
HAL Id: hal-01056171
https://hal.science/hal-01056171v1

Preprint submitted on 17 Aug 2014 (v1), last revised 1 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Projection onto the Simplex and the l1 Ball
Laurent Condat

To cite this version:

Laurent Condat. Fast Projection onto the Simplex and the l1 Ball. 2014. �hal-01056171v1�

https://hal.science/hal-01056171v1
https://hal.archives-ouvertes.fr

1

Fast Projection onto the Simplex and the ℓ1 Ball

Laurent Condat

v1, Aug. 15, 2014

Abstract

A new algorithm is proposed to project, exactly and in finite time, a vector of arbitrary size onto a simplex or

a ℓ1-norm ball. The algorithm is demonstrated to be faster than existing methods. In addition, a wrong statement in

a paper by Duchi et al. is corrected and an adversary sequence for Michelot’s algorithm is exhibited, showing that

it has quadratic complexity in the worst case.

I. INTRODUCTION

The projection of a vector onto the simplex or the ℓ1 ball appears in imaging problems, such as segmentation

[1] and multispectral unmixing [2], in portfolio optimization [3], and in many applications of statistics, operations

research and machine learning [4]–[6]. Given an integer N ≥ 1, a sequence (vector) y = (yn)
N
n=1 ∈ R

N and a real

a > 0, we aim at computing P∆(y) := argmin
x∈∆ ‖x− y‖ or PB(y) := argmin

x∈B ‖x− y‖, where the norm is

the Euclidean norm, the simplex ∆ ⊂ R
N is defined as the set of sequences whose elements are nonnegative and

sum up to a1:

∆ :=
{

(x1, . . . , xN) ∈ R
N

∣

∣

∑N
n=1 xn = a and xn ≥ 0, ∀n = 1, . . . , N

}

(1)

and the ℓ1 ball, a.k.a. cross-polytope, B ⊂ R
N is defined as

B :=
{

(x1, . . . , xN) ∈ R
N

∣

∣

∑N
n=1 |xn| ≤ a

}

.

These two projections are well defined and unique, since ∆ and B are closed and convex sets. In this paper, we

focus on algorithms to perform these projections exactly and in finite time. In Sect. II, we review the methods of

the literature. In Sect. III, we propose a new algorithm and we show in Sect. IV that it is faster than the existing

methods.

II. REVIEW OF PRIOR WORK

We first recall a well known property, which allows to project onto the ℓ1 ball, as soon as one can project onto

the simplex:

Proposition 1 (see, e.g., [4, Lemma 3])

PB(y) =

{

y, if
∑N

n=1 |yn| ≤ a,
(

sgn(y1)x1, . . . , sgn(yN)xN
)

, else,
(2)

where x = P∆(|y|), |y| = (|y1|, . . . , |yN |), and sgn is the signum function: if t > 0, sgn(t) = 1, if t < 0,

sgn(t) = −1, and sgn(0) = 0.

Thus, in the following, we focus on projecting onto the simplex only, and we denote by x := P∆(y) the

projected sequence2. An important property of the projection P∆, which can be derived from the corresponding

Karush-Kuhn-Tucker optimality conditions, is the following:

L. Condat is with the Dept. of Images and Signals of GIPSA-lab, University of Grenoble-Alpes, in Grenoble, France. Contact: see

http://www.gipsa-lab.fr/∼laurent.condat/.

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).
1For a = 1, ∆ is called the unit, or canonical, or standard, or probability simplex.
2Conversely, we can remark that one can project onto the simplex using projection onto the ℓ1 ball. Indeed, P∆(y) = P∆(y+c), for every

c ∈ R, and P∆(y) = PB(y) if the elements of y are nonnegative and ‖y‖1 ≥ a. Thus, whatever y, we have P∆(y) = PB(y−ymin+a/N),
where ymin is the smallest element of y.

2

Proposition 2 (see, e.g., [7]) There exists a unique τ ∈ R such that

xn = max{yn − τ, 0}, ∀n = 1, . . . , N. (3)

Therefore, the whole difficulty of the operation is to find the value of τ . Then, the projection itself simply

amounts to applying the thresholding operation (3). So, we must find τ such that
∑N

n=1max{yn − τ, 0} = a.

