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Nonparametric estimation of the conditional extreme-value index
with random covariates and censoring

Pathé NDAOa, Aliou DIOPa, Jean-François DUPUYb

aLERSTAD, Université Gaston Berger, Saint Louis, Sénégal.
bIRMAR-Institut National des Sciences Appliquées de Rennes, France.

Abstract

Estimation of the extreme-value index of a heavy-tailed distribution is addressed when some
random covariate information is available and the data are randomly right-censored. An
inverse-probability-of-censoring-weighted kernel version of Hill’s estimator of the extreme-
value index is proposed and its asymptotic normality is established. Based on this, a
Weissman-type estimator of conditional extreme quantiles is also constructed. A simula-
tion study is conducted to assess the finite-sample behaviour of the proposed estimators.

Keywords: Conditional extreme-value index, conditional extreme quantile, conditional
Kaplan-Meier estimator, kernel estimator, simulations.

1. Introduction

Estimation of extreme quantiles has become a crucial issue in many fields, such as hy-
drology, insurance, medicine and reliability. Let Y be a random variable with cumulative
distribution function F and let Y1, . . . , Yn be independent copies of Y . Extreme quantiles of
F are defined as quantities of the form

F←(1− α) = inf{y : F (y) ≥ 1− α},

where α is so small that this quantile falls beyond the range of the observed Y1, . . . , Yn. This
problem is closely related to estimation of the extreme-value index of Y . The extreme-value
index drives the behavior of F in its right tail and thus plays a central role in the analysis
of extremes. Recent monographs on extreme value theory and in particular on estimation of
the extreme-value index and extreme quantiles include Embrechts et al. (1997), Beirlant et
al. (2004), Reiss and Thomas (2007) and Novak (2012).

When some covariate information X is available and the distribution of Y depends on
X, the problem is to estimate the conditional extreme-value index and conditional extreme
quantiles F←(1−α|x) = inf{y : F (y|x) ≥ 1−α} of the distribution F (·|x) of Y given X = x.
Motivating examples include estimation of extreme rainfalls given the geographical location
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(Gardes and Girard, 2010), analysis of extreme temperatures given topological parameters
(Ferrez et al., 2011) and the study of extreme earthquakes given the location (Pisarenko and
Sornette, 2003). Estimation of the conditional extreme-value index and conditional extreme
quantiles with fixed (or non-random) covariates has been investigated rather extensively in
the recent extreme value literature. We refer to Beirlant et al. (2004), Gardes and Girard
(2008), Gardes et al. (2010), Stupfler (2013) and the references therein for an overview of
the available methodology, including the case where the covariate is functional (Gardes and
Girard, 2012). To date, less attention has been paid to the random covariate case, despite
its practical interest. Gardes and Stupfler (2014) and Goegebeur et al. (2014b) adapt Hill’s
estimator of the extreme-value index of a heavy-tailed distribution to the presence of a
random covariate. The moment estimator introduced by Dekkers et al. (1989) is adapted
to the presence of random covariates by Goegebeur et al. (2014a). Daouia et al. (2011)
proposed a kernel-based estimator of conditional extreme quantiles with random covariates.

In this paper, we address estimation of the conditional extreme-value index and condi-
tional extreme quantiles with random covariates when moreover, the observations Y1, . . . , Yn
are randomly right-censored. Censoring commonly occurs in the analysis of event time data.
For example, Y may represent the duration until the occurrence of some event of interest
(such as death of a patient, ruin of a company. . . ). If censoring is present, the observations
consist of triplets (Zi, δi, Xi), i = 1, . . . , n, where Zi = min(Yi, Ci), δi = 1{Yi≤Ci}, 1{·} is the
indicator function and Ci is a random censoring time which provides a lower bound on Yi if
δi = 0. When there is no covariate information, estimation of the extreme-value index from
censored data is considered by Delafosse and Guillou (2002), Gomes and Oliveira (2003),
Beirlant et al. (2010), Gomes and Neves (2011), Brahimi et al. (2013) and Worms and
Worms (2014). Matthys et al. (2004), Beirlant et al. (2007) and Einmahl et al. (2008) ad-
ditionally address estimation of extreme quantiles. Ndao et al. (2014) address estimation of
the conditional extreme-value index and conditional extreme quantiles with fixed covariates
and censoring. The authors combine a moving-window technique (for tackling the covariate
information) and the inverse-probability-of-censoring weighting method.

To our knowledge, estimation of the conditional extreme-value index and extreme quan-
tiles with random covariates and censoring has not yet been addressed. This is the topic
for the present paper. We first construct an estimator of the conditional extreme-value in-
dex and we establish its asymptotic normality. Our proposal combines a kernel version of
Hill’s estimator of the extreme-value index (such as developed in Goegebeur et al. (2014b)
in the uncensored case) with the inverse-probability-of-censoring weighting principle (such
as used in Einmahl et al. (2008) and Brahimi et al. (2013) for estimating the unconditional
extreme-value index with censoring). Then, we propose a Weissman-type estimator of con-
ditional extreme quantiles under censoring. The finite-sample performance of the proposed
estimators are assessed via simulations and compared with several alternative estimators.

The remainder of this paper is organized as follows. In Section 2, we construct our
estimator of the conditional extreme-value index and we establish its asymptotic normality.
In Section 3, we propose an estimator of conditional extreme quantiles under censoring. In
Section 4, we assess via simulations the finite sample behaviour of our estimators. Some
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perspectives are given in Section 5. All proofs are deferred to an appendix.

2. Construction of the estimator and asymptotic properties

2.1. The proposed estimator
Let (Xi, Yi), i = 1, . . . , n, be independent copies of the random pair (X, Y ) where Y is a

non-negative random variable andX ∈ X (with X some bounded set of Rp) is a p-dimensional
covariate with probability density function g. We assume that Y can be right-censored by a
non-negative random variable C. Thus we really observe independent triplets (Xi, δi, Zi), i =
1, . . . , n, where Zi = min(Yi, Ci), δi = 1{Yi≤Ci} and 1{A} is the indicator function of the event
A. The random variable C is defined on the same probability space (Ω, C,P) as Y . We
assume that C1, . . . , Cn are independent of each other and that Y and C are independent
given X. Let F (·|x) and G(·|x) denote the conditional cumulative distribution functions of
Y and C given X = x, respectively. Let also F̄ (·|x) = 1−F (·|x) and Ḡ(·|x) = 1−G(·|x) be
the conditional survival functions of Y and C given X = x.

In this paper, we focus on heavy tails. Precisely, we assume that the conditional survival
functions of Y and C given X = x satisfy

(C1) F̄ (u|x) = u−1/γ1(x)L1(u|x) and Ḡ(u|x) = u−1/γ2(x)L2(u|x),

where γ1(·) and γ2(·) are unknown positive continuous functions of the covariate x and for
x fixed, L1(·|x) and L2(·|x) are slowly varying functions at infinity, that is, for all λ > 0,

lim
u→∞

Li(λu|x)

Li(u|x)
= 1, i = 1, 2.

This amounts to saying that F̄ (·|x) and Ḡ(·|x) are regularly varying functions at infinity with
index −1/γ1(x) and −1/γ2(x) respectively. Condition (C1) also amounts to assuming that
the conditional distributions of Y and C given X = x are in the Fréchet maximum domain
of attraction. In what follows, the functions γ1(·) and γ2(·) are referred to as conditional
extreme-value index functions.

Remark 1. By conditional independence of Y and C, the conditional cumulative distribu-
tion function H(·|x) of Z given X = x is also heavy-tailed, with conditional extreme-value
index γ(x) = γ1(x)γ2(x)/(γ1(x) + γ2(x)). To see this, note that for every u and x,

H̄(u|x) := 1−H(u|x) = F̄ (u|x)Ḡ(u|x)

= u−1/γ1(x)L1(u|x)u−1/γ2(x)L2(u|x)

= u−1/γ(x)L(u|x),

where γ(x) is as above and L(u|x) = L1(u|x)L2(u|x). Moreover,

lim
u→∞

L(λu|x)

L(u|x)
= lim

u→∞

L1(λu|x)

L1(u|x)

L2(λu|x)

L2(u|x)
= 1.

�
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If the Zi were uncensored (that is, Zi = Yi for all i), Goegebeur et al. (2014b) propose to
estimate γ1(x) by the following kernel version of Hill’s estimator:

γ̂Htn(x) =
n∑
i=1

Kh(x−Xi)(logZi − log tn)1{Zi>tn}

/ n∑
i=1

Kh(x−Xi)1{Zi>tn}, (2.1)

where Kh(x) := h−pK(x/h), K is a probability density function on Rp, h := hn is a positive
non-random bandwidth sequence such that h→ 0 as n→∞ and tn is a positive non-random
threshold sequence with tn →∞ for n→∞.

The estimator (2.1) is not consistent for γ1(x) if it is directly applied to the censored
sample (Xi, δi, Zi), i = 1, . . . , n. Indeed, under appropriate regularity assumptions, estimator
(2.1) will converge to the extreme-value index γ(x) of the conditional distribution of Z given
X = x (Goegebeur et al., 2014b). To accommodate censoring, we suggest to divide (2.1)
by the proportion p̂tn(x) of uncensored observations among the {Zi, i = 1, . . . , n} that are
larger than tn, in a neighborhood of x:

p̂tn(x) =
H̄1
n(tn|x)

H̄n(tn|x)
, (2.2)

where H̄n(tn|x) =
∑n

i=1Bi(x)1{Zi>tn}, H̄
1
n(tn|x) =

∑n
i=1 Bi(x)1{Zi>tn,δi=1} and the weights

Bi(x) are defined as:

Bi(x) = K

(
x−Xi

h

)/ n∑
j=1

K

(
x−Xj

h

)
.

Therefore, we propose to estimate γ1(x) by

γ̂
(c,H)
tn (x) :=

γ̂Htn(x)

p̂tn(x)
. (2.3)

This estimator depends on both the bandwidth h and threshold tn. The choice of h and tn
will be discussed in the simulation study of Section 4.
The limiting distribution of γ̂(c,H)

tn (x) is investigated in the next section.

