N

N

An Experimental Analysis of DAG Scheduling Methods
in Hard Real-time Multiprocessor Systems
Manar Qamhieh, Serge Midonnet

» To cite this version:

Manar Qambhieh, Serge Midonnet. An Experimental Analysis of DAG Scheduling Methods in Hard
Real-time Multiprocessor Systems. Research in Adaptive and Convergent Systems, RACS ’'14; ACM,
Oct 2014, Towson, Maryland, United States. pp.284-290, 10.1145/2663761.2664236 . hal-01056134

HAL Id: hal-01056134
https://hal.science/hal-01056134
Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01056134
https://hal.archives-ouvertes.fr

An Experimental Analysis of DAG Scheduling Methods in
Hard Real-time Multiprocessor Systems

[Extended Abstract] *

Manar Qamhieh
Université Paris-Est
_LIGM _
manar.qamhieh@univ-paris-est.fr

ABSTRACT

The scheduling of real-time parallel tasks on multiprocessor
systems is more complicated than the one of independent
sequential tasks, specially for the Directed Acyclic Graph
(DAG) parallel model. The complexity is due to the struc-
ture of the DAG tasks and the precedence constraints be-
tween their subtasks. The trivial DAG scheduling method
is to apply directly common real-time scheduling algorithms
despite their lack of compatibility with the parallel model.
Another scheduling method called the stretching method is
summarized as converting each parallel DAG task in the set
into a collection of independent sequential threads that are
easier to be scheduled.

In this paper, we are interested in analyzing global pre-
emptive scheduling of DAGs using both methods by showing
that both methods are not comparable in the case of us-
ing Deadline Monotonic (DM) and Earliest Deadline First
(EDF) scheduling algorithms. Then we use extensive simu-
lations to compare and analyze their performance.

Keywords

Real-time scheduling, parallel tasks, Directed Acyclic Graphs,
global preemptive scheduling, DM and EDF scheduling al-
gorithms.

1. INTRODUCTION

Increasing the performance of execution platforms has
been done by increasing the speed of uniprocessor systems
associated to the reduction of the size of chips leading to
heating problems. Multiprocessor systems have been seen
as one solution to overcome these physical limitations, by
increasing execution capabilities with processor parallelism.
Many practical examples of shifting towards multiprocessors

*A full version of this paper is available as Author’s Guide to
Preparing ACM SIG Proceedings Using BTEX2e and BibTeX
at www.acm.org/eaddress.htm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RACS’14 October 5-8, 2014, Baltimore, MD, USA.

Copyright 2014 ACM 978-1-4503-3060-2/14/10 ...$15.00.

Serge Midonnet

Université Paris-Est

. LIGM _
serge.midonnet@univ-paris-est.fr

can be found, such as the Intel Xeon, ARM and Cavium
processor families.

However, current real-time software APIs are not able to
efficiently take advantage of multiprocessor platforms espe-
cially when parallelism is considered. In the industry, the
majority of designed applications are targeting uniproces-
sor systems. But this is expected to change in the coming
few years which will focus on parallel programming to take
advantage of multiprocessor architectures. There are many
models of parallel application, but in this work, we are in-
terested in a particular family of parallelism called inter-
subtask parallelism, in which a parallel task consists of a
collection of subtasks under precedence constraints and de-
pendencies between subtasks. The most general model is the
Directed Acyclic Graph (DAG) model, which we consider as
our task model in this paper.

Real-time scheduling of DAG tasks in particular and par-
allel tasks in general is a challenging problem. In hard real-
time systems, the correctness of a system does not only de-
pend on the correctness of the results, but on the respect of
tasks timing parameters. Real-time systems on both unipro-
cessor and multiprocessor systems have been studied in the
last decade, and many researches and scheduling algorithms
have been proposed for such platforms [6]. However, the
extension of real-time scheduling w.r.t. parallel tasks with
dependencies is not trivial. Later in this paper, we present
two main DAG scheduling methods which are used in lit-
erature. We call the first method the parallel scheduling
method, in which parallel tasks are scheduled directly using
common scheduling algorithms. The other method is the
stretching scheduling method which transforms DAG tasks
into independent sequential tasks that execute on multipro-
cessor systems. The stretching method simplifies scheduling
at the price of losing some of the characteristics of parallel
tasks, as it removes subtasks dependencies such that classi-
cal scheduling algorithms can then be used.

