
HAL Id: hal-01056355
https://hal.science/hal-01056355

Submitted on 18 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidential Grids Information Management in Dynamic
Environments

Julien Moras, Véronique Cherfaoui, Philippe Bonnifait

To cite this version:
Julien Moras, Véronique Cherfaoui, Philippe Bonnifait. Evidential Grids Information Management
in Dynamic Environments. 17th International Conference on Information Fusion (Fusion 2014), Jul
2014, Salamanca, Spain. pp.1-7. �hal-01056355�

https://hal.science/hal-01056355
https://hal.archives-ouvertes.fr


Evidential Grids Information Management in

Dynamic Environments

Julien Moras

ONERA DTIM/EVF, France

Email: surname.name@onera.fr

Véronique Cherfaoui and Philippe Bonnifait

University of Technology of Compiègne

CNRS Heudiasyc UMR 7253, France

Email: surname.name@utc.fr

Abstract—An occupancy grid map is a common world repre-
sentation for mobile robotics navigation. Usually, the information
stored in every cell is the probability on the occupancy state.
In this paper, an evidential approach based on Dempster-Shafer
theory is proposed to process the information in accordance with
the least commitment principle. The map grid is updated by a
fusion mechanism by using an inverse model of the sensor. We
show that the evidential framework offers powerful tools to make
a good management of uncertainties especially when the sensory
data are poor in terms of information. After having presented
the key concepts of evidential grids with respect to probabilistic
ones, entropy and specificity metrics are introduced to qualify
the degree of information stored in the cells. Some comparisons
with the probabilistic approach are given on fusion and decision
results using simulation. We also report experimental results to
illustrate the performance of a real-time implementation of the
method with a 4-layer lidar mounted in the bumper of a car
driving in real urban traffic conditions.

I. INTRODUCTION

Occupancy Grids (OG) are often used as the backbone of

mobile perception systems for intelligent vehicles navigation

like for data fusion [1], localization [2] and obstacle avoid-

ance [3]. As OGs manage a representation of the environment

that does not make any assumption on the geometrical shape

of the detected elements, they provide a general framework to

deal with complex perception conditions. Many works have

contributed to improve this framework at different levels :

geometric (from 2D to 2.5D [4] and 3D [5]), uncertainty

management [6], dynamic conditions [7] and clustering and

tracking [8].

In this paper, we focus on the use of a multi-echo and

multi-layer lidar system in order to characterize the dynamic

surrounding environment of a vehicle driving in common

traffic conditions. The perception strategy involves map and

scan grids [9], [10]. Indeed, an instantaneous scan grid built

from the lidar doesn’t provide enough reliable information

because of noise and miss-detections. The map grid acts as a

filter that accumulate information and allows to detect moving

objects.

In dynamic environments, it is crucial to have a good

modeling of the information flow in the data fusion process

in order to avoid adding wrong implicit prior knowledge that

will need time to be forgotten. In this context, Evidential OG

are particularly interesting to make a good management of

the information since it is possible to explicitly make the

distinction between non explored and moving cells. In this

paper, we conduct a study with the classical probabilistic

approach to highlight the added values.

This paper is organized as follows. The concept of occu-

pancy grids with inverse sensor models is explained in section

II. Then, evidential occupancy grids are presented in section

III. Section IV compares the probabilistic framework with the

evidential one. Finally, conclusion and outline perspectives are

given in section V.

II. ROBOTIC PERCEPTION WITH OCCUPANCY GRIDS

A. Occupancy Grid in Dynamic Environments

The basic idea of an OG is to divide the surrounding

environment (the ground plane of 2D world) into a set a cells

(denoted Ci, i ∈ [0, n]) in order to estimate their occupancy

state. In a probabilistic framework, the aim is to estimate

the probabilities P
(

Oi|z1:t
)

and P
(

F i|z1:t
)

given a set of

measures z1:t from the beginning up to the current time t. Oi

(resp. F i) denotes the occupied (resp. free) state of the cell Ci.