2.2. Asymptotic results
Some regularity conditions are needed for proving our results (these conditions are adapted

from Daouia et al. (2011) and Goegebeur et al. (2014b)). First, we require that some Lips-
chitz conditions hold (in these conditions, d denotes the Euclidean distance on Rp). For all
(x, x′) ∈ X × X , we assume that:

(C2) There exists cγ > 0 such that
∣∣∣ 1
γ(x)
− 1

γ(x′)

∣∣∣ ≤ cγd(x, x′).

(C3) There exist cL > 0 and u0 > 1 such that supu≥u0

∣∣∣ logL(u|x)
log u − logL(u|x′)

log u

∣∣∣ ≤ cLd(x, x′).
4



(C4) There exists cg > 0 such that |g(x)− g(x′)| ≤ cgd(x, x′).

The next condition is classical in extreme value theory where it is called a second-order
condition.

(C5) There exists a function ρ(x) < 0 and a regularly varying function b(·|x) with index
ρ(x) such that for all u > 0,

lim
t→∞

H←
(
1− 1

tu
|x
)
/H←

(
1− 1

t
|x
)
− uγ(x)

b(t|x)
= uγ(x)u

ρ(x) − 1

ρ(x)
.

Finally, we impose the following condition on the kernel function K:

(C6) K is a bounded density function on Rp, with support S included in the unit ball of
Rp.

We are now in position to state our results. We first investigate the asymptotic distribution
of p̂tn(x), which is interesting on its own (thereafter, D→ will denote the convergence in
distribution). The proof is given in Appendix A.

Proposition 2.1. Suppose (C1)-(C6) hold. Let tn be such that tn →∞, nhpH̄(tn|x)→∞
and nhp+2H̄(tn|x)(log tn)2 → 0 as n→∞. Then, for all x ∈ X such that g(x) > 0,√

nhpH̄(tn|x)(p̂tn(x)− px)
D−→ N

(
0,
px(1− px)‖K‖2

2

g(x)

)
as n→∞,

where px = γ2(x)/(γ1(x) + γ2(x)) and ‖K‖2
2 =

∫
K2(u)du.

We now derive the limiting distribution of the proposed estimator (2.3) of γ1(x). The proof
is given in Appendix A.

Theorem 2.2. Suppose that conditions (C1)-(C6) hold. Let tn be such that tn → ∞,
nhpH̄(tn|x) → ∞, nhp+2H̄(tn|x)(log tn)2 → 0 and

√
nhpH̄(tn|x)b(tn|x) → 0 as n → ∞.

Then, for all x ∈ X such that g(x) > 0,√
nhpH̄(tn|x)

(
γ̂

(c,H)
tn (x)− γ1(x)

)
D−→ N

(
0,
γ3

1(x)

γ(x)

‖K‖2
2

g(x)

)
as n→∞. (2.4)

We note that the asymptotic variance in (2.4) is the same (up to the scale factor ‖K‖2
2/g(x))

as the asymptotic variance obtained by Beirlant et al. (2007) for the adapted Hill estimator
under the Hall model when censoring occurs and there is no covariate. We also note that
when there is no censoring, the asymptotic variance in (2.4) reduces to the asymptotic
variance of Goegebeur et al. (2014b)’s estimator (2.1).
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3. Estimation of conditional extreme quantiles

In this section, we address the problem of estimating conditional extreme quantiles
q(αn|x) of order 1 − αn of the conditional distribution F (·|x) of Y given X = x. Such
quantiles verify F̄ (q(αn|x)|x) = αn where αn → 0 as n→ +∞.

First, we consider the kernel conditional Kaplan-Meier estimator of F̄ (·|x) (see Dabrowska
(1992)), defined for all (x, t) ∈ X × [0,∞) by

̂̄F n(t|x) =
n∏
i=1

[
1− Bi(x)∑n

j=1 1{Zj≥Zi}Bj(x)

]1{Zi≤t,δi=1}

if t ≤ Z(n) (3.5)

and ̂̄F n(t|x) = 0 if t > Z(n), where Z(1) ≤ ... ≤ Z(n) denote the order statistics of Z1, . . . , Zn.
Based on this, an estimator of the conditional quantile q(α|x) (for fixed α ∈ (0, 1)) can be
defined via the generalized inverse of ̂̄F n(·|x), as:

q̂cn(α|x) := ̂̄F←n (α|x) = inf{u, ̂̄F n(u|x) ≤ α}. (3.6)

When αn → 0 as n → ∞, we propose to estimate the conditional extreme quantile q(αn|x)
by the following Weissman-type (Weissman, 1978) estimator:

q̂(c,W )
n (αn|x) := q̂cn

(̂̄F n(Z(n−k)|x)|x
)(̂̄F n(Z(n−k)|x)/αn

)γ̂(c,H)
Z(n−k)

(x)

. (3.7)

Here, q̂cn( ̂̄F n(Z(n−k)|x)|x) is the kernel quantile estimator (3.6), ( ̂̄F n(Z(n−k)|x)/αn)
γ̂
(c,H)
Z(n−k)

(x)
is

an extrapolation factor and γ̂(c,H)
Z(n−k)

(x) is the estimator (2.3) with tn replaced by Z(n−k). The
choice of the threshold Z(n−k) (or equivalently, of the indice k) is discussed in the simulation
study.

Remark 2. When there is no censoring, ̂̄F n(t|x) reduces to

˜̄F n(t|x) :=
n∑
i=1

Kh(x−Xi)1{Zi>t}/
n∑
i=1

Kh(x−Xi) (3.8)

and q̂cn(α|x) becomes

q̂n(α|x) := inf{u, ˜̄F n(u|x) ≤ α}. (3.9)

Several authors have considered the estimator (3.9) when α ∈ (0, 1) is fixed. In particular,
the consistency of (3.9) was established by Stone (1977) and Gannoun (1990). Asymptotic
normality was proved by Stute (1986), Samanta (1989) and Berlinet et al. (2001). The
asymptotic normality of (3.8) was established by Daouia et al. (2011) when t := tn → ∞
(i.e., when (3.8) is used to estimate small tail probabilities). Daouia et al. (2011) also proved
asymptotic normality of (3.9) when estimating extreme quantiles (i.e., when α := αn → 0
as n→∞). �

In the present paper, we assess the properties of the proposed estimator (3.7) via simulations.
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4. Simulation study

In this section, we assess the finite-sample performance of the proposed estimators (2.3)
and (3.7).

4.1. The study design
The simulation design is as follows. We simulate N = 100 samples of size n (n =

200, 400, 600, 800) of independent replicates (Zi, δi, Xi), where Zi = min(Yi, Ci) andXi ∈ R is
uniformly distributed on [0, 1]. The conditional distribution of Yi given Xi = x is Pareto with
parameter γ1(x) = 0.5

(
0.1 + sin(πx)×

(
1.1− 0.5 exp

(
−64 (x− 0.5)2))). The distribution

of Ci is Pareto and its parameter γ2 is chosen to yield the desired censoring percentage c
(c = 10%, 25%, 40%). The pattern of γ1(·) is given in Figure 1.
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Figure 1: Pattern of γ1(·) on [0, 1].

For each of theN simulated samples, we estimate γ1(·) at x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9) using the estimator (2.3) with a biquadratic kernel K(x) = 15

16
(1 − x2)21{−1≤x≤1}. In

order to calculate our estimator, we need to choose the bandwidth h and threshold tn. As
mentioned in Section 3, we take tn as the (n − k)th order statistic Z(n−k), as is classical in
extreme value statistics.

Now, we propose an algorithm for choosing (h, k). This algorithm is adapted from Goege-
beur et al. (2014b). First, we select the bandwidth h using the following cross-validation
criterion, introduced by Yao (1999) and also implemented by Daouia et al. (2011):

h∗ := arg min
h∈H

n∑
i=1

n∑
j=1

(
1{Zi>Zj} − ̂̄F n,−i(Zj|xi)

)2

,

where ̂̄F n,−i is the kernel conditional Kaplan-Meier estimator (3.5) (depending on h) cal-
culated on the sample {(Xj, δj, Zj), j = 1, . . . , n, j 6= i} and H is a grid of h (we take
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H = {h1 < h2 < . . . < hM}, where the points h2, . . . , hM−1 are regularly distributed between
h1 = 1/(5 log n) and hM = 0.5, withM = 60). Once the bandwidth is determined, we choose
k as follows:

1. we compute the estimate γ̂(c,H)
Z(n−k)

(x) with k = 1, . . . , n− 1,

2. we form several successive "blocks" of estimates γ̂(c,H)
Z(n−k)

(x) (one block for k ∈ {1, . . . , 15},
a second block for k ∈ {16, . . . , 30} and so on),

3. we calculate the standard deviation of the estimates within each block,
4. we determine the k-value to be used (thereafter denoted by k∗) from the block with

minimal standard deviation. Precisely, we take the middle value of the k-values in the
block.

Finally, we estimate γ1(x) from (2.3) with (h, k) = (h∗, k∗).

4.2. Results
For each configuration sample size×censoring percentage×covariate value of the

simulation design parameters, we calculate the averaged estimate of γ1(x) and the empirical
root mean square error (RMSE) and mean absolute error (MAE) over the N estimates. We
also obtain asymptotic 95%-level confidence intervals for γ1(x) (the lower and upper bounds
are averaged over the N samples) and the averaged amplitude of the N intervals. Variance
estimates are obtained from a plug-in approach. The results are given in Table 1.

To assess the value of our estimator, we also provide a comparison with two simple
alternative estimation strategies. These alternatives will provide a useful benchmark for
evaluating the gain obtained by using our estimator. The first alternative is a complete-
case procedure ("CC" for short): we remove all censored observations from the simulated
samples and we calculate Goegebeur et al. (2014b)’s kernel version of Hill’s estimator (2.1)
on the resulting datasets. In the second alternative, we treat each observation Zi as if it
were uncensored and we calculate the estimator (2.1) on the whole simulated datasets. We
refer this alternative to as "CI" (for Censoring-Ignored). We obtain the averaged (over the
N simulated datasets) estimates of γ1(x) for both alternative strategies. We also provide the
empirical RMSE and MAE. The results are reported in Table 3 (for CC) and Table 4 (for CI)
in Appendix B (in order to save space and since they do not add much to the comparison,
the confidence intervals and averaged amplitudes are omitted).