Only the largest elements of y, which are larger than τ and are not set to zero during the projection, contribute

to this sum. So, if we knew the index set I = {n | xn > 0}, since
∑N

n=1 xn =
∑

n∈I xn =
∑

n∈I(yn − τ) = a,

we would have τ = (
∑

n∈I yn − a)/|I|. Algorithm 1, given in Fig. 1, which is based on sorting the elements of

y in decreasing order, naturally follows from these considerations. This algorithm is explicitly given in [7] and

was rediscovered many times later. Depending on the choice of the sort algorithm, the worst case complexity of

Algorithm 1 is O(N2) or O(N logN) [8].

An improvement of Algorithm 1 was proposed in [5], by noticing that it is not useful to sort y completely,

since only its largest elements are involved in the determination of τ . Thus, a heap structure can be used: a heap

v = (v1, . . . , vN) is a partially sorted sequence, such that its first element v1 is the largest and it is fast to re-arrange

(v2, . . . , vN) into a heap, with complexity O(logN). The complexity of arranging the elements of y into a heap

is O(N). This yields Algorithm 2, given in Fig. 1, whose complexity is O(N +K logN), where K = |I| is the

number of nonzero elements in the solution x.

Another way of improving Algorithm 1 is based on the following observation: it is generally considered that

the fastest sorting algorithm is quicksort, which uses partitioning with respect to an element called pivot [8];

the pivot is chosen, and the sequence to sort is split into the two subsequences of elements smaller and larger

than the pivot, which are then sorted recursively. But we can notice that τ does not depend on the ordering of the

elements yn; it depends only on the sum of the largest elements. Thus, many operations in quicksort are not

useful for our aim and can be omitted. Indeed, let us consider, at the first iteration of the algorithm, partitioning y

with respect to some pivot value ρ ∈ [ymin, ymax], where ymin and ymax are the minimum and maximum elements

of y: we define the subsequences ylow and yhigh of elements of y smaller and larger than ρ, respectively, and we

set S :=
∑

y∈yhigh
y − a. Then, if S/|yhigh| ≥ ρ, we have τ ≥ ρ, so that we can discard the elements of ylow and

continue with yhigh to determine τ . On the other hand, if S/|yhigh| ≤ ρ, we have τ ≤ ρ. Thus, we can discard the

elements of yhigh, keeping only the values S and |yhigh| in memory, and continue with ylow to determine τ such that
∑

y∈ylow
max{y − τ, 0}+ S − |yhigh|τ = 0. This yields Algorithm 3, given in Fig. 1. We refer to the review paper

[9] for references and discussions about this class of algorithms, which was popularized recently by the highly cited

paper of Duchi et al. [4]. Before discussing the choice of the pivot, we highlight a major drawback of the algorithm

given in [4], whose only difference with Algorithm 3 is that, at step 2.4., the elements of v equal to the pivot,

except one, are left in v instead of being discarded. The pivot is chosen at random in v. The worst case expected

complexity (averaged over all choices of the pivot) of this algorithm is not O(N) as claimed in [4], but O(N2).
Indeed, expected linear time is guaranteed only if the elements of y are distinct. Since projection onto a simplex

is often one operation among others in an iterative algorithm converging to a fixed point, and since sparsity of the

solution is often a desirable property, it is likely that, in practice, the projection algorithm is fed with sequences

in the simplex or close to it, thus containing many elements at zero. For instance, when applying the algorithm of

[4] to y = (0, . . . , 0, 1), the complexity is O(N2): the algorithm iterates over sequences of size N , N − 1, and

so on until 1 is picked as pivot. This issue is corrected with Algorithm 3, which has O(N) expected complexity,

when the pivot is chosen at random in v. Now, concerning the choice of the pivot, this is the same much-discussed

problem as for the sort algorithm quicksort and the selection algorithm quickselect, which are based on

partitioning as well [8]. The choice depends on whether one wants a deterministic algorithm or one is ready to

make use of a random number generator and accept a fluctuating running time. It also depends on whether one

is ready to accept the worst case O(N2), which may come randomly with low probability or may be deliberately

triggered by someone having knowledge of the implementation and feeding the algorithm with a contrived sequence

y, creating a security risk. Choosing the pivot at random in the list v gives expected complexity O(N), with some

variance, but worst case complexity O(N2). If the pivot is the median of v, the complexity becomes O(N), which

is optimal, but a linear time median finding routine, typically based on the median of medians [11], is cumbersome

to implement and slow. According to [9], a good compromise, which we adopt in Sect. IV, is to take the median

3

Algorithm 1 (using sorting) [7]














1. Sort y into u: u1 ≥ · · · ≥ uN .

2. Set K := max
1≤k≤N

{k | (
∑k

r=1 ur − a)/k < uk}.

