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Map-Aided Localization with Lateral Perception

Dominique Gruyer, Rachid Belaroussi, and Marc Revilloud

Abstract— Accurate localization of a vehicle is a challenging
task as GPS available on the market are not designed for
lane-level accuracy application. Although dead reckoning helps,
cumulative errors from inertial sensors result in a integration
drift. This paper presents a new method of localization based
on sensors data fusion. An accurate digital map of the lane
marking is used as a powerful additional sensor. Road markings
are detected by processing two lateral cameras to estimate their
distance to the vehicle. Coupled with the map data in a EKF
filter it improves the ego-localization obtained with inertial and
GPS measurements. The result is a vehicle localization at an
ego-lane level of accuracy, with a lateral error of less than 10
centimeters.

I. I

Driver Assistance Systems developed over the last decade

have required a precise and robust estimation of road scene

major features. Those features include obstacles (vehicle,

pedestrian), road (marking, lanes, traffic signs), and the ego-

vehicle (localization and dynamics of the vehicle). Usually

each feature is addressed separately, for instance obstacle de-

tection in collision avoidance, road attributes in lane keeping

assistance, ego-localization in navigation systems. Recently,

automated driving systems have made it necessary to fuse the

attributes of different features to obtain more precise, robust

and complete information.

In the frame of french, european and international projects

(respectively ABV, eFuture, CooPerCom) we have tackled

the task of perception of the environment including the at-

tributes of these three features. More specifically, we develop

an application localizing the ego-vehicle in its lane allowing

a positioning and a lateral control precise enough to be

applicable.

There is a body of work in the field of robust localization

by hybrid data fusion (proprio and exteroceptive): mono-

model approaches (EKF, UKF, DD1, DD2) [1], [2], [3],

multi-model [4], [5] and particular filter [6] achieve localiza-

tion with a precision to the meter. For instance, in [5], the

approach is only centered on the ego-vehicle but can compute

the likelihood of each model to build the finale estimation. In

[6] a map is used to filter out the particles out of a road. In

this case, the localization process converges rapidly toward a

solution inside a roadway. However it cannot specify which

lane the vehicle is on.

It is clear that the use of a geographic map can be an

advantage: commercial navigation systems routinely operate

MapMatching by coupling maps and vehicle positioning. In

[7] a map-matching algorithm using the visual odometry

motion trajectory estimation (from a stereovision rig) as input
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Fig. 1. Extrinsic configuration of the side cameras and associated
coordinate systems.

and corrected using the digital map features, greatly improve

the global localization performance. In [8], a standard navi-

gation map is matched with a laser scanner occupancy grid

map, a video based grid map and a lane marking grid map

for road course prediction. Alternately, in [9] a radar local

map is built by estimating the ego-motion from odomotetry

measurements with an EKF. Matching the digital road map

and the grid maps is optimized with a Levenberg-Marquardt

or a particle filter.

Recent approaches assume the road network has been

surveyed accurately beforehand. In [10] a loosely coupled

GPS/INS system is used with a camera: the digital map is

made of polylines and area information divided into three

classes (line landmark, road surface and background) which

are projected in the image plane. Appearance of these classes

are modeled by the distribution of their coherency values,

and used in a particle filter. In [11] the absolute position of

corners of ground markings (such as arrows, speed limit, or

texts) were precisely surveyed and are matched to corners

detected by FAST with a camera in order to estimate its

pose and location. In [12], a vehicle with a backward

facing camera is used to create a 3D landmarks map of the

environment. Landmarks are matched into the current image

and back projection errors are minimized yielding a rough

single shot pose estimate. IMU measurements are blended

with past single shot estimates yielding the final ego-pose.

In order to enhance accuracy and potentially to determine

the traffic lane being travelled, [13], [4] proposed to use a

map of the lane marking with a centimeter level accuracy

coupled with a differential GPS EGNOS and inertial datas.