From Table 1, the proposed estimator (2.3) of γ1(x) performs quite well in every simu-
lation scenario. As expected, its quality deteriorates as the censoring percentage increases
and the sample size decreases. However, the numerical results indicate that the estimator
still behaves reasonably when censoring is large or the sample size is moderate. Indeed in
both cases, the bias and variability stay limited. Overall, the results are quite robust to
censoring. Figure 2 shows the boxplots of the N realizations of estimator (2.3) for each
x (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). From this figure, it appears that the estimator
(2.3) captures quite well the shape of the conditional extreme-value index function x 7→ γ1(x).
From Table 3 and Table 4, we observe that the CC and CI estimators of γ1(x) are generally
biased (sometimes strongly) even when censoring is moderate. The proposed estimator (2.3)
clearly outperforms these simple alternative strategies.
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4.3. Estimation of conditional extreme quantiles
In this paragraph, we assess performance of the estimator (3.7) of the conditional extreme

quantile q(1/1000|x) of order 1−1/1000 of the conditional distribution of Y given X = x, for
x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The simulation setting is the same as above. For
each configuration of the simulation design parameters, we calculate the estimate (3.7) with
(h∗, k∗) obtained in Section 4.1. Based on the N simulated samples, we obtain the averaged
estimate of q(1/1000|x) and the RMSE and MAE. The results are given in Table 2. Similarly
as above, we apply the CC and CI strategies to estimate q(1/1000|x) from the simulated
samples. The results are given in Table 5 (for CC) and Table 6 (for CI) in Appendix B.

From Table 2, we observe, as expected, that the performance of the proposed estimator
deteriorates as censoring increases and the sample size decreases. When the sample size is
moderate (n = 200, say) and the censoring percentage is moderate to high (c ≥ 25%, say),
the bias can be quite large. For moderate sample size (n = 200), the bias stays limited
however, when censoring does not exceed 10%. When the sample size is sufficiently large
(n ≥ 400, say), the bias of the proposed estimator stays limited in almost all simulation
scenarios. Finally, Figure 3 shows the boxplots of the N realizations of estimator (3.7)
for every x in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Similarly as above, we observe that
estimator (3.7) captures quite well the shape of the conditional extreme quantile function
x 7→ q(1/1000|x). From Table 5 and Table 6, the CC and CI estimators of q(1/1000|x)
are strongly biased (the bias is particularly noticeable when censoring exceeds 10%). These
estimators generally underestimate the true quantile, which could be expected since these
methods ignore the residual survival experience of the censored patients.

5. Conclusion and perspectives

In this paper, we address estimation of the extreme-value index and extreme quantiles
of a heavy-tailed distribution when some random covariate information is available and
the data are randomly right-censored. We constructed an inverse-probability-of-censoring-
weighted kernel version of Hill’s estimator of the extreme-value index and we established its
asymptotic normality. We also proposed a Weissman-type estimator of conditional extreme
quantiles. We assessed the finite-sample performance of these estimators via simulations.
From these simulations, the proposed estimators perform well provided that the sample size
is reasonably large, even when the censoring percentage is high. When the sample size is
moderate, the proposed estimators still perform well provided that censoring stays limited.
Moreover, the proposed estimators appear to correctly capture the shape of the unknown
conditional extreme-value index function and conditional extreme quantile function. Finally,
the proposed estimators clearly outperform simple existing alternatives, such as the classical
complete-case approach.

Now, several issues deserve attention. In particular, a rigorous derivation of asymptotic
properties of the proposed estimator (3.7) of conditional extreme quantiles is needed. This
is a topic for our future research. Extending our convergence results to uniform (over x)
convergence results is also of interest. Uniform convergence results would allow construc-
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tion of simultaneous confidence bands for the conditional extreme-value index function and
conditional extreme quantile function.
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γ1(0.1) = 0.2199 γ1(0.2) = 0.3728 γ1(0.3) = 0.4793 γ1(0.4) = 0.4477 γ1(0.5) = 0.35

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.2255 0.2258 0.2225 0.3595 0.3679 0.3623 0.4673 0.4724 0.4695 0.4250 0.4221 0.4295 0.3620 0.3652 0.3631
(0.2082) (0.2165) (0.2191) (0.2444) (0.2690) (0.2759) (0.2764) (0.2947) (0.3227) (0.2598) (0.2623) (0.2930) (0.2412) (0.2633) (0.2682)
[0.0032] [0.0033] [0.0039] [0.0050] [0.0081] [0.0086] [0.0090] [0.0124] [0.0200] [0.0072] [0.0074] [0.0128] [0.0056] [0.0078] [0.0082]
[0.1394, [0.1342, [0.1222, [0.2150, [0.2078, [0.1839, [0.2800, [0.2622, [0.2261, [0.2486, [0.2256, [0.2022, [0.2244, [0.2146, [0.1964,
0.3115] 0.3174] 0.3228] 0.5041] 0.5280] 0.5408] 0.6547] 0.6827] 0.7130] 0.6013] 0.6185] 0.6568] 0.4996] 0.5158] 0.5299]
0.1721† 0.1832† 0.2006† 0.2891† 0.3202† 0.3568† 0.3747† 0.4205† 0.4869† 0.3527† 0.3929† 0.4546† 0.2752† 0.3012† 0.3335†

400 0.2220 0.2195 0.2141 0.3666 0.3680 0.3664 0.4579 0.4621 0.4615 0.4368 0.4419 0.4409 0.3784 0.3830 0.3809
(0.1534) (0.1557) (0.1609) (0.1945) (0.2053) (0.2130) (0.2433) (0.2458) (0.2551) (0.2305) (0.2560) (0.2741) (0.2118) (0.2272) (0.2298)
[0.0011] [0.0013] [0.0017] [0.0025] [0.0027] [0.0032] [0.0051] [0.0061] [0.0069] [0.0044] [0.0063] [0.0086] [0.0034] [0.0045] [0.0048]
[0.1624, [0.1562, [0.1454, [0.2660, [0.2581, [0.2412, [0.3257, [0.3145, [0.2926, [0.3144, [0.3047, [0.2828, [0.2833, [0.2784, [0.2620,
0.2815] 0.2828] 0.2827] 0.4671] 0.4780] 0.4915] 0.5901] 0.6096] 0.6304] 0.5591] 0.5792] 0.5991] 0.4735] 0.4876] 0.4999]
0.1192† 0.1266† 0.1373† 0.2011† 0.2199† 0.2503† 0.2644† 0.2951† 0.3378† 0.2446† 0.2746† 0.3163† 0.1903† 0.2092† 0.2380†

600 0.2220 0.2192 0.2153 0.3718 0.3689 0.3638 0.4562 0.4532 0.4612 0.4368 0.4362 0.4396 0.3727 0.3770 0.376
(0.1491) (0.1523) (0.1604) (0.1906) (0.1956) (0.2121) (0.2228) (0.2323) (0.2394) (0.1996) (0.2148) (0.2184) (0.1928) (0.2006) (0.2045)
[0.0008] [0.0010] [0.0012] [0.0022] [0.0024] [0.0030] [0.0036] [0.0043] [0.0051] [0.0022] [0.0031] [0.0039] [0.0019] [0.0026] [0.0032]
[0.1732, [0.1680, [0.1592, [0.2892, [0.2779, [0.2618, [0.3487, [0.3339, [0.3222, [0.3371, [0.3262, [0.3122, [0.3060, [0.3041, [0.2939,
0.2709] 0.2704] 0.2714] 0.4544] 0.4598] 0.4658] 0.5638] 0.5725] 0.6001] 0.5366] 0.5463] 0.5671] 0.4395] 0.4500] 0.4593]
0.0977† 0.1024† 0.1121† 0.1651† 0.1819† 0.2040† 0.2150† 0.2385† 0.2779† 0.1995† 0.2201† 0.2549† 0.1549† 0.1681† 0.1898†

800 0.2238 0.2226 0.2205 0.3646 0.3627 0.3626 0.4619 0.4628 0.4637 0.4431 0.4385 0.4350 0.3734 0.3747 0.3767
(0.1372) (0.1420) (0.1510) (0.1713) (0.1825) (0.2000) (0.1944) (0.2179) (0.2354) (0.1874) (0.1960) (0.2097) (0.1870) (0.1956) (0.2042)
[0.0005] [0.0006] [0.0008] [0.0014] [0.0016] [0.0024] [0.0024] [0.0036] [0.0049] [0.0021] [0.0023] [0.0031] [0.0018] [0.0024] [0.0031]
[0.1827, [0.1787, [0.1729, [0.2932, [0.2844, [0.2751, [0.3705, [0.3600, [0.3450, [0.3580, [0.3430, [0.3250 [0.2960, [0.2906, [0.2817,
0.2649] 0.2665] 0.2681] 0.4359] 0.4411] 0.4502] 0.5534] 0.5656] 0.5823] 0.5283] 0.5340] 0.5449] 0.4395] 0.4500] 0.4593]
0.0822† 0.0878† 0.0952† 0.1427† 0.1567† 0.1751† 0.1829† 0.2056† 0.2373† 0.1703† 0.1910† 0.2199† 0.1335† 0.1459† 0.1654†

Table 1. Simulation results for γ1(x). For each configuration of the simulation parameters (n, c, x), the first line
gives the averaged value of the N = 100 estimates of γ1(x). (·): empirical RMSE. [·]: empirical MAE. [·, ·]: 95%-level
asymptotic confidence interval for γ1(x). †: averaged amplitude of the confidence intervals.
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γ1(0.6) = 0.4477 γ1(0.7) = 0.4793 γ1(0.8) = 0.3728 γ1(0.9) = 0.2199

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.4423 0.4439 0.4496 0.4650 0.4657 0.4919 0.3759 0.3818 0.3869 0.2236 0.2201 0.2185
(0.2789) (0.2910) (0.3020) (0.2857) (0.2961) (0.3617) (0.2596) (0.2806) (0.2950) (0.1912) (0.1962) (0.2057)
[0.0094] [0.0112] [0.0135] [0.0125] [0.0143] [0.0362] [0.0070] [0.0104] [0.0121] [0.0022] [0.0026] [0.0030]
[0.2668, [0.2476, [0.2276, [0.2766, [0.2548, [0.2468, [0.2314, [0.2239, [0.2075, [0.1370, [0.1288, [0.1184,
0.6178] 0.6401] 0.6716] [0.6535] [0.6766] [0.7369] 0.5203] 0.5397] 0.5662] 0.3103] 0.3114] 0.3185]
0.3510† 0.3925† 0.4441† 0.3770† 0.4219† 0.4900† 0.2889† 0.3159† 0.3587† 0.1732† 0.1826† 0.2001†