Both scheduling methods are used independently in many
researches. To the best of our knowledge, this is the first
work which compares both methods and show that both
methods are not comparable regarding schedulability in the
case of global preemptive Deadline Monotonic (DM) and
Earliest Deadline First (EDF) scheduling algorithms. Then
we compare their performance by extensive simulation and
experimental results.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related works w.r.t. to the problem of schedul-
ing real-time tasks on multiprocessor systems especially for
parallel DAG model. Then we present in Section 3 the con-

sidered task model. In Section 4, we describe in details
the two DAG scheduling methods and we prove their in-
comparability. Simulation results are provided in Section 5
to compare the performance of these scheduling methods.
Finally, Section 6 concludes this work.

2. RELATED WORK

The scheduling of parallel real-time tasks of different mod-
els has been studied on both uniprocessor and multiproces-
sor systems. In the case of uniprocessor systems, a classical
approach in the state-of-the-art is to transform a parallel
task into a chain and to assign each subtask of the chain
extra timing parameters used for their scheduling. For ex-
ample, in [4], the authors considered a hybrid taskset of
periodic independent tasks and sporadic dependent graph
tasks with a DAG model. They proposed an algorithm aim-
ing at modifying the DAG timing parameters (by adding
intermediate offsets and deadlines) in order to remove the
dependencies between the tasks in the analysis.

In the case of multiprocessor systems, most research has
been done regarding scheduling hard real-time tasks on ho-
mogeneous multiprocessor systems, especially for indepen-
dent sequential tasks [6]. As mentioned above, there are
mainly two methods for scheduling parallel DAGs in hard
real-time systems. The parallel method schedules DAG tasks
by using directly common scheduling algorithms and adapt-
ing the performance analysis and the scheduling conditions
to take into consideration the particular characteristics of
DAGs and parallel tasks in general. This technique is in-
troduced in [1], which considers a taskset of a single spo-
radic DAG. They also provided polynomial and pseudo-
polynomial schedulability tests for EDF scheduling algo-
rithm.

The problem of scheduling multiple DAG tasks on mul-
tiprocessors have been more studied in [2, 9]. The authors
considered general timing parameters of DAG tasks without
taking into account their internal structure. In [10], the in-
ternal structure and the dependencies between subtasks are
considered in the analysis of global EDF scheduling of DAG
tasks.

The stretching method for DAG scheduling is based on
DAG transformation. Dependencies of inter-subtask paral-
lelism are removed and a DAG task is transformed into a
collection of independent sequential threads. A decompo-
sition algorithm is provided in [11] to distribute the slack
time of the DAG task on its subtasks. The slack time is
defined as the difference between the deadline of the graph
and its minimum sequential execution time. The subtasks
are assigned intermediate offsets and deadlines.

In [8], the authors considered fork-join model of parallel
tasks and they proposed a stretching algorithm to execute
them as sequentially as possible. A fork-join model is repre-
sented as an alternative sequence of sequential and parallel
segment. All parallel segments of the same task have the
same number of threads, and the threads of each segment
have the same sequential execution length. The authors pro-
posed to stretch a fork-join task into a master thread with
utilization equal to 1, the remaining parallel threads are
forced to execute in parallel with the master thread within a
fixed activation interval. Hence, dependencies are no longer
considered in the scheduling process.

3. TASK MODEL

Figure 1: An example of a DAG task 7 which con-
sists of 7 subtasks. The number on the upper right
corner of each subtask represents its WCET and the
arrows represent their precedence constraints.

We consider a taskset 7 of n periodic parallel real-time
Directed Acyclic Graph (DAG) tasks run on a system of
m identical processors. The taskset 7 is represented by
{r1,...,7n}. Each DAG task 7;, where 1 < i < n, is a
periodic implicit-deadline graph which consists of a set of
subtasks under precedence constraints that determine their
execution flow. A DAG task 7; is characterized by (n;, {1 <
Jj <nilm,;}, Gi, D;), where n; is the number of its subtasks,
the second parameter represents the set of subtasks of 7,
G; is the set of directed relations between these subtasks
and D; is 7;’s relative deadline. Since each DAG task has
an implicit deadline, its period T; (interval time between its
successive jobs) is the same as its deadline T; = D;.