The combination is done by way of a particle filter. The map

is used as a geometrical constraint in the ego-positioning of

the vehicle and for map-matching purposes. However, the

lack of GPS data or in case of multipath effect, this approach

approach is not able to function properly and to guaranty the

integrity of its results. A relevant solution is to add a local

processing providing a lane marking detection. It can provide

a more accurate localization of the vehicle inside its lane.



Recently, [1] proposed an EKF-based algorithm fusing

GPS, IMU and lane marking information: they have shown

that the use of visual features can improve the lateral local-

ization up to a centimeter-level accuracy (less than 30 cm).

Their experimental setup uses one camera directed frontward

to detect lane marking and estimate their lateral distance

to the vehicle. In [14] a similar setup (GPS, IMU, front

camera) is used with the addition of a laser scanner, the

digital map also containing location of landmarks such as

traffic signs, tree or guide post. Extracted features (lane

markings and landmarks) are associated with the elements

in the digital map to correct the pose estimation which is

roughly initialized with GPS. A particle filter is to implement

the ego-localization algorithm.

In [15], a method to improve global localization in an

intersection is based on the alignement of visual landmarks

with the information from an extended digital map. A

stereovision system provides a detailed 3D perception of road

landmarks such as lateral lane delimiter, painted traffic signs,

curbs and stop lines. Combination of visual and enriched map

of the intersection is done with a Bayesian network, yielding

to a global localization with a submeter level of accuracy.

In this paper, we propose an algorithm that fuses localiza-

tion data, road marking detection and a digital map of the

road (location of the edges of the left and right lanes) in order

to obtain a centimeter lateral localization of our vehicle. Our

approach uses two lateral cameras detecting left and right

markings independently, with a focus on lane segment close

to the vehicle leading. We believe this setup improves the

lateral localization and is specific enough for the vehicle to

be considered as moving on rails.

II. I-V A

The experimental setup uses two cameras positioned on

each side of the vehicle and directed toward the ground. In

this configuration, cameras can be low cost and have a low

resolution because the scope of information to be extracted

is only a little over a meter. This configuration is shown in

Figure 1. Several coordinate frames have to be considered:

for each sensor, there is the image frame (u, v) and the camera

frame to be able to describe the characteristic of a road mark

in respect of each camera.

The other sensors considered are proprioceptive sensors:

• a GPS-receiver with a slow refresh rate (1Hz): it pro-

vides vehicle absolute position in the world coordinate

frame R0,

• an Inertial Navigation System INS (66Hz), including

motion sensors (accelerometer for each axis) and rota-

tion sensors (gyroscope providing roll, pitch and yaw

rate),

• an odometer (20Hz) measuring the distance traveled,

• a shaft encoder to measure the wheel steering angle.

Figure 1 also illustrates the vehicle coordinate frame Rv =

(Xv,Yv,Zv) where Zv denotes the altitude, and (Xv,Yv) plane

is parallel to the ground.

The rigid transformation between the camera frames and

the vehicle frame is know by experimentally measuring the

(a) Source image.

(b) Detected primitives.

(c) Projection on the Rv frame.

Fig. 2. Lane marking primitive detection with a frontward camera.

extrinsic parameters for each camera. As the camera are

calibrated, the intrinsic parameters are also known.



Fig. 3. Oversee of the Satory track map. The road lane is divided into
band portions bounded by two triplet of points (yellow circles). Triplets of
points are sampled every 4 to 20 meters depending on the curvature of the
road.

An other feature required for the proposed approach is

a map with the precise location of the lane marking. Our

experiments are run on the Satory (Versailles-France) test

track which is a one way, 3.5 km long asphalt carriageway,

with sharp bends, hairpin turns, as well as straight sections.

A top-view of its map is displayed in Figure 3. The total road

width is 7 meters: it is a two-lanes way with three painted

white lines defining the lane boundaries. Land surveys on the

track provide a centimeter level accuracy of its road marking.

The test track of Satory is a 2-lanes road precisely surveyed

by professionals: coordinates of the road edges and the center

line has been registered with a centimeter level accuracy.