400 0.4338 0.4390 0.4359 0.4680 0.4689 0.4782 0.3665 0.3681 0.3669 0.2202 0.2183 0.2163
(0.2188) (0.2322) (0.2379) (0.2484) (0.2577) (0.2932) (0.2148) (0.2148) (0.2384) (0.1755) (0.1811) (0.1857)
[0.0038] [0.0055] [0.0056] [0.0056] [0.0074] [0.0127] [0.0032] [0.0034] [0.0052] [0.0015] [0.0017] [0.0019]
[0.3124, [0.3028, [0.2810, [0.3368, [0.3209, [0.3078, [0.2644, [0.2570, [0.2399, [0.1608, [0.1554, [0.1486,
0.5552] 0.5753] 0.5909] 0.5991] 0.6170] 0.6487] 0.4685] 0.4791] 0.4938] 0.2796] 0.2812] 0.2840]
0.2428† 0.2725† 0.3099† 0.2622† 0.2961† 0.3409† 0.2040† 0.2220† 0.2539† 0.1188† 0.1257† 0.1354†

600 0.4353 0.4363 0.4411 0.4655 0.4575 0.4583 0.3701 0.3676 0.3662 0.2178 0.2141 0.2092
(0.2060) (0.2200) (0.2271) (0.2161) (0.2195) (0.2434) (0.1880) (0.1881) (0.1898) (0.1450) (0.1503) (0.1622)
[0.0029] [0.0035] [0.0042] [0.0031] [0.0036] [0.0052] [0.0014] [0.0016] [0.0019] [0.0007] [0.0008] [0.0010]
[0.3362, [0.3254, [0.3131, [0.3592, [0.3384, [0.3193, [0.2875, [0.2762, [0.2630, [0.1694, [0.1629, [0.1530
0.5344] 0.5473] 0.5690] 0.5718] 0.5765] 0.5974] 0.4527] 0.4591] 0.4694] 0.2663] 0.2652] 0.2654]
0.1983† 0.2219† 0.2560† 0.2125† 0.2381† 0.2782† 0.1651† 0.1828† 0.2064† 0.0969† 0.1023† 0.1124†

800 0.4397 0.4401 0.4408 0.4623 0.4604 0.4614 0.3697 0.3691 0.3648 0.2211 0.2186 0.2165
(0.1940) (0.1957) (0.2057) (0.2135) (0.2214) (0.2360) (0.1759) (0.1823) (0.1939) (0.1327) (0.1340) (0.1434)
[0.0022] [0.0022] [0.0028] [0.0032] [0.0041] [0.0050] [0.0015] [0.0017] [0.0021] [0.0003] [0.0005] [0.0006]
[0.3544, [0.3453, [0.3301, [0.3696, [0.3560, [0.3419, [0.2990, [0.2920, [0.2772, [0.1801, [0.1751, [0.1687,
0.5250] 0.5349] 0.5514] 0.5550] 0.5649] 0.5809] 0.4405] 0.4462] 0.4525] 0.2621] 0.2622] 0.2642]
0.1706† 0.1895† 0.2213† 0.1854† 0.2089† 0.2391† 0.1415† 0.1543† 0.1753† 0.0820† 0.0871† 0.0954†

Table 1 (continued).
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Figure 2: Boxplots of the N estimates of γ1(x) for n = 200 (1st line), n = 400 (2nd line), n = 600
(3rd line), n = 800 (4th line). Left: c = 10%, center: c = 25%, right: c = 40%.
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q(1/1000, 0.1) = 4.5695 q(1/1000, 0.2) = 13.1358 q(1/1000, 0.3) = 27.4140 q(1/1000, 0.4) = 22.0358 q(1/1000, 0.5) = 11.2201

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 4.9051 4.9217 4.9775 12.8627 15.1259 14.6754 29.7765 34.2158 47.4512 21.1591 20.8619 30.0911 15.1480 17.4580 19.7782
(2.0984) (2.1909) (2.8898) (6.5390) (14.6945) (15.1103) (22.1035) (33.9952) (91.4621) (13.9045) (14.5388) (65.2830) (11.1821) (17.2417) (19.2146)
[1.4987] [1.5564] [1.7181] [5.2294] [7.7024] [8.4554] [15.1600] [19.8775] [35.1628] [9.9591] [10.0064] [20.0666] [6.5352] [8.8535] [11.2048]

400 4.5509 4.4909 4.3758 12.7265 13.0571 13.2056 25.4270 27.4535 28.4287 21.8468 23.7294 25.7412 13.6515 13.5535 14.1533
(1.0149) (1.0231) (1.0838) (4.1748) (4.6262) (6.0845) (14.6121) (19.7593) (23.8713) (11.1816) (14.4708) (23.1045) (5.8417) (6.8835) (7.4824)
[0.7783] [0.7846] [0.8026] [3.3625] [3.6549] [4.2554] [10.8706] [12.0761] [13.1128] [8.2532] [9.6850] [13.5354] [3.8271] [4.2458] [5.0220]

600 4.5291 4.4845 4.3823 13.6544 13.4414 13.1955 24.0469 24.1875 26.2753 20.5668 21.2501 22.4150 13.7379 13.9236 14.0653
(0.8798) (0.9537) (0.9731) (4.3521) (4.5436) (4.6639) (10.3738) (11.3229) (13.2170) (6.8417) (9.0705) (12.0648) (5.5173) (6.0139) (6.7546)
[0.7116] [0.7504] [0.7849] [3.1794] [3.3703] [3.7097] [8.7212] [9.2147] [10.3688] [5.8623] [7.0867] [7.5981] [3.7719] [4.1005] [4.2414]

800 4.6094 4.5768 4.5582 12.3614 12.2954 12.6640 24.7095 25.5801 27.4010 21.7130 21.0711 20.9701 13.0676 13.6430 13.8643
(0.7210) (0.7395) (0.8746) (3.6101) (3.6328) (3.7755) (8.6029) (10.9137) (12.2523) (6.7012) (7.4548) (7.8365) (3.9094) (4.8973) (6.0034)
[0.5762] [0.6098] [0.7028] [2.6401] [3.0161] [3.6113] [6.8036] [8.3678] [10.2965] [5.4887] [5.7443] [6.1833] [3.0581] [3.5205] [3.8947]

q(1/1000, 0.6) = 22.0358 q(1/1000, 0.7) = 27.4140 q(1/1000, 0.8) = 13.1358 q(1/1000, 0.9) = 4.5695

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 24.8973 26.8478 31.6122 35.4726 37.9542 38.4741 15.0307 17.6032 18.7812 4.7138 4.6911 4.7025
(18.6830) (23.4396) (40.3262) (42.2866) (49.5125) (56.0340) (9.5039) (17.6637) (18.1308) (1.6713) (1.8586) (2.0443)
[12.7777] [15.0691] [19.6097] [20.8515] [24.0656] [25.0722] [6.5695] [9.3951] [10.5987] [1.1836] [1.2528] [1.4079]

400 21.0084 23.0927 22.8012 24.7805 27.1309 32.7301 12.8802 13.2370 13.7795 4.6228 4.5499 4.5391
(9.9573) (16.5794) (17.8647) (12.4526) (16.3368) (33.0097) (5.0678) (5.4929) (7.9506) (1.0399) (1.4602) (1.4660)
[7.1595] [9.1380] [9.1503] [9.6803] [11.6037] [16.9023] [4.0083] [4.0705] [5.2544] [1.0226] [1.0585] [1.0976]

600 20.7236 21.3903 22.7184 25.5869 24.5530 25.8020 12.8633 12.7666 12.6675 4.3906 4.3147 4.1995
(8.0589) (9.5612) (12.2271) (10.3777) (10.6816) (14.2859) (3.9845) (4.5512) (4.9016) (0.7658) (0.8289) (0.9169)
[6.1070] [7.2747] [8.3499] [8.3564] [8.5976] [10.6484] [3.1846] [3.2996] [3.4189] [0.6193] [0.6974] [0.7860]

800 21.2026 21.3579 21.7652 24.9908 25.1628 26.8321 12.8467 12.9886 12.7717 4.5190 4.4598 4.4162
(7.5896) (7.6956) (8.6432) (9.3165) (10.0739) (12.0559) (3.5802) (4.1186) (4.4042) (0.6725) (0.6914) (0.7651)
[5.6381] [5.7519] [6.4576] [6.9324] [8.0160] [8.6939] [2.8018] [3.0938] [3.2062] [0.5373] [0.5651] [0.6219]

Table 2. Simulation results for q(1/1000|x). For each configuration of the simulation parameters (n, c, x), the first
line gives the averaged value of the N = 100 estimates of q(1/1000|x). (·): empirical RMSE. [·]: empirical MAE.
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6. Appendix A: proofs

We first provide some additional notations and intermediate technical lemmas. Proofs of
Proposition 2.1 and Theorem 2.2 are given in paragraph 6.2.

6.1. Preliminary results
Note first that H̄n(t|x) and H̄1

n(t|x) in (2.2) can be rewritten as H̄n(t|x) = ϕ̂n(t, x)/
ĝn(x) and H̄1

n(t|x) = ψ̂n(t, x)/ĝn(x) respectively, where ϕ̂n(t, x) = 1
n

∑n
i=1Kh(x−Xi)1{Zi>t},

ψ̂n(t, x) = 1
n

∑n
i=1Kh(x − Xi)1{Zi>t,δi=1} and ĝn(x) = 1

n

∑n
i=1Kh(x − Xi) is the classical

kernel estimator of the density function g.
Recall that H̄(t|x) = P(Z > t|X = x) is the conditional survival function of Z given X = x
and let H̄1(t|x) = P(Z > t, δ = 1|X = x) be the sub-distribution conditional survival
function of Z. We further define ϕ(t, x) = H̄(t|x)g(x), ψ(t, x) = H̄1(t|x)g(x),

Wn,ϕ(x) =
√
nhpϕ(tn, x)

(
ϕ̂n(tn, x)− E [ϕ̂n(tn, x)]

ϕ(tn, x)

)
,

and

Wn,ψ(x) =
√
nhpψ(tn, x)

 ψ̂n(tn, x)− E
[
ψ̂n(tn, x)

]
ψ(tn, x)

 .