Let 7;,; denotes the jth subtask of the set of subtasks form-
ing the DAG task 7;, where 1 < j < n;. Each subtask 7; ; is
a single-threaded sequential task which is characterized by
a WCET Cj},;. All subtasks of a DAG share the same dead-
line and period of the DAG. The total WCET C; of DAG
7; is defined as the sum of WCETSs of its subtasks, where

C; = Z Ci,;. Let U; denote the utilization of 7; where

j=1

b G
The airected relations G; between the subtasks of DAG
7; define their dependencies. A directed relation between
subtasks 7; ; and 7; , means that 7; ; is a predecessor of 7; i,
and the latter subtask have to wait for all of its predecessors
to complete their execution before it can start its own. An
example of a DAG task is shown in Figure 1, in which 71 con-
sists of 7 subtasks. Precedence constraints are represented
by directed arrows between subtasks. A source subtask is a
subtask with no predecessors such as 71,1. Respectively, a
sink subtask is the one without any successors such as 71,7.
Based on the structure of DAG tasks, the critical path of
DAG 7; is defined as the longest sequential execution path in
the DAG when it executes on a virtual platform composed
of an infinite number of processors. Its length L; is the
minimum response time of the DAG. A subtask that is part
of the critical path is referred to as a critical subtask, while

non-critical subtasks are executed in parallel with the critical
ones.

A DAG task is said to be feasible if the subtasks of all of
its jobs respect its deadline. A taskset 7 is deemed unfeasible
when scheduled using any scheduling algorithm on m unit-
speed processors if, at least, one of the following conditions
is false:

V’T‘iGT, L»LSD»L

v =Y vy S
i=1 i=1 ~°

4. DAG SCHEDULING METHODS:
PARALLEL VS. STRETCHING

A real-time scheduling algorithm is responsible for dis-
tributing the executing jobs of the system on its available
processors during the execution interval of the task set. At
each time unit within this interval, the scheduling algorithm
chooses particular jobs among the ready ones to execute on
the system’s processors using a particular priority assign-
ment. A global real-time scheduler allows migration of any
job in the system between the processors of the system dur-
ing its execution, and a preemptive scheduler allows higher
priority jobs to interrupt the execution of those of lower pri-
ority.

In this work, we consider two common real-time schedul-
ing algorithms. The first is the Earliest Deadline First (EDF)
algorithm which is an optimal ! scheduling algorithm on
uniprocessor systems and it performs well on multiprocessor
systems despite the loss of its optimality. This algorithm
assigns priorities to jobs based on their absolute deadlines
where jobs with earlier absolute deadlines have higher pri-
orities. Since jobs of the same real-time task might have
different priorities, EDF is classified as a fixed job priority
assignment algorithm. The second scheduling algorithm is
the Deadline Monotonic (DM) algorithm from the fixed task
priority assignment algorithms. In this algorithm, priorities
assigned to tasks based on their relative deadline. Hence,
all jobs of the same task have the same priority.

In the case of independent sequential real-time tasks, the
scheduling algorithm can take decisions based on the tim-
ing parameters of tasks such as their deadline (absolute or
relative), their period, their slack time, ... While, in par-
allel real-time tasks such as the DAG model, a single task
consists of a collection of subtasks, each with a different ac-
tivation time based on the structure of the DAG. According
to the task model presented in Section 3, the timing param-
eters are assigned on a DAG level and not a subtask level,
and subtasks are characterized by their worst-case execution
time and their precedence relations only. The other timing
parameters of subtasks necessary for the scheduling process
are inherited from their original DAGs. Regular scheduling
algorithms which are designed originally for the scheduling
of sequential independent tasks can be used for the schedul-
ing of such parallel tasks. However, it is harder for them
to take accurate decisions for subtasks based on these given
timing parameters.

We define a scheduling method of a parallel DAG task as
the method which specifies the structure of subtasks in the
DAG and how they execute w.r.t. their successor and prede-

!Optimal scheduling algorithm is defined in Definition 1.

cessor subtasks. A scheduling method is used combined with
a scheduling algorithm in order to execute parallel DAGs on
multiprocessor systems. There are two scheduling methods
for DAG tasks on multiprocessor systems which uses com-
mon scheduling algorithms in real-time systems, which we
call parallel and stretching scheduling methods. More de-
tails and examples regarding the two scheduling methods of
DAGs are provided below.