Finally, a decision rule is applied (e.g. Maximum A Posterior

- MAP) in order to select the most likely state for each cell.

Occupancy grids can be classified into two categories de-

pending on the use of a forward or inverse sensor model.

The forward model [11] relies on Bayes inference. Since this

approach takes into account the conditional dependency of the

cells of the map, it is well adapted to a sensor that observes

a large domain of cells with only one reading measurement

(e.g. a ultrasonic sonar). However, it requires heavy processing

that can be handled by optimized approximation [12] or GPU

computing [13].

The inverse model approach is well adapted to narrow fields

of measures sensors (e.g. lidar). It is composed of two separate

steps. First, a snapshot map of the sensor reading is built

using an inverse sensor model P
(

Oi|zt
)

. This model can

take into account the conditional dependency between the

sensor reading and the occupancy of the seen cells. Then,

a fusion process (denoted ⊙) is done with the previous map

P
(

Oi|z1:t−1

)

as an independent opinion poll fusion:

P
(

Oi|z1:t
)

= P
(

Oi|zt
)

⊙ P
(

Oi|z1:t−1

)

(1)

In a probabilistic framework, the usual fusion operation

between states A and B is:

P (A)⊙ P (B) =
P (A) · P (B)

P (A) · P (B) + (1− P (A)) · (1− P (B))
(2)



Inverse approaches have very efficient implementations (e.g.

log-odd) that make them very popular in mobile robotics [14],

[15]. Maps built using inverse models are usually less accurate,

since they just take into account the dependency of the cells

observed in one reading, but it is a good approximation

with accurate and high resolution sensors observing a limited

number of cells at a time. Moreover, when the sensor is multi-

echo and multi-layer, the conditional dependency of the seen

cells can be modeled in an efficient way.

B. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate

of the pose of the robot has to be available and map grid

GM has to be handled. This grid is defined in a world-

referenced frame (so it does not move with the robot) and

is updated when a new sensor reading is available. Because of

the likely evolution of the world in a dynamic environment,

the OG update has to be completed by a remanence strategy.

The fusion architecture follows then a prediction-correction

paradigm and can be used to fuse one or several sensors.

a) Prediction step: The prediction step computes the

predicted map grid at time t from the map grid estimated at

time t− 1. Depending on the available information, this step

can be very refined like done in [13]. As we consider here

that no specific information on the velocity of the objects (or

cells) is available, the prediction is done by discounting. The

confidence in aged data is controlled by a remanence factor

α ∈ [0; 1]. The prediction stage is therefore:

ĜM
t = discount

(

ĜM
t−1, α

)

b) Correction step: The correction step consists in the

combination of the previously estimated map grid with the grid

built from the current measures thanks to the inverse model

sensor. This one is called ScanGrid GS
t . As this information

is referenced in the sensor frame, a 2D warping is applied

to reshape this grid into the fusion frame. To perform this

operation, the current pose qt is estimated using a GPS

sensor and the rigid homogeneous transformation matrix Ht

is computed. When GPS becomes unavailable, the CAN bus

is used to get the car odometric data. The motion matrix Ht

and the extrinsic calibration matrix C are used to compute a

remapping function f (Eq. 3).

f (x, y) = C ·Ht ·





x

y

1



 (3)

Finally, the ScanGrid is remapped with f and fused with

the previous map grid.

ĜM
t (i, j) = ĜM

t (i, j)⊙GS
t (f (i, j)) (4)

The evidential OGs that are described in the next sections

follow this paradigm.

III. EVIDENTIAL OCCUPANCY GRIDS

A. Belief functions basic concepts

The Transferable Belief Model introduced by Smets in [16]

is a formalization of Dempster-Shafer Theory [17], [18]. Let X

be a variable that takes value in a discrete frame of discernment

(FOD) Ω. Let us define a mass function m. This function

is a multi-valued mapping m : 2Ω −→ [0 1], where 2Ω is

called the powerset of Ω. m verifies
∑

A∈2Ω m(A) = 1. For

each element A of 2Ω, m (A) refers to the part of belief that

supports the hypothesis X ∈ A and nothing more. An initial

mass function mS called basic belief assignment (bba) can be

created from a piece of evidence on X provided by a source S

which can be either a sensor measurement or an information

model.