The resulting digital map is made of 380 triplets of points

(1 sample every 5 meters on bends, 1 sample/20 meters

on straight portions) also contains road features such as its

curvature and type (straight, clothoid, arch). The sampling

of the map is reduce to 10 cm by interpolation.

III. RM D  T L C

The road marking detector we developed is an adaptation

of the work presented in [16], which will be summarized

in this section for the sack of clarity. It is a three stages

algorithm:

• road primitive extraction: this step determines which

pixels belong to a lane marker. For each camera, this

set of point is projected in the vehicle coordinate frame

using the known intrinsic and extrinsic parameters.

• lane marking detection: the spatial distribution of ex-

tracted point on the Yv axis is analysed to determine the

center of the potential marking lanes.

• lane shape estimation using a polynomial fitting. From

this last step, two parameters are estimated: the vehicle

yaw and its distance to the lane.

In order to improve the primitive extraction step, we pro-

posed a cooperative combination strategy of two intensity-

based extractors: the Median Local Threshold MLT and

the Symmetric Local Threshold. Figure 2(a) illustrates the

detected road primitives (in blue) superimposed on the source

image.

Knowing the intrinsic and extrinsic camera parameters, it

is possible to match a point P of the image with a real world

point under the assumption that it is a point of the road.

The set of pixels classified as road marking primitives of

Figure 2(b) projected on the (Xv,Yv) plane of the vehicle

(a) Setup: top view

(b) Road line detection result

Fig. 4. (a) Analysis of lateral road marking. φ is the vehicle’s yaw angle
relatively to the road axis. P1 and P2 are the distance from the vehicle to
the left and right road marking. (b) Samples of line detection on the Satory
tracks.

frame is illustrated on Figure 2(c). A 1D projection on the

Yv axis is performed using dynamic templates: it results in

a 1D-histogram showing the spatial distribution of the road

primitive along the Yv axis (Figure 2(c)). Within this distri-

bution, clusters are identified using a tierce derivative and

further selected based on mean belief, number of primitives,

cluster standard deviation and length.

A robust poly-fitting is finally applied on each cluster so

that the candidate lane is modeled by its equation on the

(Xv,Yv) plane:

y = ax2 + bx + c (1)

When the camera is directed frontward, the shape of the

road especially its curvature introduces a lot of possible

variations in the road marking appearance. Estimation of its

parameters (curvature, slope, bank) is limited by the accuracy

of the distance computation and can be sensitive to change

in lighting conditions. In our apparatus, only the part of the

marking the closest to the vehicle is being sensed as shown

in Figure 4(a). In this configuration, detected primitives are

less noisy and the effect of lighting variation is limited.

Moreover, lane marking can be assumed to be locally linear.

The distance D1 (or D2) from a camera to a lane as well as

its orientation φ can be extracted from parameters b and c

of Equation 1: b = tan φ and c = D1. The lateral distance



ranges from 1 meter to 2.5 meters during our tests, while the

vehicle traveled exclusively on the left lane.

IV. E-V A L

The ego-vehicle localization is estimated using an Ex-

tended Kalman Filter defined by the following equations:

Xk+1 = f (Xk,Uk) + Vk (2)

Yk+1 = h (Xk+1) +Wk (3)

Xk = (xk, yk, θk)T is the vehicle state at time k. Yk is the

measurement vector at time k. Vk and Wk are the process

and observation noises, assumed to be zero mean multivariate

Gaussian noises with covariance Rk and Qk respectively.

Regarding the prediction step, dead reckoning is per-

formed by merging the proprioceptive data coming from the

steering wheel coder (from which the actual front wheels

steering radius θw is computed), the odometer measuring the

distance dk traveled at time tk, and the yaw rate θ̇k from the

INS. The EKF is based on the widely used bicycle non linear

model. An ellipse Ek representing the level of confidence on

the localization can be build from the covariance matrix.