Finally in what follows, > will denote the transpose. Lemma 6.1 investigates the limit of
ψ(t, x)/ϕ(t, x) as t → ∞. A similar lemma is obtained by Brahimi et al. (2013) in the
unconditional case.

Lemma 6.1. Suppose that (C1) holds and let x ∈ X . Then limt→∞ ψ(t, x)/ϕ(t, x) = px.

Proof. Note first that ψ(t, x)/ϕ(t, x) = H̄1(t|x)/H̄(t|x). A straightforward calculation
yields H̄1(t|x) =

∫∞
t
Ḡ(u|x)dF (u|x). The change of variable F̄ (u|x) = 1/v yields

H̄1(t|x) =

∫ ∞
1/F̄ (t|x)

v−2Ḡ (F← (1− 1/v|x) |x) dv

:=

∫ ∞
1/F̄ (t|x)

v−1R̄(v|x)dv,

where v 7→ R̄(v|x) is a regularly varying function with index −(1+γ1(x)/γ2(x)). By Theorem
1.2.2 of de Haan and Ferreira (2006),

H̄1 (t|x) =

∫ ∞
1/F̄ (t|x)

v−1R̄(v|x)dv ∼
(

1 +
γ1(x)

γ2(x)

)−1

R̄(1/F̄ (t|x)|x)

when t is large. Now, R̄(1/F̄ (t|x)|x) = F̄ (t|x)Ḡ(t|x) = H̄(t|x) thus

H̄1(t|x) ∼
(

1 +
γ1(x)

γ2(x)

)−1

H̄ (t|x)

when t is large, which implies that limt→∞ H̄
1 (t|x) /H̄ (t|x) = γ2(x)/(γ1(x) + γ2(x)), that is,

limt→∞ ψ(t, x)/ϕ(t, x) = px. �
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Figure 3: Boxplots of the N estimates of q(1/1000|x) for n = 200 (1st line), n = 400 (2nd line),
n = 600 (3rd line), n = 800 (4th line). Left: c = 10%, center: c = 25%, right: c = 40%.
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Lemma 6.2. Suppose (C1), (C2) and (C3) hold. If tn → ∞ and h log tn → 0 as n → ∞,
then

sup
d(x,x′)≤h

∣∣∣∣ H̄(tn|x)

H̄(tn|x′)
− 1

∣∣∣∣ = O(h log tn).

Proof. The proof is similar to proof of Lemma 1 in Daouia et al. (2011) and is therefore
omitted. �

The next lemma is dedicated to the asymptotic properties of ϕ̂n(t, x) and ψ̂n(t, x) .

Lemma 6.3. Suppose (C1)-(C6) hold. Let tn be such that tn → ∞, h log tn → 0 and
nhpH̄(tn|x)→∞ as n→∞. Then, for all x ∈ X such that g(x) > 0,

1. E [ϕ̂n(tn, x)] = ϕ(tn, x)(1 +O(h log tn)) and E[ψ̂n(tn, x)] = ψ(tn, x)(1 +O(h log tn)).

2. As n→∞, Wn,ϕ(x)
D→ N (0, ‖K‖2

2) and Wn,ψ(x)
D→ N (0, ‖K‖2

2). Moreover as n→∞,
Wn(x) := (Wn,ϕ(x),Wn,ψ(x))> converges in distribution to a bivariate Gaussian vector
N (0,M), where

M :=

(
‖K‖2

2 ‖K‖2
2

√
px

‖K‖2
2

√
px ‖K‖2

2

)
.

Proof.

1. We prove that E [ϕ̂n(tn, x)] = ϕ(tn, x)(1+O(h log tn)) (the proof is similar for ψ̂n(tn, x)
and is thus omitted). The observations (Zi, Xi, δi), i = 1, ..., n are identically dis-
tributed, thus

E [ϕ̂n(tn, x)] =

∫
Rp
Kh(x− s)H̄(tn|s)g(s)ds

=

∫
S

K(u)H̄(tn|x− hu)g(x− hu)du

under (C6). It follows that

|E [ϕ̂n(tn, x)]− ϕ(tn, x)| ≤ H̄(tn|x)

∫
S

K(u) |g(x− hu)− g(x)| du

+H̄(tn|x)

∫
S

K(u)

∣∣∣∣H̄(tn|x− hu)

H̄(tn|x)
− 1

∣∣∣∣ g(x− hu)du

:= A1,x + A2,x.

Under (C4) and since g(x) > 0, we have

A1,x ≤ H̄(tn|x)cgh

∫
S

d(u, 0)K(u)du = ϕ(tn, x)O(h). (6.10)
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By Lemma 6.2, we have

sup
u∈S

∣∣∣∣H̄(tn|x− hu)

H̄(tn|x)
− 1

∣∣∣∣ = O(h log tn),

thus

A2,x = H̄(tn|x)O(h log tn)

∫
S

K(u)g(x− hu)du

= ϕ(tn, x)O(h log tn). (6.11)

Combining (6.10) and (6.11) concludes the proof.
2. We first prove asymptotic normality of Wn,ϕ(x) (the proof for Wn,ψ(x) is similar and

is thus omitted). Let

Wn,ϕ(x) :=
ϕ̂n(tn, x)− E [ϕ̂n(tn, x)]

ϕ(tn, x)Λn(x)

where Λn(x) = (nhpϕ(tn, x))−1/2. Straightforward calculations allow to rewriteWn,ϕ(x)
as:

Wn,ϕ(x) =
1

ϕ(tn, x)Λn(x)

1

n

n∑
i=1

{
Kh(x−Xi)1{Zi>tn} − E

[
Kh(x−X)1{Z>tn}

]}
:=

1

ϕ(tn, x)Λn(x)n

n∑
i=1

Ti,n,

that is, as the row sum of the triangular array of random variables (Ti,n, i = 1, . . . , n),
n ≥ 1, where for fixed n, Ti,n, i = 1, . . . , n are independent and identically distributed
zero-mean random variables. Thus, to establish the asymptotic normality of Wn,ϕ(x),
we verify Lyapunov’s condition for triangular arrays of random variables. As a prelim-
inary step, we first calculate the variance of Wn,ϕ(x). We have:

var(Ti,n) = var
(
Kh(x−Xi)1{Zi>tn}

)
= E

[
K2
h(x−Xi)1{Zi>tn}

]
− E

[
Kh(x−Xi)1{Zi>tn}

]2
.

From Lemma 2 of Goegebeur et al. (2014b), E
[
K2
h(x−Xi)1{Zi>tn}

]
= ϕ(tn, x)h−p‖K‖2

2(1+
O(h log tn)) and from statement 1 in Lemma 6.3, E

[
Kh(x−Xi)1{Zi>tn}

]
= ϕ(tn, x)(1+

O(h log tn)). It follows that

var(Ti,n) = ϕ(tn, x)h−p‖K‖2
2(1 +O(h log tn))− ϕ2(tn, x)(1 +O(h log tn))2 (6.12)

and thus,

var(Wn,ϕ(x)) =
1

ϕ2(tn, x)Λ2
n(x)n2

nvar(Ti,n)

= ‖K‖2
2(1 +O(h log tn))− hpϕ(tn, x)(1 +O(h log tn))2.

18



From this, we deduce that var(Wn,ϕ(x))→ ‖K‖2
2 as n→∞. Now, we prove that Lya-

punov’s condition for triangular arrays is satisfied, namely we show that
∑n

i=1 E|T̃i,n|3 →
0 as n→∞, where T̃i,n := Ti,n/ {ϕ(tn, x)Λn(x)n}. It is straightforward to prove that

|T̃i,n| ≤
2‖K‖∞√
nhpϕ(tn, x)

,

where ‖ · ‖∞ denotes the supremum norm and thus |T̃i,n|3 ≤ 2‖K‖∞√
nhpϕ(tn,x)

|T̃i,n|2. Taking
expectation on both sides of this inequality yields

E|T̃i,n|3 ≤
2‖K‖∞h2p

(nhpϕ(tn, x))3/2
var(Ti,n),

and using (6.12), we obtain that
n∑
i=1

E|T̃i,n|3 ≤
2‖K‖∞‖K‖2

2√
nhpϕ(tn, x)

(1 + o(1))− 2‖K‖∞hpϕ(tn, x)√
nhpϕ(tn, x)

(1 + o(1))→ 0

as n→∞. Lyapunov’s condition is verified, thusWn,ϕ(x)/
√

var(Wn,ϕ(x))
D−→ N (0, 1).

Finally, Wn,ϕ(x)
D−→ N (0, ‖K‖2

2).
We now prove thatWn(x) := (Wn,ϕ(x),Wn,ψ(x))> converges in distribution toN (0,M).
According to Cramér-Wold device (e.g., van der Vaart (1998)), it is sufficient to prove
that `>Wn(x)

D−→ N (0, `>M`) for all ` = (`1, `2)> ∈ R2, ` 6= 0. Some simple algebra
yields:

`>Wn(x) :=
1

ϕ(tn, x)Λn(x)n

n∑
i=1

T ∗i,n,

where

T ∗i,n = Kh (x−Xi)

{
`11{Zi>tn} + `21{Zi>tn,δi=1}

√
ϕ(tn, x)

ψ(tn, x)

}

−E

[
Kh (x−X)

{
`11{Z>tn} + `21{Z>tn,δ=1}

√
ϕ(tn, x)

ψ(tn, x)

}]
.

Similar calculations as for var(Ti,n) yield

var(T ∗i,n) = l21
(
ϕ(tn, x)h−p‖K‖2

2(1 +O(h log tn))− ϕ2(tn, x)(1 +O(h log tn))2
)

+l22
(
p−1
x + o(1)

) (
ψ(tn, x)h−p‖K‖2

2(1 +O(h log tn))

−ψ2(tn, x)(1 +O(h log tn))2
)

+2l1l2
(
p−1/2
x + o(1)

) (
ψ(tn, x)h−p‖K‖2

2(1 +O(h log tn))

−ϕ(tn, x)ψ(tn, x)(1 +O(h log tn))2
)
,
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and thus

lim
n→∞

var(`>Wn(x)) = lim
n→∞

1

h−pϕ(tn, x)
var(T ∗i,n)

= `2
1‖K‖2

2 + `2
2‖K‖2

2 + 2`1`2‖K‖2
2

√
px

= `>M`.