3. Set τ := (
∑K

k=1 uk − a)/K.

4. For n = 1, . . . , N , set xn := max{yn − τ, 0}.

Algorithm 2 (using a heap) [5]




























1. Build a heap v from y.

2. For k = 1, . . . , N , do












2.1. Set uk := v1 (largest element of the heap).

2.2. If (
∑k

r=1 ur − a)/k ≥ uk, exit the loop.

2.3. Set K := k.

2.4. Remove v1 from v and re-heapify v.

3. Set τ := (
∑K

k=1 uk − a)/K.

4. For n = 1, . . . , N , set xn := max{yn − τ, 0}.

Algorithm 3 (using partitioning) [9].












































1. Set v := y, K := 0, S := −a.

2. While v is not empty, do




























2.1. Choose a pivot ρ in the convex hull of v.

2.2. Construct the subsequences yhigh := (y ∈ v |
y > ρ), ylow := (y ∈ v | y < ρ), and set M
as the number of elements equal to ρ in v.

2.3. If (S +Mρ+
∑

y∈yhigh
y)/(K +M + |yhigh|)

< ρ, set S := S +Mρ+
∑

y∈yhigh
y,

K := K +M + |yhigh|, v := ylow.

2.4. Else, set v := yhigh.

3. Set τ := S/K.

4. For n = 1, . . . , N , set xn := max{yn − τ, 0}.

Algorithm 4 (active set method of Michelot) [10].




















1. Set v := y, ρ := (
∑N

n=1 yn − a)/N .

2. Do, while |v| changes,
⌊

2.1. Replace v by its subsequence (y ∈ v | y > ρ).
2.2. Set ρ := (

∑

y∈v y − a)/|v|.

3. Set τ := ρ, K = |v|.
4. For n = 1, . . . , N , set xn := max{yn − τ, 0}.

Fig. 1. Several algorithms to project onto the simplex ∆. The input data consists in N ≥ 1, y ∈ R
N , a > 0, and the ouput is the sequence

x = (xn)
N

n=1 = P∆(y). Incidentally, the number K at the end of the algorithms is the number of nonzero elements in x.

of v as pivot, but to find it using the efficient algorithm of [12], whose expected complexity (not worst case) in

terms of comparisons is 3N/2 + o(N).

A different algorithm has been proposed by Michelot [10]. It is reproduced3 as Algorithm 4 in Fig. 1. It can

be viewed as a version of Algorithm 3, where the pivot ρ would alway be known to be a lower bound of τ , so

that the step 2.4. is always executed. Indeed, for every subsequence v of y, by setting ρ = (
∑

y∈v −a)/|v|, we

have a =
∑

y∈v(y − ρ) ≤
∑

y∈v max{y − ρ, 0} ≤
∑N

n=1max{yn − ρ, 0}. Therefore, ρ ≤ τ . Consequently, if

y ≤ ρ, we know that max{y − τ, 0} = 0 and we can discard the inactive variable y, which does not contribute

3Actually, Algorithm 4 is an improvement of Michelot’s algorithm, with the test “>” instead of “≥” at step 2.1. This modification has

been proposed in [13, Sect. 5.7]. Algorithm 4 is also the same algorithm as in [14].

4

Proposed Algorithm




















































1. Set v := (y1), ṽ as an empty list, ρ := y1 − a.

2. For n = 2, . . . , N , do












If yn > ρ,








2.1. Set ρ := ρ+ (yn − ρ)/(|v| + 1).
2.2. If ρ > yn − a, add yn to v.

2.3. Else, add v to ṽ, set v := (yn), ρ :=yn−a.

3. If ṽ is not empty, for every element y of ṽ, do
⌊

3.1. If y>ρ, add y to v and set ρ :=ρ+(y−ρ)/|v|.
4. Do, while |v| changes,








For every element y of v, do
⌊

4.1. If y ≤ ρ, remove y from v and set

ρ := ρ+ (ρ− y)/|v|.
5. Set τ := ρ, K = |v|.
6. For n = 1, . . . , N , set xn := max{yn − τ, 0}.