4.1 Parallel Scheduling Method

We consider the parallel scheduling method as the first
and default scheduling method for DAG tasks on multipro-
cessor systems. This method supports inter-subtask paral-
lelism in DAGs in which all subtasks are assumed to execute
in parallel whenever it is possible. For example, if there are
two sibling subtasks (who share the same parent) and there
is more than one available processor at their activation time,
then both subtasks will execute in parallel, otherwise, the
scheduling algorithm blocks the execution of one of them
and they will execute sequentially as a result.

According to the parallel scheduling method, the subtasks
of a DAG task execute as soon as possible based on the
default structure of the DAG task. For each subtask, we
consider its earliest activation time which is the result of
execution blocking of its predecessors while executing on a
system of infinite number of processors. This method is used
in literature and many analyses are provided, such as in [1,
2,9, 10].

11 (3) - ©16(2) |

12 (3) | B Ci=14
Di=Ti=10
713 (2)
HECEE v
0 5 10

Figure 2: An example of parallel scheduling method
of DAG task from Figure 1

We believe that the parallel scheduling method is better
described using an example. Figure 2 shows the structure
of subtasks of DAG task 7 from Figure 1 when the parallel
scheduling method is applied. We assume that DAG task 71
has a deadline equal to 10 and it consists of 7 subtasks. As
shown in Figure 1, the source subtasks {711, 71,2, 71,3, 71,5}
are activated at time ¢ = 0 and they are assumed to execute
in parallel. Subtask 714 is a successor of subtasks 711 &
71,2 and it has to wait at for them both to finish execution
before it starts its own. In this example, the earliest possible
of 71,4 is equal to 3. By following the same reasoning, we cal-
culate the earliest activation and even the latest finish time
of subtasks based on their precedence constraints. Based on
these additional timing parameters, we define the maximum
possible execution interval of each subtask in a DAG task,
in which it executes either in parallel or sequentially with
other subtasks in the system based on the decisions of the
scheduling algorithm.

4.2 Stretching Scheduling Method

The problem of dependencies between subtasks of a sin-
gle DAG is solved using the stretching scheduling method.

In this method, a DAG task is converted into independent
sequential threads, one of them, at least, is fully stretched.
According to the stretching method, the parallel structure
of DAGs is avoided whenever it is possible, and some of the
subtasks are forced to execute sequentially, while the rest are
assigned intermediate offsets and deadlines so as to execute
independently. The DAG stretching technique is inspired
from the algorithm provided in [8] which targets a special
parallel task model called the Fork-join model. Briefly, the
critical path of a DAG task is filled by some of the non-
critical subtasks until it is fully stretched up to its deadline.
Based on this stretching, the remaining subtasks of the DAG
are forced to execute in parallel with the stretched criti-
cal path. In order to maintain the original precedence con-
straints in the DAG, the subtasks are assigned intermediate
offsets and deadlines which assure their independence. As
a result, the scheduling problem is simplified into the com-
mon scheduling problem of independent sequential threads
on multiprocessor systems.

ni=6 Li=4

;
f
He1/201 =32 +1/201 =302t

ali fml:

1
1
A 1 1 1
15 ! ! ! \
5

(143/2)2=5

w e =

Figure 3: Example of stretching scheduling method
for DAGs.

Figure 3 shows the structure of the DAG task from Figure
1 when the stretching scheduling method is applied. Let .S; ;
denote the j*" segment of task 7;. As shown in the figure,
the critical path is transformed into a sequential thread of
WCET equal to 10 which is the deadline of the DAG, while
the remaining sibling subtasks execute in parallel. For more
details about the stretching algorithm for parallel tasks, we
invite the reader to refer to [8].

4.3 In-comparability of Scheduling Methods

In this section, we compare the parallel and stretching
methods of DAG scheduling. We discuss the case of global
preemptive scheduling in which two scheduling algorithms
are used. The algorithms are the Deadline Monotonic (DM)
from the fixed task priority assignment family and the Ear-
liest Deadline First (EDF) from the fixed job family.

DEFINITION 1. A scheduling algorithm is said to be opti-
mal if it is able to schedule all possible feasible task sets.

DEFINITION 2. Scheduling algorithm A dominates schedul-
ing algorithm B if all task sets schedulable by algorithm B
are also schedulable by algorithm A, but the opposite is not
correct.