Asymptotic normality of `>Wn(x) follows from Lyapunov’s condition: limn→∞
∑n

i=1 E|T ∗i,n/
{ϕ(tn, x)Λn(x)n} |3 = 0 (calculations are similar as above and are omitted for con-
ciseness). Thus, for all ` ∈ R2, ` 6= 0, `>Wn(x) converges in distribution to the
univariate normal distribution N (0, `>M`). Cramér-Wold device finally implies that
Wn(x)

D−→ N (0,M). �

6.2. Proofs of main results

Proof of Proposition 2.1. We decompose√
nhpH̄(tn|x)(p̂tn(x)− px) =

√
nhpH̄(tn|x)

(
p̂tn(x)− ψ(tn, x)

ϕ(tn, x)

)
+
√
nhpH̄(tn|x)

(
ψ(tn, x)

ϕ(tn, x)
− px

)
.

We first prove that the first term in this sum is asymptotically normal. This follows from an
application of the Delta method. We have:√

nhpH̄(tn|x)

(
ψ̂n(tn,x)
ϕ(tn,x)

− ψ(tn,x)
ϕ(tn,x)

ϕ̂n(tn,x)
ϕ(tn,x)

− 1

)
=

 1√
g(x)

√
ψ(tn,x)
ϕ(tn,x)

Wn,ψ(x)

1√
g(x)

Wn,ϕ(x)


+

 1√
g(x)

√
ψ(tn,x)
ϕ(tn,x)

√
nhpψ(tn, x)

(
E[ψ̂n(tn,x)]
ψ(tn,x)

− 1

)
1√
g(x)

√
nhpϕ(tn, x)

(
E[ϕ̂n(tn,x)]
ϕ(tn,x)

− 1
)

 .

As n→∞, ψ(tn, x)/ϕ(tn, x)→ px by Lemma 6.1. Moreover, by statement 1 in Lemma 6.3,
E[ψ̂n(tn, x)]/ψ(tn, x)− 1 = O(h log tn) and E[ϕ̂n(tn, x)]/ϕ(tn, x)− 1 = O(h log tn) (note that
under the conditions of Proposition 2.1, the condition h log tn → 0 of Lemma 6.3 is satisfied).
Finally by assumption, nhp+2H̄(tn|x)(log tn)2 → 0 as n→∞. If follows that√

nhpH̄(tn|x)

(
ψ̂n(tn,x)
ϕ(tn,x)

− ψ(tn,x)
ϕ(tn,x)

ϕ̂n(tn,x)
ϕ(tn,x)

− 1

)
=

 1√
g(x)

√
ψ(tn,x)
ϕ(tn,x)

Wn,ψ(x)

1√
g(x)

Wn,ϕ(x)

+ o(1).

By statement 2 in Lemma 6.3, this converges in distribution to a bivariate Gaussian vector
N (0,Σ), with

Σ :=

(‖K‖22px
g(x)

‖K‖22px
g(x)

‖K‖22px
g(x)

‖K‖22
g(x)

)
.
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Consider the function φ(x, y) = x
y
. The map φ is differentiable at (x, y) (if y 6= 0), with

derivative φ′(x, y) = ( 1
y
,− x

y2
). It follows from the Delta method (van der Vaart, 1998) that

√
nhpH̄(tn|x)

(
p̂tn(x)− ψ(tn, x)

ϕ(tn, x)

)
=
√
nhpH̄(tn|x)

(
φ

(
ψ̂n(tn, x)

ϕ(tn, x)
,
ϕ̂n(tn, x)

ϕ(tn, x)

)
− φ

(
ψ(tn, x)

ϕ(tn, x)
, 1

))

converges in distribution to N (0, φ′(px, 1)Σ(φ′(px, 1))>), that is, to the normal distribution
N (0, px(1− px)‖K‖2

2/g(x)). Using similar arguments as Beirlant et al. (2007), one shows
that

√
nhpH̄(tn|x)

(
ψ(tn,x)
ϕ(tn,x)

− px
)

= o(1), which concludes the proof. �

Proof of Theorem 2.2. First, we decompose
√
nhpH̄(tn|x)(γ̂

(c,H)
tn (x)− γ1(x)) as:√

nhpH̄(tn|x)
(
γ̂

(c,H)
tn (x)− γ1(x)

)
=

1

p̂tn(x)

√
nhpH̄(tn|x)

(
γ̂Htn(x)− γ(x)

)
− γ1(x)

p̂tn(x)

√
nhpH̄(tn|x) (p̂tn(x)− px)

=
1

px

√
nhpH̄(tn|x)

(
γ̂Htn(x)− γ(x)

)
−γ1(x)

px

√
nhpH̄(tn|x) (p̂tn(x)− px) + oP(1)

:=
1

px
Pn,x −

γ1(x)

px
Rn,x + oP(1). (6.13)

Then, some simple but tedious algebra yields

Pn,x =

√
nhp

g(x)ϕ(tn, x)

(
1

n

n∑
i=1

Kh(x−Xi) log

(
Zi
tn

)
1{Zi>tn} −

∫ ∞
tn

ϕ(z, x)

z
dz

)

−γ(x)

√
nhp

g(x)ϕ(tn, x)
(ϕ̂n(tn, x)− ϕ(tn, x)) + oP(1),

Rn,x =

√
nhp

g(x)ϕ(tn, x)

(
ψ̂n(tn, x)− ψ(tn, x)

)
− px

√
nhp

g(x)ϕ(tn, x)
(ϕ̂n(tn, x)− ϕ(tn, x)) + oP(1).

Therefore, asymptotic normality of γ̂(c,H)
tn (x) will be proved if we can establish the asymptotic

normality of the random vector

Xn(x) =

√
nhp

g(x)ϕ(tn, x)


ϕ̂n(tn, x)− ϕ(tn, x)

ψ̂n(tn, x)− ψ(tn, x)

1

n

n∑
i=1

Kh(x−Xi) log

(
Zi
tn

)
1{Zi>tn} −

∫ ∞
tn

ϕ(z, x)

z
dz

 ,
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whereafter the result will follow by a straightforward application of the Delta method. The
asymptotic normality of Xn(x) is proved by using Cramér-Wold device. Let ` = (`1, `2, `3)> ∈
R3, ` 6= 0. Then

`>Xn(x) :=

√
nhp

g(x)ϕ(tn, x)

1

n

n∑
i=1

T †i,n,

where

T †i,n = l1Kh(x−Xi)1{Zi>tn} + l2Kh(x−Xi)1{Zi>tn,δi=1} + l3Kh(x−Xi) log

(
Zi
tn

)
1{Zi>tn}

−
(
l1ϕ(tn, x) + l2ψ(tn, x) + l3

∫ ∞
tn

ϕ(z, x)

z
dz

)
.

From Lemma 2 of Goegebeur et al. (2014b), it holds that:

E
[
Kh(x−Xi) log(Zi/tn)1{Zi>tn}

]
= γ(x)ϕ(tn, x)(1 +O(h log tn)),

E
[
K2
h(x−Xi) log(Zi/tn)1{Zi>tn}

]
= γ(x)ϕ(tn, x)h−p‖K‖2

2(1 +O(h log tn))

and

E
[
K2
h(x−Xi) log2(Zi/tn)1{Zi>tn}

]
= 2γ2(x)ϕ(tn, x)h−p‖K‖2

2(1 +O(h log tn)).

Using this, lengthy but simple calculations yield

var(`>Xn(x)) =
hp

g(x)ϕ(tn, x)
var(T †i,n)

= `2
1

‖K‖2
2

g(x)
+ `2

2

px‖K‖2
2

g(x)
+ `2

3

2γ2(x)‖K‖2
2

g(x)
+ 2`1`2

px‖K‖2
2

g(x)

+2`1`3
γ(x)‖K‖2

2

g(x)
+ 2`2`3

γ(x)px‖K‖2
2

g(x)
+ o(1)

= `>Γ`+ o(1),

where

Γ :=


‖K‖22
g(x)

‖K‖22px
g(x)

‖K‖22γ(x)

g(x)
‖K‖22px
g(x)

‖K‖22px
g(x)

‖K‖22pxγ(x)

g(x)
‖K‖22γ(x)

g(x)

‖K‖22pxγ(x)

g(x)

2‖K‖22γ2(x)

g(x)

 .