As both speed and direction must be accurately measured

at all time, dead reckoning is subject to significant errors,

as illustrated by Figure 5(a): each estimate of position being

relative to the previous one, errors are cumulative [17]. To

overcome this drift in time, other source of information

are used, the most common being the GPS-receiver. The

correction introduced by exteroceptive measurement such

as the GPS data significantly improves the accuracy of the

positioning estimate as shown by Figure 5(b). However, GPS

data are also subject to bias (see [18]) and a drift in vehicle

localization can still be found especially in case of hairpin

turn as illustrated in Figure 6(a) where the EKF filter results

in a localisation outside of the roadway. To reach a lane-level

accuracy, we propose to integrate the lane map information

into the Kalman filtering.

V. LM I

At this stage, the following capability are gathered:

• estimation of the distance from the vehicle to the left

and right road marking of the lane,

• estimation of the vehicle localization using an extended

Kalman filter.

The issue is now to adequately use these information to

enhance the accuracy of the ego-localization. To build a

bridge between these two approaches, we used the Satory

cartography data.

Locally the track is approximated by a line segment. Using

the estimated vehicle position, a point-to-segment based

Map-Matching is performed to select a lane segment of the

map. This segment is modeled by its polar equation featuring

its polar coordinates (ρ, θ):

x cos θseg + y sin θseg − ρseg = 0 (4)

Image processing only provides local measurements. To

obtain an absolute localization of the ego-vehicle , a cartog-

raphy matching algorithm is applied. The distance Di (D1 or

(a) Dead reckoning

(b) IMU + GPS localization

Fig. 5. (a) Dead-reckoning with only an odometer and an inertial
measurement unit. (b) Location with the use of the GPS for the filter’s
correction step.

D2 see Figure 4(a)) between the camera and the marking is

extracted from the lane marking equation y = ax2+tan φx+Di

by image processing. The corresponding Pi point coordinates

are computed in the vehicle frame Rv:

vPi =

[

vXi
vYi

]

=

[

vXc
vYc

]

+ Di

[

cos θc
sin θc

]

(5)

where (vXc,
v Yc) are the coordinates of the camera center in

the vehicle frame, θc the orientation of the camera frame in

Rg (θc = −π/2 for the left camera and θc = π/2 for the right

camera) and Di the distance of the closest point of the lane

sensed by the camera.

The Jacobian of the measurement matrix from the polar

measurement equation is:

Hk+1 =

[

∂hk+1

∂x

∂hk+1

∂y

∂hk+1

∂θ

]

(6)



(a) Accuracy with GPS and inertial data (b) Improvement using visual features

Fig. 6. (a) Error made by the Kalman filter with the merger of Odometer / INS / GPS. (b) Results obtained with the correction using lateral distance and
accurate mapping.

with

∂hk+1

∂x
= cos θseg (7)

∂hk+1

∂y
= sin θseg (8)

∂hk+1

∂θ
= (Xc + Di cos θc) sin

(

θseg − θ̂k|k
)

− (Yc + Di sin θc) cos
(

θseg − θ̂k|k
) (9)

The coordinates of point P1 and P2 in the absolute frame R0

are then computed:

[

XPi

YPi

]

=

[

x̂k|k

ŷk|k

]

+

[

cos θ̂k|k sin θ̂k|k
− sin θ̂k|k cos θ̂k|k

] [

vXc
vYc

]

+

[

cos θc sin θc
− sin θc cos θc

] [

vXi
vYi

]

(10)

θ̂k|k is the estimated yaw at time k.
(

x̂k|k, ŷk|k

)

are the estimated

coordinates of the vehicle at time k (in the absolute frame).

If XPi
and YPi

measurement are unnoisy measurement, Pi

point belongs to matching segments of the map and the road

marking. In this case, XPi
cos θseg+YPi

sin θseg−ρseg = 0, else

XPi
cos θseg+YPi

sin θseg−ρseg , 0. This error is used to update

the positioning; the measurement error is then computed as:

hk+1 =
[

cos θseg sin θseg −ρseg

]





















XPi

YPi

1





















(11)

The Kalman gain is computed with matrix Hk and enable to

update the estimate:

X̂k+1|k+1 = X̂k+1|k + Kk+1hk+1 (12)

The covariance matrix is updated using Hk+1 and Rk.