Using two examples, we show that both DAG scheduling
methods presented in this paper are not optimal. This is
not considered as a drawback of these approaches because
in real-time multiprocessor scheduling, optimal scheduling

algorithms are not practical due to huge overheads and ex-
ecution costs of algorithms. Also, common uniprocessor
scheduling algorithms cease to be optimal when they are
used on multiprocessors. As a result, non-optimal scheduling
algorithms are used for multiprocessor scheduling in prac-
tice.

Proving the in-comparability of both scheduling methods
is important in order to show that both methods are accept-
able for DAG scheduling and no one dominates the other
from schedulability point of view. In order to do so, we pro-
vide two general examples showing the scheduling of a given
DAG set on multiprocessor system using a global preemp-
tive scheduling algorithm. In the first example, we show that
the DAG set is schedulable when the stretching scheduling
method is used, while the parallel scheduling method leads
to a deadline miss. In the second example, we show oppo-
sitely that parallel scheduling method schedules successfully
a DAG set while stretching method fails. The following ex-
amples are valid for global EDF and DM scheduling algo-
rithms.

Usually, finding a single case of in-comparability is enough
to deem the performance of a scheduling method or algo-
rithm.

Example 1

Taskset: As shown in Figure 4, the DAG set of this ex-
ample consists of two periodic implicit-deadline DAG tasks.
DAG 71 has a deadline equal to 6, and it consists of 5 sub-
tasks. The worst-case execution time of each subtask and
the precedence constraints between them are shown in In-
set 1 of Figure 4(a). This inset represents also the struc-
ture of DAG 71 when parallel scheduling method is used,
which favored inter-subtask parallelism. Hence, subtasks
of DAG 71 execute as soon as possible by considering an
infinite number of processors. Subtask 71,1 is a source sub-
task which is activated by the activation of the DAG. Then,
subtasks {71,2,71,3, 71,4} execute in parallel. When they
finish execution, the sink subtask 715 executes. Inset 2
of Figure 4(a) shows the structure of DAG 1 in the case
of stretching scheduling method, in which its critical path
({m1,1, 71,2, 71,5}) is filled with non-critical subtasks until its
deadline. The result is a fully stretched thread (its worst-
case execution time is equal to the deadline) and subtask 71,3
which executes in parallel with it. Task 72 is shown in Inset
3 of Figure 4(a) and it has a deadline equal to 7. It consists
of a single subtask 72,1 which has a worst-case execution
time equal to 6. Since task 72 is a sequential task, there is
no difference between its parallel and stretching scheduling
methods and the result is the same as shown in the inset.
Parallel method: Figure 4(b) shows the global pre-
emptive scheduling of DAG set on a system consists of 3 ho-
mogeneous processors. This scheduling is done based on the
parallel scheduling method of DAGs and for both schedul-
ing algorithms, EDF and DM. According to DM algorithm,
all jobs of DAG 71 have higher priority than the jobs of
DAG 72. Also in the case of EDF, the first job of DAG 71
has an earlier absolute deadline than the first job of DAG
T2 when synchronous activation of DAGs is considered. As
shown in the figure, the first job of 7 executes without being
interrupted by the other task, and since we consider a paral-
lel scheduling method, its parallel subtasks ({712, 71,3, 71,4})
occupy the processors of the system for 2 time units. As a
result, the first job of 72 is blocked during this time. Know-

1. Parallel method of DAG 74 2. Stretching method of DAG T1
A 6 1 A

% |

v
3. Parallel & Stretching methods of DAG Task 2

(a) Example 1: DAG set consists of two periodic implicit-
deadline DAG tasks. (1) The structure of DAG 71 when
the parallel scheduling method is used. (2) The structure of
DAG 71 when the stretching scheduling method is used. (3)
Both scheduling methods (parallel & stretching) of DAG
T2.

D: D

Parallel method - GEDF & GDM

(b) Global EDF & DM (c) A successful global

Stretching method - GEDF & GDM

scheduling showing a EDF & DM scheduling
deadline miss when par- in the case of stretching
allel method is used for method for DAG set.
DAG set.

Figure 4: An example of scheduling method in-
comparability in favor of the stretching method.

ing that DAG task 72 has 1 time unit as a slack, a definite
deadline miss occurs due to this blocking.