Fig. 2. Proposed algorithm to project onto the simplex ∆. The input data consists in N ≥ 1, y ∈ R
N , a > 0, and the ouput is the sequence

x = (xn)
N

n=1 = P∆(y). Incidentally, the number K at the end of the algorithm is the number of nonzero elements in x.

to the determination of τ . By alternating between the calculation of ρ = (
∑

y∈v y − a)/|v| and the update of

the sequence v by discarding its elements smaller or equal to ρ, the algorithm enters a steady state after a finite

number of iterations (consisting of steps 2.1. and 2.2.), with ρ = τ . Algorithm 4 has several advantages: it is

deterministic, very simple to implement, and independent of the ordering of the elements in y. Its complexity

is observed linear in practice [13]. Yet, its worst case complexity is O(N2); this corresponds to the case where

only one element is discarded from v at step 2.1. of every iteration. Let us exhibit, for the first time to the

author’s knowledge, an example of such a worst case. The construction of this sequence y, of size N ≥ 4, is

recursive and as follows. Let ε be a small positive real. We set y1 := a, y2 := −ε and, for every n = 3, . . . , N ,

yn := (n−1)yn−1−ε−
∑n−2

r=2 yr. Then it can be shown easily by induction that, at the end of the i-th iteration, for

1 ≤ i ≤ N−3, we have v = (y1, . . . , yN−i), ρ = (
∑

y∈v y−a)/|v| = (
∑N−i

n=1 yn−a)/(N−i) = yN−i−1−ε/(N−i),
and y1 > · · · > yN−i−1 > ρ > yN−i > · · · > yN . The algorithm terminates after N iterations, with v = (a) and

τ = 0. Thus, the complexity is O(
∑N

n=1 n) = O(N2). We note, however, that such a pathological sequence, with

elements growing exponentially, is completely unlikely to be met in practical applications.

Yet another way to look at the problem is to view the search of τ as a root finding problem [14], [15]. Let

us define the function f : ρ 7→
∑N

n=1max{yn − ρ, 0} − a. We look for τ such that f(τ) = 0, so τ is a root

of f . f has the following properties: it is convex; it is piecewise linear with breakpoints at the yn; it is strictly

decreasing on (−∞, ymax] and f(ρ) = −a for every ρ ∈ [ymax,+∞). So, for any ρ ∈ R, if f(ρ) < 0, then ρ > τ
and if f(ρ) > 0, then ρ < τ . Moreover, f(ymin − a/N) ≥ 0, f(ymax − a/N) ≤ 0 and f(ymax − a) ≥ 0, so that

τ ∈ [max{ymax−a, ymin−a/N}, ymax −a/N]. Thus, Algorithm 3 may be interpreted as a bracketing method and

Algorithm 4 as a Newton method [16, Proposition 1] to find the root τ . The method of [15] combines features from

the bisection method and the secant method. However, the proof of [15] that the bisection method has complexity

O(N) is not valid: for a fixed, arbitrarily small, value δ > 0, the number of elements yn in an interval of size

δ bracketing τ may be as large as N , so that the number of bisection steps, each of complexity O(N), may be

arbitrarily large. Finally, we note that projection onto the simplex is a particular case of the more general continuous

quadratic knapsack problem; most methods proposed to solve this problem are based on the principles discussed

in this section [9], [13] and we refer to the survey paper [6] for a complete annotated list of references.

III. PROPOSED ALGORITHM

Using the principles seen in the previous section, we are in position to explain the proposed algorithm, given in

Fig. 2, which can be viewed as a Gauss–Seidel-like variation of Algorithm 4. Indeed, the lower bound ρ of τ can

be updated not only after a complete scan of the active sequence v, but after every element of v is read. Let us first

5

TABLE I

COMPLEXITY OF THE ALGORITHMS TO PROJECT ONTO THE SIMPLEX, WITH RESPECT TO THE LENGTH N OF THE DATA AND NUMBER K
OF NONZERO ELEMENTS IN THE SOLUTION. FOR ALGORITHM 1, QUICKSORT AND A RANDOM PIVOT ARE ASSUMED. FOR

ALGORITHM 3 WITH THE MEDIAN PIVOT, A O(N) MEDIAN FINDING ROUTINE IS ASSUMED.

worst case expected observed

complexity complexity in practice

Algorithm 1 O(N2) O(N logN) O(N logN)
Algorithm 2 O(N+KlogN) — O(N+KlogN)

Alg. 3, random pivot O(N2) O(N) O(N)
Alg. 3, median pivot O(N) — O(N)