Now, to establish the asymptotic normality of `>Xn(x), we verify Lyapounov’s criterion
for triangular arrays of random variables. In the present context, this consists in proving
that limn→∞

∑n
i=1 E|T

†
i,n/{ng(x)h−pϕ(tn, x)}1/2|3 = 0 (calculations are similar as in proof

of Lemma 6.3 and are thus omitted). If follows that for all ` = (`1, `2, `3)> ∈ R3, ` 6=
0, `>Xn(x) converges in distribution to N (0, `>Γ`). By Cramér-Wold device, Xn(x)

D−→
N (0,Γ). Finally, based on the decomposition (6.13), on the expressions of Pn,x and Rn,x and
on the asymptotic normality of Xn(x), a straightforward application of the Delta method
completes the proof of Theorem 2.2. �
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7. Appendix B: simulation results for the complete-case and censoring-ignored strategies
γ1(0.1) = 0.2199 γ1(0.2) = 0.3728 γ1(0.3) = 0.4793 γ1(0.4) = 0.4477 γ1(0.5) = 0.35

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.2014 0.1719 0.1556 0.3181 0.2720 0.2099 0.3799 0.3107 0.2453 0.4112 0.2953 0.2229 0.3689 0.2828 0.2208
(0.2137) (0.2344) (0.2993) (0.2939) (0.3251) (0.4053) (0.3262) (0.4122) (0.4830) (0.3130) (0.4716) (0.4741) (0.2556) (0.2756) (0.3625)
[0.0034] [0.0041] [0.0069] [0.0104] [0.0141] [0.0309] [0.0153] [0.0390] [0.0613] [0.0134] [0.0447] [0.0548] [0.0060] [0.0080] [0.0203]

400 0.2060 0.1817 0.1434 0.3220 0.2680 0.2149 0.3859 0.3107 0.2507 0.3717 0.2996 0.2314 0.3234 0.2672 0.2146
(0.1648) (0.2107) (0.2767) (0.2518) (0.3248) (0.3974) (0.3085) (0.4106) (0.4782) (0.2848) (0.3850) (0.4651) (0.2275) (0.2905) (0.3579)
[0.0012] [0.0025] [0.0064] [0.0054] [0.0131] [0.0265] [0.0118] [0.0309] [0.0543] [0.0088] [0.0243] [0.0487] [0.0026] [0.0078] [0.0199]

600 0.2008 0.1836 0.1477 0.3209 0.2661 0.2041 0.3981 0.3082 0.2485 0.3817 0.3044 0.2342 0.3231 0.2702 0.2124
(0.1623) (0.1973) (0.2689) (0.2340) (0.3237) (0.3907) (0.2884) (0.4037) (0.4605) (0.2656) (0.3786) (0.4621) (0.2013) (0.2842) (0.3510)
[0.0011] [0.0020] [0.0057] [0.0038] [0.0126] [0.0253] [0.0089] [0.0280] [0.0510] [0.0065] [0.0226] [0.0465] [0.0023] [0.0075] [0.0198]

800 0.2039 0.1753 0.1446 0.3186 0.2690 0.2086 0.3863 0.3218 0.2379 0.3735 0.3091 0.2338 0.3267 0.2697 0.2099
(0.1564) (0.1870) (0.2545) (0.2338) (0.3223) (0.3752) (0.2759) (0.3969) (0.4514) (0.2639) (0.3723) (0.4525) (0.1967) (0.2839) (0.3443)
[0.0008] [0.0018] [0.0052] [0.0037] [0.0116] [0.0228] [0.0073] [0.0261] [0.0491] [0.0062] [0.0205] [0.0447] [0.0021] [0.0072] [0.0202]

γ1(0.6) = 0.4477 γ1(0.7) = 0.4793 γ1(0.8) = 0.3728 γ1(0.9) = 0.2199

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.3698 0.2973 0.2272 0.3902 0.3245 0.2370 0.3126 0.2594 0.2144 0.2091 0.1806 0.1492
(0.3029) (0.3900) (0.4707) (0.3265) (0.4066) (0.4922) (0.2681) (0.3394) (0.3994) (0.2111) (0.2194) (0.2735)
[0.0121] [0.0284] [0.0534] [0.0169] [0.0309] [0.0636] [0.0072] [0.0161] [0.0289] [0.0031] [0.0034] [0.0071]

400 0.3685 0.3127 0.2289 0.3801 0.3153 0.2408 0.3129 0.2569 0.2072 0.1988 0.1754 0.1507
(0.2936) (0.3688) (0.4678) (0.3189) (0.4059) (0.4884) (0.2593) (0.3305) (0.3969) (0.1897) (0.2124) (0.2631)
[0.0092] [0.0259] [0.0497] [0.0129] [0.0304] [0.0594] [0.0061] [0.0149] [0.0282] [0.0023] [0.0029] [0.0064]

600 0.3734 0.3045 0.2260 0.3916 0.3127 0.2417 0.3153 0.2701 0.2084 0.2024 0.1745 0.1464
(0.2753) (0.3584) (0.4608) (0.2982) (0.4042) (0.4875) (0.2446) (0.3206) (0.3954) (0.1547) (0.2051) (0.2613)
[0.0074] [0.0220] [0.0491] [0.0096] [0.0292] [0.0579] [0.0046] [0.0116] [0.0277] [0.0018] [0.0027] [0.0059]

800 0.3749 0.3010 0.2313 0.3894 0.3167 0.2412 0.3231 0.2684 0.2128 0.2023 0.1742 0.1487
(0.2723) (0.3430) (0.4552) (0.2905) (0.4033) (0.4863) (0.2358) (0.3132) (0.3814) (0.1453) (0.1958) (0.2579)
[0.0070] [0.0186] [0.0483] [0.0095] [0.0280] [0.0576] [0.0035] [0.0112] [0.0263] [0.0008] [0.0025] [0.0055]

Table 3. Simulation results for γ1(x): complete-case procedure. For each configuration of the simulation param-
eters (n, c, x), the first line gives the averaged value of the N = 100 CC-estimates of γ1(x). (·): empirical RMSE. [·]:
empirical MAE.
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γ1(0.1) = 0.2199 γ1(0.2) = 0.3728 γ1(0.3) = 0.4793 γ1(0.4) = 0.4477 γ1(0.5) = 0.35

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.2096 0.1794 0.1510 0.3094 0.2632 0.2106 0.3800 0.3097 0.2372 0.3765 0.3063 0.2355 0.3236 0.2664 0.2054
(0.2118) (0.2192) (0.2644) (0.2686) (0.3311) (0.4128) (0.3433) (0.4321) (0.5021) (0.2863) (0.3760) (0.4647) (0.2455) (0.2978) (0.3803)
[0.0041] [0.0050] [0.0058] [0.0071] [0.0141] [0.0288] [0.0151] [0.0421] [0.0640] [0.0093] [0.0240] [0.0476] [0.0046] [0.0098] [0.0227]

400 0.2071 0.1828 0.1527 0.3199 0.2665 0.2078 0.3727 0.3000 0.2302 0.3718 0.3032 0.2330 0.3269 0.2724 0.2175
(0.1563) (0.2092) (0.2594) (0.2431) (0.3261) (0.4063) (0.3278) (0.4235) (0.4991) (0.2845) (0.3702) (0.4634) (0.2182) (0.2807) (0.3640)
[0.0015] [0.0026] [0.0050] [0.0046] [0.0125] [0.0279] [0.0140] [0.0339] [0.0633] [0.0088] [0.0231] [0.0473] [0.0042] [0.0073] [0.0183]

600 0.2038 0.1788 0.1480 0.3181 0.2642 0.2057 0.3988 0.3201 0.2425 0.3623 0.2974 0.2287 0.3217 0.2705 0.2107
(0.1517) (0.2067) (0.2483) (0.2377) (0.3196) (0.4048) (0.2873) (0.3990) (0.4866) (0.2740) (0.3678) (0.3686) (0.1965) (0.2719) (0.3533)
[0.0010] [0.0023] [0.0045] [0.0040] [0.0122] [0.0274] [0.0082] [0.0265] [0.0568] [0.0078] [0.0227] [0.0386] [0.0026] [0.0070] [0.0179]

800 0.2019 0.1790 0.1504 0.3192 0.2676 0.2098 0.3911 0.3184 0.2430 0.3734 0.3033 0.2342 0.3245 0.2699 0.2127
(0.1431) (0.2033) (0.2137) (0.2356) (0.3144) (0.4037) (0.2783) (0.3012) (0.3861) (0.2728) (0.3400) (0.3621) (0.1963) (0.2630) (0.3406)
[0.0008] [0.0021] [0.0031] [0.0039] [0.0118] [0.0270] [0.0065] [0.0240] [0.0564] [0.0066] [0.0217] [0.0360] [0.0021] [0.0063] [0.0162]

γ1(0.6) = 0.4477 γ1(0.7) = 0.4793 γ1(0.8) = 0.3728 γ1(0.9) = 0.2199

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 0.3689 0.2971 0.2291 0.3946 0.3165 0.2432 0.3253 0.2763 0.2133 0.2031 0.1784 0.1529
(0.2958) (0.3881) (0.4676) (0.3180) (0.4070) (0.4959) (0.2616) (0.3198) (0.4094) (0.1920) (0.2157) (0.2590)
[0.0105] [0.0259] [0.0497] [0.0141] [0.0316] [0.0589] [0.0083] [0.0128] [0.0293] [0.0024] [0.0028] [0.0053]

400 0.3691 0.3038 0.2352 0.3882 0.3149 0.2370 0.3184 0.2647 0.2068 0.1994 0.1760 0.1470
(0.2868) (0.3793) (0.4609) (0.3105) (0.4055) (0.4923) (0.2423) (0.3288) (0.4074) (0.1776) (0.2129) (0.2202)
[0.0089] [0.0228] [0.0465] [0.0121] [0.0293] [0.0598] [0.0049] [0.0132] [0.0285] [0.0017] [0.0026] [0.0057]

600 0.3702 0.2998 0.2298 0.3908 0.3116 0.2366 0.3187 0.2649 0.2089 0.2028 0.1781 0.1499
(0.2808) (0.3746) (0.4568) (0.2980) (0.4035) (0.4827) (0.2387) (0.3285) (0.4049) (0.1590) (0.2045) (0.2147)
[0.0079] [0.0211] [0.0443] [0.0096] [0.0291] [0.0597] [0.0042] [0.0124] [0.0274] [0.0009] [0.0021] [0.0052]

800 0.3742 0.3057 0.2322 0.3888 0.3164 0.2405 0.3213 0.2669 0.2104 0.2053 0.1804 0.1503
(0.2712) (0.3668) (0.4542) (0.2204) (0.4017) (0.4187) (0.2285) (0.3255) (0.4030) (0.1406) (0.1997) (0.2040)
[0.0067] [0.0210] [0.0412] [0.0092] [0.0273] [0.0575] [0.0034] [0.0117] [0.0267] [0.0006] [0.0018] [0.0051]

Table 4. Simulation results for γ1(x): censoring-ignored procedure. For each configuration of the simulation
parameters (n, c, x), the first line gives the averaged value of the N = 100 CI-estimates of γ1(x). (·): empirical RMSE. [·]:
empirical MAE.
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q(1/1000, 0.1) = 4.5695 q(1/1000, 0.2) = 13.1358 q(1/1000, 0.3) = 27.4140 q(1/1000, 0.4) = 22.0358 q(1/1000, 0.5) = 11.2201