Stretching method: The same characteristics of the
above scheduling are considered for the case of stretching
scheduling method. Based on the structure of DAG task
71 in Inset 2 of Figure 4(a), its jobs need a maximum of
2 processors in order to execute successfully at all times,
because the stretching method forces subtask 71 4 to execute
sequentially within the critical path of the DAG. For any
given scheduling algorithm, the DAG set is schedulable on a
system of 3 processors, since DAG 71 needs only 2 processors
to execute and the remaining processor can be used by DAG
task 7o.

Conclusion: In the case of global preemptive EDF and
DM scheduling algorithms, stretching scheduling algorithm
succeeds in scheduling the periodic implicit-deadline DAG
set while the parallel method fails.

Example 2

Taskset: As shown in Figure 5, the DAG set of this ex-
ample consists of two periodic implicit-deadline DAG tasks.
DAG 71 has a deadline equal to 6, and it consists of 4 seg-
ments of 8 subtasks. The worst-case execution time of each
subtask and the precedence constraints between them are

1. Parallel & Stretching methods of DAG Task 74

A, 'y 3 A

1 722 ™ 722 | 723

v v v

2. Parallel method 3. Stretching method of DAG T2

(a) Example 2: DAG set consists of two periodic
implicit-deadline DAG tasks. (1)Both scheduling meth-
ods (parallel & stretching) of DAG 71. (2) The struc-
ture of DAG 72 when the parallel scheduling method is
used. (3) The structure of DAG 72 when the stretching
scheduling method is used.

D; D,

Stretching method - GEDF & GDM

(b) A successful global EDF (c) Global EDF & DM
& DM scheduling in the case scheduling showing a dead-
of parallel method for DAG line miss when stretching
set. method is used for DAG set.

v
Parallel method - GEDF & GDM

Figure 5: A scheduling example of a DAG set sched-
uled using parallel scheduling.

shown in Inset 1 of Figure 5(a). Since DAG 71 has no slack
time (its critical path length is equal to its deadline), ap-
plying the stretching scheduling method does not change
the structure of the DAG from the parallel method, hence,
Inset 1 of Figure 5(a) represents both scheduling methods.
DAG task 12 consists of 3 subtasks, in which subtask 721 is
the source subtask of the DAG and subtasks {722, 72,3} are
its successors. According to the parallel scheduling method,
both subtasks 722 and 72 3 execute in parallel as shown in
Inset 2 of Figure 5(a). We consider the critical path of the
DAG 72 to be subtasks {72,1, 72,2} and its slack is equal to 1
time unit. Using the stretching scheduling method, all sub-
tasks are forced to execute sequentially as shown in Inset
3 of Figure 5(a). In this method, subtask 723 is forced to
execute after subtask 722 and all subtasks of DAG 72 form
a single sequential fully stretched thread.

Parallel method: In Figure 5(b), we show the global
preemptive scheduling of DAG set on a system of 3 iden-

tical processors using the parallel scheduling method. This
example can be applied to EDF and DM scheduling algo-
rithms as in Example 1. Based on DM, all jobs of DAG
7o have higher priorities than the ones of DAG 71, because
relative deadline of 75 is lower than the relative deadline of
71 (3 < 6). In the case of EDF, which assigns priorities to
jobs based on their absolute deadlines, the first job of DAG
T2 has the earliest absolute deadline, then it has the highest
priority. However, the first job of DAG 71 and the second
job of DAG 72 have the same absolute deadline, then we con-
sider that the second job of 72 has higher priority arbitrary.
According to the parallel scheduling method, subtasks 72 2
& T3 3 can execute in parallel whenever there are processors
available in the system. As shown in Figure 5(b), all sub-
tasks of DAG 7 execute in time interval [0,2) and [3,5) and
they do not interrupt the execution of DAG 7 despite the
priority ordering. According to this scheduling, no deadline
miss occurs.

Stretching method: According to the stretching schedul-

ing method, subtasks of DAG 1o are forced to execute se-
quentially as a single thread. Since it has higher priority
according to DM and EDF, DAG task 72 occupies a single
processor by itself, which leads to a deadline miss for the
first job of DAG 71. This is a result of the blocking effect
and the delay of subtask 71 4 in time interval [2,3).