VI. R  C

In order to validate this approach, we made a series of

tests in simulated and real conditions. Results presented in

this section come from a recording made in real conditions.

To properly see the benefits of the approach to an accurate

location, we present 3 cases. First, we proposed an estimate

location with only the use of an odometer and an inertial

unit. Then we applied the updated estimates with GPS

data. Finally we implemented the use of all data sources

(Odometer, INS, GPS, and cameras).

With only the use of proprioceptive sensors, we see a

drift of the filter due to the noise and bias of the inertial

sensors. After traveling 30 meters, we already have 20 cm

of error. After 100 meters, we get 1 meter of error. After

180 meters the error magnitude is 2 meters. This behavior

is clearly observed in Figure 5(a). Once we implement the

filter’s correction phase with the use of GPS data, we find that

the results greatly improve as shown in Figure 5(b). However,

a zoom in on the nonlinear part (tight turn), illustrated in

Figure 6(a) shows that the estimated position of the ego-

vehicle is off the track while the vehicle is actually traveling

on the left lane.

Using additional information relating to the lateral gap

between the ego-vehicle and the roadsides provided by a lane

detection algorithm, we obtain significantly better results (see

Figure 6(b)). These results clearly show that the vehicle is

properly located on the left lane. The whole test results are

demonstrated in two online videos:

• GPS-IMU ego-localization without visual features:

youtube.com/watch?v=N-0ANY7zqJs

• map-aided localization with lateral vision:

youtube.com/watch?v=nSfc1UM7qIk

Figure 7 illustrates the difference in accuracy at several time

of the test run. The samples in column (a) are estimated with

the GPS and the IMU alone, while the samples of column

http://www.youtube.com/watch?v=N-0ANY7zqJs
https://www.youtube.com/watch?v=nSfc1UM7qIk


(a) GPS and IMU (b) GPS, IMU and lanes

Fig. 7. (a) Localization with the merger of Odometer / INS / GPS. (b)
Localization by integration of lateral distance and accurate mapping. The
confidence level on the estimation (yellow ellipse) is higher with visual
features.

(b) also integrate the lane marking detection. During this test,

the vehicle traveled on the left lane, and we can see that the

GPS+dead reckoning approach is biased: it is mainly due

to a high uncertainty on the GPS signal, which make the

confidence ellipse Ek spatial extent quite important (yellow

(a) Ego-lane level accuracy (b) Obstacle avoidance

Fig. 8. Level of accuracy inside the ego-lane.

ellipses). Map-aided localization makes a good estimate of

the ego-lane, with a high confidence on the lateral position,

the ellipse being stretched only in the longitudinal direction.

On this experiment, the lateral position estimation accu-

racy is less than 10 cm on average: Figure 8(a) shows an

example of trajectory drawn inside the ego-lane (the dotted

line is the middle of the left lane). Figure 8(b) illustrated the

trajectory in the carriageway during an obstacle avoidance

maneuver. However it is important to note that these good

results are not only due to the quality of lane detection but

also to the quality and accuracy of the mapping. It is obvious

that mapping a large area with centimeter accuracy is heavy

both in memory level resources than financial cost level.

The lane detection algorithm is also interesting because

its accuracy is sufficient to identify the driver maneuvers.

In addition, we do not actually use the runway heading

information, which can be very useful to update the vehicle

heading.

VII. C

Currently our approach relies on the use of width markings

information. However this information is not constant and

can therefore generate inaccuracies. In future work, we

propose to use a multi-lane detection algorithm with multi-

camera fusion, with a range limited to a maximum of 10

meter. Regarding the topology of the cameras, we will test

several configurations (one front camera and one rear camera,

2 front cameras,...). What is interesting about our approach is

that our traffic lane model is based on polynomial of degree

n. Generally we limit the polynomials to order 2 to estimate

the curvature, the direction and the lateral deviation of the

marking. In this application dedicated to the location, only

orientation information and lateral deviation are useful. In

view of the results of our multi-lane detection algorithm, it

is expected that the results will be really good.
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