Algorithm 4 O(N2) — O(N)
Proposed Algorithm O(N2) — O(N)

describe a simplified version of the algorithm, without the step 3. and with the steps 2.1., 2.2. and 2.3. replaced

by “2.1. Add yn to v and set ρ := ρ+ (yn − ρ)/|v|.”
The algorithm starts with the first pass (steps 1. and 2.), which does not assume any knowledge about y. Let

us consider that we are currently reading the element yn, for some 2 ≤ n ≤ N and that we have already read the

previous elements yr, r = 1, . . . , n− 1. We have a subsequence v of (yr)
n−1
r=1 of all the elements potentially larger

than τ and we maintain the variable ρ = (
∑

y∈v y − a)/|v|. We know that ρ ≤ τ . Hence, if yn ≤ ρ, then yn ≤ τ .

So, we can ignore this element and we do nothing. In the other case yn > ρ, we add yn to v, since yn is potentially

larger than τ , and ρ is assigned the new value of (
∑

y∈v y − a)/|v|, which is strictly larger than previously. Then

we continue the pass with the next element yn+1. The pass is initialized with v = (y1) and ρ = y1 − a.

At the beginning of all the subsequent passes (step 4.), we have the subsequence v of all the elements of y

potentially larger than τ . The difference with the beginning of the first pass is that we have calculated the value

ρ = (
∑

y∈v y− a)/|v|; we will use it to remove elements from v sequentially. Let us consider that we are reading

the element v ∈ v. If v > ρ, we do nothing. Else, v ≤ τ , so we remove this element from v. Consequently, ρ is

assigned the new value of (
∑

y∈v y − a)/|v|, which is strictly larger than previously. Then we continue the pass

with the next element of v.

The proof of correctness of this algorithm is straightforward. At the end of every pass, either at least one element

has been removed from v, or v and ρ remain the same as after the previous pass. In the latter case, the elements

of y which are not present in v are smaller than ρ and the elements in v (which are the |v| largest elements of y)

are larger than ρ, so that a =
∑

y∈v(y − ρ) =
∑N

n=1 max{yn − ρ, 0}. Thus, from Proposition 2, ρ = τ .

The first pass of the proposed algorithm, as given in Fig. 2, contains a refinement with respect to the algorithm

just described. Every pass aims at calculating the best possible lower bound ρ of τ . And for every n, yn − a ≤ τ .

So, when reading yn, if yn − a is larger than the current value of ρ, we set ρ := yn − a. But then a cleanup pass

(step 3.) is necessary after the first pass, to restore the invariant properties that ρ = (
∑

y∈v y − a)/|v| and that v

contains all the elements of y larger than ρ.

We end this section with a few comments on the complexity of the proposed algorithm. It is always faster than

Algorithm 4, since after every pass, more elements of v are removed. Contrary to Algorithm 4, its complexity

depends on the ordering of the elements in y. In the most favorable case where y is sorted in decreasing order, the

complexity is O(N), since at the end of the first pass, which behaves like step 2. of Algorithm 1, we have ρ = τ .

The complexity is also O(N) if y is sorted in increasing order, since ρ = τ after the second pass. However, the

worst case complexity is O(N2): if y is the adversary sequence for Algorithm 4 shown in the previous section,

with a parameter ε sufficiently small, then ỹ = (yN−1, a/2, a/2, y2, . . . , yN−2) is an adversary sequence for the

proposed algorithm.

IV. COMPARISON OF ALGORITHMS

The complexity of the algorithms is summarized in Tab. I. In Tab. II, for one example, the number of elements

not yet characterized as active or inactive is shown, after every pass of the iterative algorithms. This demonstrates

the efficiency of the selection process of the proposed algorithm. All the algorithms were implemented in C and

quite optimized. The code is freely available on the website of the author. The code was run on a Apple Macbook

pro laptop with a 2.3Ghz Intel Core i7 CPU. The computation times for several experiments, reported in Tab. III,

6

TABLE II

NUMBER |v| OF ELEMENTS IN THE SEQUENCE v AFTER EVERY PASS OF THE ALGORITHMS, FOR ONE EXAMPLE WITH N = 106 ; y HAS

I.I.D. GAUSSIAN RANDOM ELEMENTS OF MEAN 1/N AND STD. DEV. 0.1.

