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MIMO PLC Capacity and Throughput Analysis

Daniel M. Schneider, Pascal Pagani and Andreas Schwager

9.1 Introduction

Multiple-input multiple-output (MIMO) systems have been used for many years in the field
of wireless communications [1,2]. The huge increases in coverage and capacity offered by
MIMO technology are the key benefits of using multiple sensors at the transmitter (Tx) and
receiver (Rx). For a single-user transmission, and under the assumption that the channel
information is perfectly known at both the Tx and Rx, it has been demonstrated that the
capacity increases linearly with the number of antennas. However, in more realistic wire-
less scenarios, the capacity of a MIMO system depends on a number of practical consid-
erations including channel estimation in a time-varying environment, spatial correlation
induced by the sensors and the value of the signal-to-noise ratio (SNR) available at the Rx
[3]. Recently, MIMO technology has been applied in the context of power line communica-
tions (PLCs), with the aim of offering higher channel capacity and therefore larger system
coverage, by including the use of the protective earth (PE) wire in addition to the line (L) and
neutral (N) wires [4-8] (see Chapter 1). This new application for MIMO technology offers
different characteristics as compared to wireless communications, which can in turn effect
the capacity gain achieved. On the one hand, the number of input and output ports of a
PLC channel is much more constrained than for a radio channel. Due to Kirchhoff’s law,
only two differential input ports can be used simultaneously, in the three possible combi-
nations (L-N, N-PE and PE-L). At the Rx, three different signals can be monitored, either
on a wire-to-wire basis or using differential reception between two wires. In addition, the



common-mode (CM) signal generated by asymmetries in the transmission medium can be
measured at the Rx, which provides a fourth output of the MIMO system. As a result, a
MIMO PLC transmission up to a 2 x 4 configuration is implementable. More details about
coupling for MIMO signal injection and reception are given in Chapter 1. SNR values
observed in typical PLC scenarios can be much higher than in the case of a classical wire-
less communication. This high SNR condition is beneficial for MIMO transmission, as it
ensures a high capacity gain with respect to single-input single-output (SISO) transmission,
even if the channel presents a high degree of spatial correlation.

This chapter is divided into two main sections. First, the PLC channel capacity offered by
MIMO technology is analysed in detail (see Section 9.2). The channel capacity provides an
upper limit for achievable throughput and does not take system implementation or a par-
ticular MIMO scheme into consideration. The achievable throughput for different MIMO
schemes in an OFDM system with adaptive modulation is investigated in Section 9.3. The
channel capacity analysis in Section 9.2 is elaborated in the following subsections. The
mathematical framework used for capacity computation is first presented in Section 9.2.1.
The capacity results presented in the literature for different scenarios are discussed in
Section 9.2.2. Finally, Section 9.2.3 presents a statistical analysis of the MIMO channel
capacity based on the experimental measurement campaign ETSI STF410 presented in
Chapter 5. The throughput analysis in Section 9.3 is organised as follows: First, adaptive
modulation is applied to the MIMO-OFDM systems introduced in Chapter 8 (Section 9.3.1).
As it was shown in Chapter 8, the SNR after MIMO detection/equalisation of the differ-
ent investigated MIMO schemes is still very frequency-selective. Thus, adaptive modu-
lation specific to the subcarrier is the method of choice for dealing with this frequency
selectivity. The bitrate achieved by the different MIMO PLC systems is investigated in
Section 9.3.2 for the same set of MIMO PLC channels as used in Section 9.2 for the channel
capacity analysis.