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 4.1080 3.2491 2.8883 9.8051 9.6386 13.4212 13.6245 8.6236 5.5780 13.5252 7.7951 4.5972 11.0114 6.9258 4.3742
(3.0417) (3.6299) (3.9964) (8.9486) (15.2268) (15.5815) (25.4495) (39.4626) (93.1253) (14.3937) (15.8764) (67.5979) (13.5663) (21.2262) (22.9915)
[2.2933] [2.4723] [2.8388] [6.8961] [7.8926] [10.0760] [16.3037] [21.8665] [37.8360] [11.1897] [15.2898] [27.4387] [7.8146] [11.1363] [13.8459]

400 4.0718 3.4227 2.5847 9.2295 6.2094 4.2650 13.9239 8.3275 5.4401 12.6516 7.5983 4.7965 9.0064 6.1299 4.2915
(2.0162) (2.3928) (3.0292) (5.2196) (7.2136) (8.9502) (15.4528) (20.2842) (25.0422) (10.5159) (14.7007) (27.3086) (6.5536) (8.3824) (9.6400)
[0.8698] [1.2616] [1.9848] [4.7442] [6.9404] [8.8708] [15.5384] [18.0865] [20.9739] [9.7117] [14.4417] [17.2394] [5.0531] [7.1533] [9.5287]

600 3.9357 3.4370 2.7061 8.7731 6.0104 4.9871 15.2458 8.1524 5.4168 13.1873 7.9479 4.8380 9.1764 6.1949 4.1538
(0.9810) (1.2672) (1.9026) (4.8776) (7.1786) (8.1874) (13.2615) (19.4176) (20.0551) (9.7162) (14.3171) (17.2845) (6.4945) (8.2429) (9.1162)
[0.8568] [1.1605] [1.8634] [4.5176] [6.1254] [8.1487] [12.3215] [17.2616] [19.9972] [8.9936] [14.0880] [17.1978] [4.9579] [7.0686] [9.0664]

800 3.9981 3.2871 2.6670 8.6456 6.1839 4.0785 14.0891 8.8163 4.9508 12.6915 8.1450 4.8126 9.2001 6.2326 4.1118
(0.8457) (1.2627) (1.8285) (4.7951) (7.0478) (8.0909) (12.9882) (18.7219) (19.4846) (8.9834) (14.0463) (17.2540) (4.8982) (5.1481) (7.1425)
[0.7563] [1.0877] [1.5025] [4.5147] [5.9519] [8.0573] [11.3990] [16.5977] [19.4632] [8.3843] [13.8909] [16.2232] [4.4539] [6.9889] [8.1084]

q(1/1000, 0.6) = 22.0358 q(1/1000, 0.7) = 27.4140 q(1/1000, 0.8) = 13.1358 q(1/1000, 0.9) = 4.5695

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 12.7008 7.8237 4.7413 15.9442 9.7660 5.1182 8.7584 5.9670 4.2613 4.1983 3.4545 2.7492
(22.1353) (24.8535) (41.5405) (44.3813) (51.9383) (58.4641) (12.7927) (18.5359) (19.0613) (2.4890) (2.5222) (3.0214)
[12.9255] [15.2122] [22.3945] [21.5389] [27.2877] [29.2957] [7.2900] [11.2382] [13.8745] [2.3626] [2.5279] [2.8785]

400 12.7121 8.4974 4.7249 13.5699 8.9238 5.1427 8.6218 5.7283 3.9875 3.8840 3.2568 2.7641
(11.9283) (17.9500) (19.3630) (14.8161) (17.9546) (36.3483) (5.5306) (7.5235) (9.0031) (1.9958) (2.4203) (2.8869)
[10.2847] [13.6622] [17.3110] [14.1996] [17.5721] [22.2713] [5.0160] [7.4075] [9.1483] [1.8479] (2.3574) [2.8754]

600 12.9843 7.8050 4.5757 14.4691 8.3937 5.0858 8.5311 6.2330 4.0638 3.9726 3.2510 2.6818
(9.9377) (13.3955) (17.3035) (13.6632) (17.1534) (21.3662) (5.1311) (7.0562) (8.8028) (0.8761) (1.3547) (1.8280)
[9.2349] [13.2308] [17.2601] [12.9716] [16.0203] [20.9282] [4.7467] [6.9028] [9.0720] [0.7527] [1.3308] [1.8577]

800 13.0067 7.7419 4.8322 14.1145 8.6326 5.1386 9.0117 6.1506 4.1788 3.9813 3.2770 2.7368
(9.7905) (12.4117) (17.2368) (12.8020) (16.9134) (20.3035) (4.5578) (7.0047) (7.9912) (0.8668) (1.3321) (1.7768)
[9.0793] [12.2940] [17.2036] [12.3011] [15.7814] [20.2754] [4.1976] [6.0852] [8.9570] [0.7406] [1.3160] [1.8327]

Table 5. Simulation results for q(1/1000|x): complete-case procedure. For each configuration of the simulation
parameters (n, c, x), the first line gives the averaged value of the N = 100 CC-estimates of q(1/1000|x). (·): empirical
RMSE. [·]: empirical MAE.
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q(1/1000, 0.1) = 4.5695 q(1/1000, 0.2) = 13.1358 q(1/1000, 0.3) = 27.4140 q(1/1000, 0.4) = 22.0358 q(1/1000, 0.5) = 11.2201

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 4.2897 3.4537 2.8371 8.7684 6.2767 4.3502 15.0531 9.0258 5.3598 14.3938 8.6377 5.2354 9.7966 6.5747 4.2460
(2.3776) (2.4435) (2.8471) (8.5582) (15.1524) (17.8639) (24.5730) (38.8192) (95.7441) (15.3041) (18.8140) (68.8797) (13.2965) (15.4608) (27.1106)
[2.1389] [2.4090] [2.7546] [6.9917] [9.8591] [10.7856] [17.2359] [22.4204] [42.0542] [11.2257] [15.8982] [26.8004] [8.0146] [9.0510] [13.9742]

400 4.0967 3.4640 2.8344 9.1486 6.2933 4.1896 13.5288 8.1083 4.9534 13.5414 8.3314 5.0511 9.5372 6.5826 4.4676
(1.8949) (2.2388) (2.7832) (4.8504) (7.0134) (8.5750) (15.7748) (20.4761) (25.4959) (12.0645) (16.9884) (26.0269) (6.2990) (6.9478) (9.9912)
[1.7477] [2.1237] [2.7351] [4.4303] [6.8425] [8.7462] [13.9894] [19.3057] [22.4606] [9.1570] [13.7044] [15.9848] [4.8359] [6.6975] [7.7526]

600 4.0016 3.3798 2.7494 8.8928 6.1247 4.1215 15.8611 9.1643 5.3512 12.2564 7.8021 4.8465 9.1106 6.3891 4.2628
(0.8834) (1.2082) (1.7530) (4.7068) (7.0079) (8.0362) (12.5660) (18.3917) (21.0892) (9.9940) (14.3552) (15.2116) (5.8370) (6.9393) (6.9889)
[0.7296] [1.2090] [1.7201] [4.3913] [6.0111] [8.0143] [11.9221] [18.2497] [21.0628] [8.9485] [13.2338] [15.1894] [4.4512] [5.8311] [5.9573]

800 3.9709 3.3922 2.7954 9.0251 6.3347 4.2389 15.0829 9.0157 5.3787 13.1601 8.1165 5.0220 9.3226 6.4006 4.3235
(0.8421) (1.1631) (1.7023) (4.6250) (6.9185) (7.9195) (11.1630) (18.1203) (20.0558) (9.3573) (14.0095) (15.0295) (4.7082) (5.7484) (5.9203)
[0.6318] [1.1845] [1.6741] [4.2471] [5.8011] [7.8969] [10.4731] [17.3983] [20.0353] [8.8834] [12.9193] [15.0138] [3.2976] [4.8196] [5.8967]

q(1/1000, 0.6) = 22.0358 q(1/1000, 0.7) = 27.4140 q(1/1000, 0.8) = 13.1358 q(1/1000, 0.9) = 4.5695

n 10% 25% 40% 10% 25% 40% 10% 25% 40% 10% 25% 40%

200 13.5598 8.1817 5.0081 17.6563 9.9514 5.7560 9.9470 7.0556 4.4594 4.0331 3.4000 2.8543
(20.7934) (24.2654) (47.1019) (46.2637) (52.5574) (58.8686) (11.6445) (18.8980) (19.7960) (1.9243) (2.0226) (2.4991)
[15.7558] [19.8598] [23.0277] [23.8800] [28.1125] [31.6580] [7.0836] [9.4752] [10.6764] [1.6999] [1.9085] [2.3158]

400 13.1138 8.3195 5.1619 15.4384 9.0572 5.1732 9.1203 6.2692 4.2023 3.9124 3.3383 2.7317
(14.2812) (17.9705) (20.9315) (17.0349) (22.6133) (36.2739) (6.8832) (8.2716) (9.9819) (1.6807) (1.9761) (2.4784)
[13.3751] [17.7164] [20.8739] [15.0190] [19.3568] [26.2408] [6.3280] [7.8666] [9.9335] [1.5269] [1.8638] [2.2378]

600 13.0675 7.9925 4.8972 14.9991 8.6069 5.1462 8.9504 6.1782 4.2053 3.9653 3.3457 2.7773
(13.8580) (17.1865) (19.1670) (15.1700) (18.9371) (22.2930) (6.1652) (7.8561) (8.9552) (0.8865) (1.2941) (1.8213)
[13.1027] [17.0433] [19.1387] [14.4417] [17.8071] [23.2178] [6.1672] [7.2576] [9.5305] [0.7655] [1.2238] [1.7922]

800 13.3315 8.2681 4.9618 14.6017 8.8815 5.2610 9.1107 6.2694 4.2371 4.0549 3.4273 2.7940
(13.2773) (16.8695) (19.0896) (14.1858) (17.9119) (22.1671) (6.0907) (7.1299) (8.9132) (0.7301) (1.2121) (1.7983)
[12.7043] [16.7677] [19.0740] [13.8123] [17.5325] [23.1530] [6.0647] [7.1664] [8.4987] [0.6367] [1.1474] [1.7755]

Table 6. Simulation results for q(1/1000|x): censoring-ignored procedure. For each configuration of the simulation
parameters (n, c, x), the first line gives the averaged value of the N = 100 CI-estimates of q(1/1000|x). (·): empirical
RMSE. [·]: empirical MAE.
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