Pass Algorithm 3 Algorithm 3 Algorithm 4 Proposed

number random pivot median pivot Algorithm

1 575147 499999 499787 8145

2 85926 249999 212149 1622

3 15811 124999 85994 359

4 2049 62499 33840 107

5 2013 31249 13189 56

6 997 15624 5123 53

7 709 7811 1993 53

8 435 3905 785

9 26 1952 306

10 14 975 133

11 12 487 71

12 7 243 55

13 5 121 53

14 2 60 53

15 0 30

16 15

17 7

18 3

19 1

20 0

TABLE III

COMPUTATION TIMES IN SECONDS FOR DIFFERENT EXPERIMENTS, AVERAGED OVER 102 (FOR N = 106) AND 104 (FOR N = 103 AND

N = 20) REALIZATIONS (THE NUMBER IN PARENTHESES IS THE STD. DEV.). EXPERIMENTS 1 AND 2 CORRESPOND TO THE yn BEING

I.I.D. RANDOM GAUSSIAN NUMBERS OF MEAN a/N AND STD. DEV. 1 AND 10−3 , RESPECTIVELY. EXPERIMENT 3 CORRESPONDS TO THE

yn BEING I.I.D. RANDOM GAUSSIAN NUMBERS OF MEAN 0 AND STD. DEV. 10−3 , EXCEPT ONE ELEMENT AT A RANDOM POSITION,

WHICH IS A RANDOM GAUSSIAN NUMBER OF MEAN a AND STD. DEV. 10−3 . EXPERIMENT 4 CORRESPONDS TO THE yn BEING 0, EXCEPT

ONE ELEMENT EQUAL TO a AT A RANDOM POSITION. SO, y IS NOT ON THE SIMPLEX FOR EXPERIMENTS 1–3, AND ON THE SIMPLEX

FOR EXPERIMENT 4. IN ALL CASES, a = 1 AND THE BEST TIME IS IN BOLD.

Experiment 1 Experiment 2

N=106 (K≈6) N=103 (K≈4) N=20 (K≈3) N=106 (K≈3282) N=103 (K≈816) N=20 (K≈20)

Algorithm 1 1.1e-1 (8e-4) 7.4e-5 (5e-6) 1.4e-6 (6e-7) 1.1e-1 (1e0) 8.0e-5 (5e-6) 1.6e-6 (7e-7)
Algorithm 2 1.1e-2 (6e-4) 9.1e-6 (1e-6) 6.6e-7 (7e-7) 1.2e-2 (9e-5) 5.6e-5 (4e0) 9.7e-7 (7e-7)

Alg. of Duchi et al. 1.0e-2 (5e-3) 1.1e-5 (6e-6) 8.8e-7 (8e-7) 1.3e-2 (7e-3) 1.6e-5 (5e-6) 7.7e-7 (7e-7)
Alg. 3, random pivot 1.0e-2 (5e-3) 1.1e-5 (6e-6) 9.5e-7 (7e-7) 1.3e-2 (6e-3) 1.6e-5 (4e-6) 8.2e-7 (7e-7)
Alg. 3, median pivot 2.1e-2 (4e-4) 2.7e-5 (3e-6) 9.9e-7 (7e-7) 2.1e-2 (8e-4) 2.5e-5 (2e-6) 1.0e-6 (7e-7)

Algorithm 4 1.8e-2 (7e-4) 1.8e-5 (6e-6) 8.2e-7 (7e-7) 1.8e-2 (2e-4) 3.2e-5 (3e-6) 6.3e-7 (7e-7)
Proposed Algorithm 1.8e-3 (2e-5) 1.8e-6 (7e-7) 5.5e-7 (7e-7) 3.7e-3 (5e-5) 1.5e-5 (1e-6) 6.1e-7 (7e-7)

Experiment 3 Experiment 4

N=106 (K≈21) N=103 (K≈9) N=20 (K≈4) N=106 (K=1) N=103 (K=1) N=20 (K=1)

Algorithm 1 1.1e-1 (2e-3) 7.4e-5 (5e-6) 1.4e-6 (6e-7) 2.9e-2 (5e-4) 1.8e-5 (2e-6) 8.8e-7 (7e-7)
Algorithm 2 1.1e-2 (3e-4) 9.6e-6 (1e-6) 7.0e-7 (7e-7) 3.1e-3 (2e-4) 2.1e-6 (8e-7) 5.5e-7 (6e-7)