In the general case, bba verifies mS (∅) = 0 (i.e. there

no conflicting information) and the Least Commitment (LC)

Principle [19]. The basic idea of the LC principle is to

never give more support to elements of the belief domain

than justified. It permits to select the least informative belief

function in a set of equally justified belief functions. For

instance, the specialized bba used [20] respects this principle.

In the following of this paper, we suppose that every bba

respects this principle.

Fusion

Like probabilities, mass functions can be combined with

fusion operators. Let be two sources that give mass functions

m1 and m2 on the same FOD. In case of two sources with

independent errors and if both sources are fully reliable then

the fusion is performed by the Dempster rule ⊕ defined in

Eq.5:

m1 ⊕m2 (A) =







m1 ∩©2(A)

1−m1 ∩©2(∅)
A 6= ∅

0 A = ∅
(5)

where ∩© is the conjunctive rule:

∀A ∈ 2Ω, m1 ∩©2 (A) =
∑

B,C∈2Ω|A=B∩C

m1 (B)·m2 (C) (6)

Belief and plausibility representation

Information can be represented by belief bel () or plausibil-

ity functions pl () instead of mass functions.

∀A ∈ 2Ω, bel (A) =
∑

B|B⊆A

m (B) (7)

∀A ∈ 2Ω, pl (A) =
∑

B|B∩A 6=∅

m (B) (8)

Within the transferable belief model, the degree of belief

bel(A) given to a subset A quantifies the amount of justified

specific support to be given to A, and the degree of plausibility

pl(A) quantifies the maximum amount of potential specific

support that could be given to A.



Discounting

A discounting effect can be applied on a mass function m

if a piece of information has its reliability lowered. In this

case, a new mass function mα is computed from m and a part

of the mass of each element of the FOD is transferred to the

unknown Ω.

mα (A) =

{

α ·m (A) if A 6= Ω

α ·m (A) + (1− α) if A = Ω

Back to probability

Finally, the pignistic transformation BetP [21] allows to

compute a probability measure from a mass function by

distributing proportionally the mass of the subsets on their

focal elements:

∀A ∈ Ω, BetP (A) =
∑

B∈2Ω

m (B) ·
|A ∩B|

|B|
(9)

where card (A) is the cardinal of subset A.

Hoverer, this transformation is not bijective (a part of the

information is lost). So, one can find an infinity of mass

functions with the same pignistic probability. This issue is

inherent in the nature of probabilities which are not able to

distinguish ignorance from inconsistency.

B. Evidential occupancy grids

As described in [22] and [23], evidential grids handle

occupancy information and uncertainty with Belief functions.

In this problem, the FOD is Ω = {F, O} and for each cell

Ci, one can define a mass function mi that represents its

occupancy. In this particular case, m is a vector composed of 4

masses: [m (∅) m (F ) m (O) m (Ω)] where m (Ω) represents

the part of ignorance and m (∅) represents the conflict.

Example 1. A source says that a cell is free with a confidence

level of 70%. The LC bba is :
[

m (∅) m (F ) m (O) m (Ω)
0 0.7 0 0.3

]

70% supports the state F whereas the 30% remaining does

not support any specific state and so Ω = {F, O}.

This representation is the main advantage of the evidential

concept. It is demonstrated in section IV.

IV. PROBABILISTIC AND EVIDENTIAL GRIDS COMPARISON

A. Effect of representation on the fusion result

The first advantage of the evidential representation is to be

able to distinguish:

• a non-informative value; when a cell is not observed

(masked cells, out of sensor coverage cells,etc..), the mass

assignment is m (Ω) = 1

from

• an ambiguous value; when the state of the cell results

from contradictory beliefs, the mass is split on m (O)
and m (F ).

