Pore fabric geometry inferred from magnetic and acoustic anisotropies in rocks with various mineralogy, permeability and porosity. - Archive ouverte HAL Access content directly
Journal Articles Tectonophysics Year : 2014

Pore fabric geometry inferred from magnetic and acoustic anisotropies in rocks with various mineralogy, permeability and porosity.

Abstract

he ferrofluid impregnation technique combined with anisotropy of magnetic susceptibility measurements (AMSff) is one of the ways to analyze the 3-D geometry of the pore space in a rock and indirectly to infer the anisotropy of permeability. We applied this method on different types of rocks (sandstones and carbonates) with a range of different porosity values (10-30%) and permeability (1 mD to 1 D). To get additional information on both the pore aspect ratio and the directional anisotropy we used another technique, measuring the anisotropy of P-waves velocity (APV) in dry and water saturated conditions. Comparing between both methods shows that despite the good agreement in directional data, inferring the true shape of the porosity is not straightforward. Modeling the presence of an elastic anisotropy in the solid matrix for sandstones allows one to get more consistent values for the pore aspect ratio obtained from both APV and AMSff. However for the carbonate rocks, due to an intricate distribution of microstructures, the aspect ratios obtained show significant discrepancies between the two methods. The ferrofluid method is very sensitive to the quality of the impregnation and suffers from a major drawback which is the threshold size of investigation, limited by the size of the magnetite nanoparticles (10 nm) and probably this method doesn't see all the porosity. On the other hand with acoustic methods, the range of porosity investigated is probably larger but several microstructural attributes can contribute to the elastic anisotropy which makes the pore shape effect more difficult to decipher. Therefore, we promote the combined use of both methods in order to get more reliable information on the pore shape in porous media.
Not file

Dates and versions

hal-01056282 , version 1 (18-08-2014)

Identifiers

Cite

Philippe Robion, Christian David, Jérémie Dautriat, Jean-Christian Colombier, Louis Zinsmeister, et al.. Pore fabric geometry inferred from magnetic and acoustic anisotropies in rocks with various mineralogy, permeability and porosity.. Tectonophysics, 2014, 629, pp.109-122. ⟨10.1016/j.tecto.2014.03.029⟩. ⟨hal-01056282⟩
149 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More