9.2 MIMO PLC Channel Capacity
9.2.1 Theoretical Background

In the following, a wideband signal transmission is considered, where the transmitted sig-
nal s(f) is defined for a set of frequencies fin the range [f,.in, fmad- In general, multi-carrier
transmission schemes, such as orthogonal frequency division multiplexing (OFDM), are used
to convey wideband signals without suffering from inter-symbol interference (ISI) due to the
frequency-selective nature of the channel. More information about MIMO-OFDM systems
is detailed in Chapter 8. For transmission over a SISO channel, involving one Tx port and
one Rx port, the relation between the received signal 7(f) and the transmitted signal s(f)
is given by

r(f)=h(f)s(f)+n(f), ©.)

where
h(f) represents the SISO channel transfer function (CTF) defined for all frequencies f
n(f) denotes the received noise



The concept of channel capacity was developed by Shannon in [9]. According to infor-
mation theory, data transmission can occur at an arbitrary low error probability, provided
that the data rate is lower than the maximum channel capacity. Channel capacity is thus a
measure of the maximum transmission rate that can be theoretically obtained over a given
channel. For a single-carrier SISO channel, the channel capacity Cgq5 is given as

CSISO =B 10g2(1 + A) [blt/s] , (92)

where
B represents the signal bandwidth in Hz
A represents the SNR at the receiver

For a multi-carrier transmission scheme with L carriers defined at frequencies f; to f; with
an inter-carrier spacing Af, Equation 9.2 translates to

Caso = Af-Zlog2(1 +A(f,)) [bit/s]. 9.3)

For a given signal power spectral density (PSD) P(f) defined in W/Hz at the Tx injection point
and denoting N(f) the noise PSD at the Rx in W/Hz, Equation 9.3 can be further detailed as

P(f)h(f:)
N(f.)

2

L
Csiso = Af Z log,| 1+ [bit/s]. (94)
n=1

In the case of a MIMO transmission involving N Tx ports and N Rx ports, the transmit-
ted signal s(f) is represented as a N x 1 symbol vector and the received signal r(f) is rep-
resented as a N x 1 symbol vector. Their relation is given by the following equation (see
also Section 8.2):

r(f)=H(f)s(f)+n(f), ©9.5)

where
n(f) is the N x 1 symbol vector representing the noise received at the Ny Rx ports
H(f) is the N x Ny MIMO CTF matrix given by

ha(f)  he(f) - e (f)
hy hay hony

Bp-| O ) ) | 06
hNRl(f) hNRZ(f) hNRNT (f)

where h,,(f) represents the CTF between input port [ (I =1, ..., N;) and receiving port m
(m=1, ..., Np.



As shown in Section 8.2, the channel matrix H(f) can be decomposed into R = min(N;,Ny)
parallel streams where the attenuation of the streams is described by the singular values
S (f), p=1,...,R) of H(f).

The channel capacity formula of Equation 9.4 can be extended to the sum of the channel
capacities of the R independent SISO streams as follows [10]:

Cuvmvo = Af- ZZlog [1+ P(I{sz)zf(f )] [bit/s]. 9.7)

n=1 p=1

In Equation 9.7, it is assumed that the noise of the Ny receive ports is uncorrelated and that
the noise power is the same for all receive ports. It can be noted in Equation 9.7 that the sig-
nal PSD P(f) is now divided by R = min(N;, Ny) as the available power is shared between
the R parallel and independent streams. Note that this assumption may be considered a
worst-case assumption. The MIMO PLC signal PSD is not limited by the total power but
rather constraint by the EMI properties of the transmission. The discussion on EMI prop-
erties of the MIMO PLC transmission can be found in Chapter 7. The analysis in Chapter
7 suggests that the reduction of the transmit power per transmit port may be <3 dB in the
case of two transmit ports. The analysis of Chapter 7 is further developed in Chapter 16 in
the context of beamforming (BF).