Conclusion: In the case of global preemptive EDF and
DM scheduling algorithms, parallel scheduling algorithm suc-
ceeds in scheduling the periodic implicit-deadline DAG set
while the stretching method fails. What we conclude from
both examples is that both scheduling methods are not com-
parable and no one dominates the other.

5. SIMULATION ANALYSIS

Due to the in-comparability of the parallel and stretching
scheduling methods in the case of global preemptive DM
and EDF on multiprocessor systems proved by the above
examples, we use extensive simulation as an indication to
the performance of both methods. Simulation is a good tool
to give us indications about the performance of particular
scheduling methods and algorithms and it is useful when we
compare scheduling algorithms together.

Simulation Environment

The simulation process is based on an event-triggered schedul-
ing. This means that at each event in the interval [0, H),
where H denotes the hyper period of the scheduled taskset
7 and defined as the least common multiple of periods, the
scheduler is awakened and it decides which jobs have the
highest priorities to execute on the available processors.

We used a simulation tool called YARTISS [3], which is
a multiprocessor real-time scheduling simulator developed
in Java. It contains many scheduling algorithms and task
models (including parallel tasks), and it can be used easily
for both hard and soft real-time systems.

For each system utilization from 1 to 8, we generated
50,000 tasksets randomly. The number of parallel tasks
within each taskset is varied from 2 to 10 tasks/taskset.
This variation affects the structure of tasks because, for a
fixed utilization, increasing the number of tasks will decrease
their WCET in average and as a result, the number of par-
allel threads per task will be lowered. Based on this, we can
control the percentage of parallelism within a taskset and it
can help in analyzing the effect of parallelism on scheduling

Schedulability Success rate of Fixed Priority Deadline-Monotonic algorithm
100

80

60

Success rate (%)

20
Par-Hi ——
Par-Lo
Str-Hi e
Str-Lo

Figure 6: Simulation results of global DAG fixed
priority deadline monotonic scheduling.

as we will see below.

Regarding the generation of parallel tasksets, our task
generator is based on the Uunifast-Discard algorithm [5] for
random generation of tasks. This algorithm is proposed by
Davis and Burns to generate randomly a set of tasks of a cer-
tain total utilization on multiprocessor systems. The num-
ber of tasks and their utilization are inputs of this algorithm.
The taskset generator is described briefly as follows:

e The algorithm takes two parameters n and U, where
n is the number of parallel tasks in the set and U is
the total utilization of the taskset (U > 0).

e The Uunifast-Discard algorithm distributes the total
utilization on the taskset. A parallel task 7; can have
a utilization U; greater than 1 which means that its
threads cannot be stretched completely, and it has to
execute in parallel.

e The number of threads and their WCET of each paral-
lel tasks are generated randomly based on the utiliza-
tion of the tasks. The maximum number of threads is
predefined as 10 threads per parallel task.

e The number of parallel tasks per taskset is varied as
well in the generation so as to vary the average utiliza-
tion per task. Tasksets with low number of tasks tend
to have high utilization per task (Hi), while tasksets
with high number of tasks have lower task’s utilization
(Lo).

In order to limit the simulation interval and reduce the
time needed to perform the simulation, which is based on
the length of the hyper period of each taskset, we used the
limitation method proposed in [7], which relays on using a
considerate choice of periods of the tasks while generation
so as to reduce their least common multiple. Using this
method, we implemented our task generator to choose peri-
ods of tasks in the interval [1,25200].

Simulation Results

The performance of both scheduling methods varies signifi-
cantly based on the used scheduling algorithm. This result
is not clear using the scheduling analysis and it is possible
to show it using simulation only.

Schedulability Success rate of Earliest Deadline First algorithm
100

Success rate (%)

Par-Hi ——
Par-Lo
Str-Hi e
Str-Lo

Figure 7: Simulation results of global DAG EDF
scheduling.

We compare the scheduling success rate of simulated tasksets

while varying their utilization on a fixed number of proces-
sors in the system. Starting by Figure 6, we can notice that,
in the case of global preemptive fixed task priority DM al-
gorithm, the stretching scheduling method (in both taskset
types, Hi and Lo) has better success rates than the parallel
scheduling method. And almost 100% of task sets remained
schedulable using stretching method while the schedulability
of task sets using parallel scheduling started to decrease from
utilization equal to 3. We can conclude that the stretching
method is more adapted to fixed task priority assignment
algorithm.