Let us illustrate this with examples. Let consider the fusion of

two pieces of information coming from two different sources 1
and 2 and let consider two cases. The mass function m1 is the

same in the two cases but the mass function m2 changes. In

the first case, source n° 2 represents an unspecific information

(non-informative) and in the second case, it represents a state

of conflict (ambiguous). The pignistic transform is used to

compute equivalent probabilities P1 and P2. One can notice

that, in both cases, information is represented by the same

probabilities. Tab I shows the results of the fusion.

Assignment Fusion

m1 m2 P1 P2 m1⊕2 BetP1⊕2 P1⊙2

∅ 0 0 × × 0 × ×

F 0.5 0 0.75 0.5 0.5 0.75 0.75

O 0 0 0.25 0.5 0 0.25 0.25

Ω 0.5 1 × × 0.5 × ×

(a) Case of source n° 2 is non-informative (ignorance)

Assignment Fusion

m1 m2 P1 P2 m1⊕2 BetP1⊕2 P1⊙2

∅ 0 0 × × 0 × ×

F 0.5 0.45 0.75 0.5 0.65 0.68 0.75

O 0 0.45 0.25 0.5 0.29 0.32 0.25

Ω 0.5 0.1 × × 0.06 × ×

(b) Case of source n° 2 is ambiguous (conflict)

Table I
FUSION OF TWO PIECES OF INFORMATION

The result of the fusion can be the same (case 1) but can

slightly differ (case 2) when there are ambiguous sources.

B. Information metrics

In probability, Shannon’s entropy is a measure of uncer-

tainty due to ignorance or to conflict. It is defined for a discrete

random variable A, such as:

HP = −
∑

A∈Ω

P (A) · ln (P (A)) (10)

In the Belief framework, Yager introduced in [24] two un-

certainty measures of mass functions that generalize Shannon’s

entropy: entropy and specificity. Entropy of a mass function

is defined as follows:

Em = −
∑

A⊆Ω

m (A) · ln (pl (A)) (11)

Yager’s entropy characterizes inconsistency in the assump-

tions supported by mass function.

For instance, let consider the FOD Ω = {F,O}. In the case

of a simple mass function (i.e. the mass is distributed on a

single focal element F or O and on Ω), entropy equals zero

Em = 0.

When there is no ignorance, Yager’s and Shannon’s en-

tropies are the same.



The specificity of a mass function (which has no equivalent

in probability) is defined as:

Sm =
∑

A ⊆ Ω
A 6= ∅

m (A)

|A|
. (12)

With Ω = {F,O}, one can demonstrate that specificity

belongs to the interval
[

1
2 ; 1

]

.

1

2
≤ Sm ≤ 1 (13)

High specificity is used to characterize the fact that the

masses are mainly attributed to small subsets. This usually

indicates that the mass function is not doubtful even if it can

be conflictual. Thereby, a mass function that is informative

and unambiguous has got a high specificity and a low en-

tropy. Therefore, entropy and specificity are measures used to

characterize the uncertainty of mass functions. More details on

these metrics can be found in [25]. An evidential occupancy

grid being a spacial set of mass functions, these measures

represent therefore perception uncertainty.

C. Decision

Finally, let consider the capability of both approaches to

make decisions. Probabilistic approaches generally use a MAP

decision rule like P (O) > 0.5. In the evidential framework,

one can transform the mass function to probabilities with the

pignistic transform and then use a MAP estimator. Never-

theless, as the credal level (mass function space) provides

more information, this framework can potentially make better

decisions. The belief bel and plausibility pl (acting as lower

and upper bounds of probability) allow to compute more

specific decision rules.

In order to detect the occupied and free space, one can use

bel (O) > 0.5 or bel (F ) > 0.5. This ensures to chose the most

likely level without considering the part of unknown. Then, an

important part of the mass on the unknown Ω will be rejected

and a sound decision can be computed for this cell.

V. EXPERIMENTS

In the coming sections, we do a comparison between

the probabilistic and the evidential frameworks to show the

benefits of these concepts.