The MIMO channel capacity formula according to Equation 9.7 can be further elaborated
by taking the correlated noise at the receiver into account. Assuming that the noise is cor-
related with the noise covariance matrix

N.(f) = E{n(f)n"(f)) ©.8)

(see also Chapters 4 and 5), where N (f) is of dimensions N x N;. As shown in
1
Section 8.5.4, a noise whitening filter N.2(f) can be applied at the receiver. The filtered
1
noise n(f)=N,.2(f)n(f) is then uncorrelated with

E{a()n" (f)f = Ty,. 99)

_1
The noise whitening filter N.2(f) and the channel matrix H(f) can be combined to form
an equivalent channel:

H(f) = N.2(f)H(f). (9.10)

Applying the SVD to the equivalent channel gives the singular values /A, (f). Using the
new equivalent singular values \/A,(f), the channel capacity of Equation 9.7 is extended to

Caumvio = Af-z Zlog2 [1 + P(f);"(f)] [bit/s]. ©9.11)

n=1 p=1



Note that the term N(f,) is removed in Equation 9.11 since the noise power is already con-
1

sidered via the noise whitening filter N.2(f) in 71,,( f) and therefore the noise power is
equal to 1 according to Equation 9.9. MIMO transmission offers another degree of freedom,
namely, the allocation of the total transmit power to the R MIMO streams. This power allo-
cation (PA) can be incorporated in Equation 9.11 by a factor 4, for each transmit stream with

N
the constraint of Z T1 a, = Nr. The optimum PA with respect to the channel capacity is
p=

achieved by the water filling (WF) algorithm (see [10]). The channel capacity of MIMO PLC
using WF was investigated in [8]. It was shown that WF improves the channel capacity for
links with very low SNR, while the channel capacity of links with medium to high SNR
was only marginally increased when WF was applied. In conclusion, links with low SNR
(which are most important to reach coverage goals) may benefit from PA. The application
of PA to MIMO PLC systems is discussed in Chapter 8. The simulation results in this chap-
ter do not consider WF.

9.2.2 Review of MIMO Channel Capacity Computations from the Literature

The MIMO PLC channel capacity was investigated for the first time in [4] based on
in-home PLC measurements in German houses and flats. These investigations were
further elaborated in [8]. The authors found that the MIMO channel capacity is on average
double that of SISO. These results were confirmed and extended to a frequency range of
up to 100 MHz in [6,11] for measurements in France. In [12], the throughput of different
MIMO PLC schemes is compared on the basis of a theoretical MIMO channel model and
additive white Gaussian noise (AWGN). Rende et al. [13] investigated the MIMO PLC channel
and channel capacity based on measurements in North America, focusing on the influ-
ence of the noise correlation on the channel capacity. Versolatto and Tonello [14] derived
a bottom-up MIMO PLC channel model and compared, among other features, the MIMO
PLC channel capacity of the proposed model to the MIMO channel capacity based on the
earlier mentioned measurements. Schneider et al. [15] analysed the MIMO PLC channel
and computed MIMO channel capacity based on the ETSI MIMO channel measurement
campaign of STF410 (see Chapter 5, [16-18]). However, the noise was assumed to be white
and uncorrelated in this analysis.

9.2.3 Statistical Analysis of the MIMO Channel Capacity
from European Field Measurements

The statistical analysis of the channel capacity is based on the MIMO PLC channels obtained
in the European (EU) field measurement campaign of ETSI STF410. This measurement
campaign recorded the complex S,; scattering parameter (among other channel and EMI
features) between hundreds of outlets for different MIMO feeding and receiving options.
Additionally, the noise at the outlets was recorded for all MIMO ports simultaneously. This
allows the derivation of the noise correlation among the receive ports. The noise correlation
is considered in the analysis of the channel capacity below. The frequency range of the mea-
surement campaign goes up to 100 MHz. The measurements were performed in Germany,
Italy, Spain, France, Belgium and in the United Kingdom. Details about the measurement
campaign may be found in Chapter 5. In total, 285 channels are used in the statistical analy-
sis later. Note that reciprocal channel measurements were removed from the data set.

The transmit power is considered as a parameter in the following analysis to reflect
different regulatory constraints in different parts of the world. The transmit PSD masks



introduced in Chapter 6 are used. In particular, the EU, US and JP transmit masks accord-
ing to Figure 6.3 are assumed.