Alg. of Duchi et al. 1.0e-2 (6e-3) 1.2e-5 (6e-6) 8.9e-7 (7e-7) 1.1e+2 (4e+2) (!) 2.1e-5 (2e-4) 1.0e-6 (9e-7)
Alg. 3, random pivot 1.0e-2 (5e-3) 1.1e-5 (6e-6) 9.6e-7 (7e-7) 2.8e-3 (1e-4) 2.4e-6 (7e-7) 5.2e-7 (6e-7)
Alg. 3, median pivot 2.1e-2 (4e-4) 2.7e-5 (2e-6) 9.9e-7 (7e-7) 1.4e-2 (5e-4) 1.3e-5 (2e-6) 8.0e-7 (7e-7)

Algorithm 4 1.8e-2 (2e-4) 1.8e-5 (2e-6) 7.9e-7 (7e-7) 1.6e-2 (2e-3) 1.8e-5 (1e-6) 7.6e-7 (7e-7)
Proposed Algorithm 3.5e-3 (2e-4) 1.1e-5 (6e-6) 6.9e-7 (7e-7) 7.4e-3 (3e-3) 6.9e-6 (3e-6) 6.3e-7 (7e-7)

show that the proposed algorithm performs the best, except in the particular case, of limited practical interest, where

y is maximally sparse and exactly on the simplex.

V. CONCLUSION

We have provided a synthetic overview of the available algorithms to project onto the simplex or the ℓ1 ball

and we have proposed a new and faster algorithm. Future work will be focused on more complicated optimization

problems, like minimizing a cost function over this kind of polyhedral sets.

7

REFERENCES

[1] J. Lellmann, J. H. Kappes, J. Yuan, F. Becker, and C. Schnörr, “Convex multi-class image labeling by simplex-constrained total

variation,” in Proc. of Scale Space and Variational Methods in Computer Vision (SSVM), vol. 5567, 2009, pp. 150–162.

[2] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing overview:

Geometrical, statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens., vol. 5,

no. 2, pp. 354–379, 2012.

[3] J. Brodie, I. Daubechies, C. D. Mol, D. Giannone, and I. Loris, “Sparse and stable Markowitz portfolios,” Proc. Nat. Acad. Sci., vol.

106, no. 30, pp. 12 267–12 272, 2009.

[4] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projections onto the ℓ1-ball for learning in high dimensions,” in

Proc. of the 25th Int. Conf. on Machine learning (ICML), 2008.

[5] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, pp.

890–912, Nov. 2008.

[6] M. Patriksson, “A survey on the continuous nonlinear resource allocation problem,” European Journal of Operational Research, vol.

185, pp. 1–46, 2008.

[7] M. Held, P. Wolfe, and H. Crowder, “Validation of subgradient optimization,” Mathematical Programming, vol. 6, pp. 62–88, 1974.

[8] J. L. Bentley and M. D. McIlroy, “Engineering a sort function,” Software—Practice & Experience, vol. 23, no. 11, pp. 1249–1265,

Nov. 1993.

[9] K. C. Kiwiel, “Breakpoint searching algorithms for the continuous quadratic knapsack problem,” Math. Program., Ser. A, vol. 112, pp.

473–491, 2008.

[10] C. Michelot, “A finite algorithm for finding the projection of a point onto the canonical simplex of Rn,” J. Optim. Theory Appl., vol. 50,

no. 1, pp. 195–200, Jul. 1986.

[11] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds for selection,” J. Computer and System Sciences,

vol. 7, no. 4, pp. 448–461, Aug. 1973.

[12] K. C. Kiwiel, “On Floyd and Rivest’s SELECT algorithm,” Theoretical Computer Science, vol. 347, pp. 214–238, 2005.

[13] ——, “Variable fixing algorithms for the continuous quadratic knapsack problem,” J. Optim. Theory Appl., vol. 136, pp. 445–458, 2008.

[14] P. Gong, K. Gai, and C. Zhang, “Efficient Euclidean projections via piecewise root finding and its application in gradient projection,”

Neurocomputing, vol. 74, pp. 2754–2766, 2011.

[15] J. Liu and J. Ye, “Efficient Euclidean projections in linear time,” in Proc. of the 26th Int. Conf. Machine Learning (ICML), 2009.

[16] R. Cominetti, W. F. Mascarenhas, and P. J. S. Silva, “A Newton’s method for the continuous quadratic knapsack problem,” Math. Prog.

Comp., vol. 6, pp. 151–169, 2014.

