastic curves in euclidean spaces,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 33, no. 7, pp. 1415–1428, 2011.

[38] H. Karcher, “Riemannian center of mass and mollifier smoothing,”
Comm. on Pure and Applied Math., vol. 30, pp. 509–541, 1977.

[39] L. Seidenari, V. Varano, S. Berretti, A. Del Bimbo, and P. Pala,
“Recognizing actions from depth cameras as weakly aligned multi-part
bag-of-poses,” in Proc. CVPR Work. on Human Activity Understanding
from 3D Data, Portland, Oregon, USA, June 2013, pp. 479–485.

[40] I. Borg and P. Groenen, Modern Multidimensional Scaling: theory and
applications (2nd ed.). New York: Springer-Verlag, 2005.

[41] M. Devanne, A. Wannous, S. Berretti, P. Pala, M. Daoudi, and A. Del
Bimbo, “Space-time pose representation for 3D human action recog-
nition,” in Proc. Int. Work. on Social Behaviour Analyis (SBA’13), in
conjunction with ICIAP 2013, Naples, Italy, Sept. 2013, pp. 456–464.

Maxime Devanne received the engineering degree
in Computer Science from Telecom Lille, France,
in 2012. He is currently a PhD candidate in collab-
oration between the MIIRE research group within
the Fundamental Computer Science Laboratory of
Lille (LIFL), France, and the Media Integration and
Communication Center of University of Florence,
Italy. His current research interests are mainly fo-
cused on the study and the analysis of depth images,
3D videos, elastic shapes, human body motions, and
their applications in computer vision, like activity

recognition.

Hazem Wannous received the M.Sc. degree in 2005
from the University of Burgundy, France and the
PhD degree in image processing from the Univer-
sity of Orlans, France in 2008. Currently, he is an
associate-professor at the University Lille 1/Telecom
Lille. He is also a member of the Computer Sci-
ence Laboratory in University Lille 1 (LIFL UMR
CNRS 8022). His research interests include machine
learning, pattern recognition, video indexing, and
geometric vision. He is co-author of several papers
in refereed journals and proceedings of international

conferences. He has served as reviewer for international journals.

Stefano Berretti is an Associate Professor at the
Department of Information Engineering of the Uni-
versity of Firenze, Italy. His current research inter-
ests are mainly focused on 3D for object analysis
and retrieval, face recognition and facial expression
recognition, action recognition. He has been visiting
professor at Institute TELECOM, TELECOM Lille
1, Lille, France, and at Khalifa University of Science
Technology and Research, Sharjah, UAE. He has
been co-chair of the Fifth Workshop on Non-Rigid
Shape Analysis and Deformable Image Alignment

(NORDIA12), 2012, Firenze, Italy.

Pietro Pala is Professor and the President of the
commitee deputed to the evaluation of quality, ac-
cording to the CRUI 2011 model, for the course of
Informatics Engineering. His research activity has
focused on the use of pattern recognition models
for multimedia information retrieval and biometrics.
Former studies targeted the definition of elastic
models for measuring shape similarity and support
shape based retrieval in image databases. From these
studies, a number of different yet related topics were
investigated, including image segmentation, content

based description and retrieval of color images, multidimensional indexing
structures for retrieval by color and shape, semantic content description in
paintings and advertising videos, description and similarity matching of 3D
models, segmentation of 3D models. Recently, the research activity focused
on the study of biometric models for person recognition based on 3D facial
scans. Pietro Pala serves as editor for Multimedia Systems and as reviewer
for many leading scientific journals.

Mohamed Daoudi is Full Professor of Computer
Science at Telecom Lille and LIFL (UMR CNRS
8022). He is the head of Computer Science de-
partment at Telecom Lille. He received his Ph.D.
degree in Computer Engineering from the University
of Lille 1 (USTL), France, in 1993 and Habilita-
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