A. Simulation example

Let focus on a particular cell of the grid. In order to carry

out an appropriate comparison, the probabilistic fusion follows

the same scheme as the evidential one. Sensor bbas are first

converted into probabilities using the pignistic transformation.

To compare probabilistic and evidential uncertainty mea-

sures, let consider two simulations which are presented on

Fig.1 and Fig. 2. Let us suppose that the state of the cell of the

grid changes because of the dynamic of the scene (an object

appears and then moves to another cell). In each scenario, the

top plot of the figure shows the sensor detection bba. The

middle plot displays the result of the Bayesian fusion with

the resulting Shannon’s entropy H . The bottom plot shows

the evidential result with the corresponding entropy E and

specificity S. Recall that specificity doesn’t exist in probability.

The sensor confidence parameters are set to m (F ) = 0.85
m (Ω) = 0.15 when the cell is free and m (O) = 0.7
m (Ω) = 0.3 when occupied. They respect the principle of

minimal commitment. Physically, it means that when the cell

is free, 85% of the time the cell is well classified and 15% of

the time the sensor is not able to say anything. The discounting

factor α was set to 0.05. The corresponding time constant

τ can be computed using the relation α = 1 − e
∆t

τ where

∆t = 1
Freq

is the sampling period. For a lidar sensor with

Freq = 15Hz, we assume a remanence of τ = 1.3s for

α = 0.05.

In the first simulation (Fig. 1), two changes occur in the

cell: free to occupied at time index 10 and occupied to free at

time index 30. It corresponds to a scenario where an obstacle

crosses this cell. Mass functions are initialized to ignorance

m (Ω) = 1 and probabilities equally distributed to 0.5 as is

usually done.
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Figure 1. Change of state of the occupancy of a cell: F → O → F .

Shannon’s entropy H follows similar evolutions at time

indexes 0, 12 and 33. So, it doesn’t allow to distinguish initial

ignorance (time 0) from state change (time 12 and 33). This

is perfectly in agreement with the fact that probabilities make

no difference between ignorance and conflict.

In the case of belief functions, entropy E raises just when

state changes. Specificity S starts from 0.5 due to the initial

ignorance and then stays close to 1 since the sensor always

provides information. Thanks to this specific behavior, one

can notice that the belief masses are informative for t > 2.

During intervals [11; 17] and [31; 35], masses are ambiguous.

This refined analysis is not possible using probabilities.

In the second simulation (Fig. 2), the cell is free at the

beginning but it is not observed during a lapse of time (20 <

t < 45s) because of an outage for instance and, when it is



observed again, its state has changed.
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Figure 2. Effect of discounting factor α = 0.05, occupancy of the cell:
F → Ω (i.e. not observed) → O.

After the transient phase, Shannon’s entropy H increases

slowly during the outage as the information on the cell is

discounted. Nevertheless, when the cell is observed again

(t>45), nothing indicates the change of the state. In the case of

belief masses, the specificity S slowly decreases indicating that

the loss of sensor information. Entropy E stays identically null

up to index 45 because their is no measurement that indicates a

change of state. When a measurement is again available (t>45),

the specificity reaches 1 again which indicates that the belief

masses are again informative. The entropy peak (t=45) is due

to the change of state. Its amplitude remains small because of

the ignorance level.

B. Real-time example with real data

The proposed system has been implemented in real-time and

embedded in an experimental vehicle. In this implementation,

we only make the fusion of the data provided by a IBEO

Alasca XT lidar scanner installed in the front bumper. In

this case, the amount of data is relatively sparse compared

to the scene complexity. An inertial positioning system with

hybridized GPS (Novatel Span CPT) provided the pose of the

vehicle with a high sampling rate.