While in Figure 7, parallel scheduling method performs
better in the case of global preemptive EDF scheduling al-
gorithm, which means that this method is more adapted to
the fixed job priority assignment scheduling algorithms. We
can notice that the schedulability of stretched task sets with
high utilization (str-hi) decreases sharply little before sys-
tem’s utilization become 3 to reach less than 10% of success
rate, while the parallel scheduling method performs well in
general.

Based on these results, we conclude that even if both
scheduling methods are not comparable using scheduling
analysis and there is no definite dominance of one on an-
other, it is still interesting to use a more adapted scheduling
method based on the chosen scheduling algorithm.

6. CONCLUSION

In this paper, we described two main scheduling meth-
ods for global preemptive parallel real-time DAG tasks on
multiprocessor systems. The parallel scheduling method en-
forces inter-subtask parallelism and allows direct scheduling
for parallel tasks. While stretching scheduling method trans-
forms parallel tasks into sequential independent task model
easier to be scheduled. Both scheduling methods have ad-
vantages and disadvantages, and we prove, using scheduling
examples, that they are not comparable regarding schedul-
ing and no one of them dominates the other. The compa-
rability analysis is shown for two common scheduling algo-
rithms, the Deadline Monotonic (DM) from the fixed task
priority assignment family and the Earliest Deadline First
(EDF) from the fixed job priority assignment family.

We conclude the paper by simulation results that show
clearly that DM algorithm is more adapted to the stretching

scheduling method while EDF performs better when DAG
tasks execute using parallel method. In the future, we aim
at better analyzing the behavior of such algorithms on the
scheduling methods of DAG scheduling, and we aim at ex-
tending the analysis to consider other scheduling algorithms
may be found in literature.

7. REFERENCES

[1] S. K. Baruah, V. Bonifaciy, A. Marchetti-Spaccamela,
L. Stougie, and A. Wiese. A Generalized Parallel Task
Model for Recurrent Real-time Processes. In
Proceedings of the 33rd IEEE Real-Time Systems
Symposium (RTSS), pages 63-72. IEEE Computer
Society, Dec. 2012.

[2] V. Bonifaci, A. Marchetti-spaccamela, S. Stiller, and
A. Wiese. Feasibility Analysis in the Sporadic DAG
Task Model. In 25th euromicro Conference on
Real-Time Systems (ECRTS’13), 2013.

[3] Y. Chandarli, F. Fauberteau, M. Damien,

S. Midonnet, and M. Qamhieh. YARTISS: A Tool to
Visualize, Test, Compare and Evaluate Real-Time
Scheduling Algorithms. In Proceedings of the 3rd
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), 2012.

[4] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic
scheduling of real-time tasks under precedence
constraints. Real-Time Systems, 2(3):181-194, 1990.

[5] R. Davis and A. Burns. Improved priority assignment
for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems. Real-Time Systems,
47(1):1-40, 2011.

[6] R. L. Davis and A. Burns. A survey of hard real-time
scheduling algorithms and schedulability analysis
techniques for multiprocessor systems. ACM
Computing surveys, pages 1 — 44, 2011.

[7] J. Goossens and C. Macq. Limitation of the
Hyper-Period in Real-Time Periodic Task Set
Generation. In Proceedings of the 9th International
Conference on Real-Time Systems (RTS), pages
133-148, Mar. 2001.

[8] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar.
Scheduling Parallel Real-Time Tasks on Multi-core
Processors. In Proceedings of the 81st IEEE Real-Time
Systems Symposium (RTSS), pages 259-268. IEEE
Computer Society, 2010.

[9] A. J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of
Global EDF for Parallel Tasks. In Furomicro
Conference on Real-Time Systems ECRTS, number
314, 2013.

[10] M. Qambhieh, F. Fauberteau, L. George, and
S. Midonnet. Global edf scheduling of directed acyclic
graphs on multiprocessor systems. In Proceedings of
the 21st International Conference on Real-Time
Networks and Systems, RTNS ’13, pages 287-296, New
York, NY, USA, 2013. ACM.

[11] A. Saifullah, D. Ferry, K. Agrawal, C. Lu, and C. Gill.
Parallel real-time scheduling of DAGs. In IEEE
Transactions on Parallel and Distributed Systems,
2014. accepted.