Figure 3 shows some results in an urban environment (Paris)

under real traffic conditions. The top left figure presents

an image of the scene acquired by a camera embedded in

the vehicle used only for visualization. And top right one

shows a 3D view of the current lidar scan, the vehicle is

represented by the 3 axis on the bottom of the figure. The

bottom images present a set of grids that represent different

values (probabilities, mass functions, metrics, etc...). The size

of the grid is 10 m width and 40 m length with a cell resolution

of 0.1 m. The car is at the bottom of the grid looking upwards.

The 4-layers lidar is working at 15 Hz. The sensor model used

in this experiment is described in [10]. The discounting rate

α was set to 0.05 corresponding to a time constant of 1.3 s

as stated before. Sensor reliability was set to 0.8 for occupied

and free detection. These are the only parameters needed by

the perception method.

On figure 3c the grids represent respectively (from the left to

the right) : Evidential entropy Em, evidential specificity S̄m,

mass evidential function m, occupancy probability P (O) and

the probabilistic entropy H . All theses value are normalized

to the interval [0, 1] to be represented as a gray scale image

(0:black, 1:white). For the specificity, the value presented is the

complementary S̄m = 1−Sm in order to make the comparison

with the entropy easier. The mass function is represented by a

color grid, each color represents a specific mass (green : free,

red occupied, empty-set : blue and black unknown).

Here, the ego-vehicle is waiting at traffic lights and a car

coming from the left turns to the left. The environment is

composed of a lot of elements and the coverage of the sensor

is small because of masking.

First, the mass function m and the probabilistic grids P (O)
present quite similar results. Nevertheless, the evidential grid

is able to distinguish clearly the masked cells (black) of

the cells that make conflict (blue) whereas, in the second,

this is represented by the same gray level. The grids of

metrics illustrate these phenomena. One can remark that the

probabilistic entropy H and the complementary specificity S̄

are very similar. This shows that, in this case, for most of the

cells that have a high entropy, this is caused by ignorance.

These cells haven’t captured information from the previous

reading (because non observed) and so they can be fused with

any specific information directly in both frameworks.

Nevertheless, differences are apparent on these grids in areas

where the car is turning. These differences are highlighted

by evidential entropy E. It presents a low value everywhere

except on the car and on the borders. This entropy shows a

competition between the two states O and F . Contrary to a

non information, this means that the sensor provides reading

about this cell but the fusion brings conflict because of model

errors. Here, the static world assumption and the discretization

of the world induce this entropy. The entropy level can be used

to detect any inconsistency between the model and the data.

So, a mean level of the entropy of the grid can be an indicator

of the proper functioning.

C. Decision

Figure 4 shows the result of the decision bel (F ) > 0.5,

bel (O) > 0.5 and P (O > 0.5) on the same snapshot pre-

viously presented. We can remark that the two evidential

decisions are not complementary, because there are cells that

cannot be decided as free or occupied ones. If we observe the

probabilistic and evidential grids, we can see that the bel (O)
is similar but finer than the probabilistic one. This is because

cells near the borders support both O and Ω that are not

distinguishable by probabilities.



Figure 4. Decision. Left: pl (O) > 0.5 (evidential), Middle: bel (O) > 0.5
(evidential), Right: P (O) > 0.5 (probabilistic)

VI. CONCLUSION

This paper has highlighted the advantages of managing

occupancy grids with an evidential framework. Results from

simulations and real-time experiments have been used to

make a comparison with the classical probabilistic approach.

The fact that belief functions are able to represent explicitly

ignorance and conflict improves the behavior of the data

fusion process particularly when the knowledge of the state

of the cells is poor because of the high dynamic of the

perception scene and the limited sensor coverage. We have

also presented belief function tools like specificity, entropy,

belief and plausibility that can help to build relevant indicators

to improve the reliability of the estimation process.

The frame of discernment presented here is simple and

considers only two states which is very efficient for a real-

time implementation as it has been shown by the real-time

results. We believe that similar approaches can be applied to

larger frames to enhance the understanding of the scene by

refining the classification process.
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(a) Camera Image (b) Current lidar cloud points

(c) Information metric comparison on a real occupancy grid.

Figure 3. Results of the real-time implementation using a four layers lidar.