The channel capacity was calculated for each link according to the channel capacity of
Equation 9.11. Figures 9.1 through 9.3 show the complementary cumulative distribution
function (C-CDF) of the channel capacity for different transmit power masks, namely, the
ones in Europe, the United States and JP, respectively. The C-CDF figures may be read
to obtain different coverage values, that is, with which probability a certain bitrate is
exceeded. The channel capacity is derived for different MIMO configurations. The MIMO
configurations from left to right in Figures 9.1 through 9.3 are summarised in Table 9.1. The
first configuration is SISO, where the D1 port of the delta-style coupler (differential feeding
between L and N) was used at the transmitter and the S1 port (L) of the star-style coupler
was used as the receive port. Note that the SISO configuration with feeding on D1 and
reception on S2 (N) yields the same performance as the SISO configuration with reception
on D1 (L). Therefore, this second SISO configuration is not shown in Figures 9.1 through 9.3.
Following are three SIMO configurations, each with feeding on D1 port (L-N) and with
an increasing number of receive ports. The 1 x 2 configuration might be used in homes
where the third wire is not present; 1 x 4 might be used if the transmitter is a legacy (non
MIMO) modem and the receiver has full MIMO capabilities. The three MIMO configura-
tions use the same receive ports as the SIMO configurations and use feeding on D1 (L-N)
and D3 (L-PE). Details about the couplers and port definitions may be found in Chapter 1.
The 2 x 2 configuration might be the most advantageous as coupler resources are used
symmetrically when transmitting or receiving. 2 x 4 is today’s maximum configuration on
a three-wire network.

2 Rx ports
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FIGURE 9.1
Channel capacity for the EU transmit power mask.
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TABLE 9.1

MIMO Configurations

MIMO Configuration Tx Ports Rx Ports

1x1 D1 (L-N) S1(L)

1x2 D1 (L-N) S1 (L) and S4 (CM)

1x3 D1 (L-N) S1 (L), S2 (N) and S3 (PE)

1x4 D1 (L-N) S1 (L), S2 (N), S3 (PE) and 54 (CM)
2x2 D1 (L-N) and D3 (L-PE) ~ S1 (L) and S3 (PE)

2x3 D1 (L-N) and D3 (L-PE) ~ S1 (L), S2 (N) and S3 (PE)

2x4 D1 (L-N) and D3 (L-PE) ~ S1 (L), S2 (N), S3 (PE) and S4 (CM)

Table 9.2 summarises the median value (50% point) and the 98% point (high coverage
point) of the C-CDF shown in the Figures 9.1 through 9.3. The following observations may
be drawn from the figures and the table. First, consider the median values:

The SIMO configurations with only one transmit port already offer a gain com-
pared to SISO. The channel capacity of the best SIMO scheme, 1 x 4, is increased by
37% (EU mask), 39% (US mask) and 56% (JP mask) compared to SISO. The increas-
ing relative gain starting with the EU mask, followed by the US mask, and ending
with the JP mask, is explained considering absolute bitrates. The higher the abso-
lute bitrate, the lower the relative SIMO gain. And vice versa, channels supporting
only lower absolute bitrates offer the highest gain relative to SISO. The same ten-
dency is observed for MIMO in the high coverage area. The overall lower bitrates
of the US and JP masks compared to the EU mask are derived from the transmit
masks: the US mask is 5 dB below the EU mask, while the JP mask does not even
allow any transmission above 30 MHz.

Using the second transmit port results in full MIMO configurations and provides
a significant increase in bitrate compared to SISO, reflected by 71% (EU and US
masks) and 72% (JP mask) for the 2 x 2 scheme and 116% (EU and US masks)
and 146% (JP mask) for the 2 x 4 MIMO configuration. (The bitrate increase when
applying the JP power transmit mask is hypothetical, because the third wire only
rarely exists in JP outlets.)

TABLE 9.2

Channel Capacity and Gain Compared to SISO for Different Transmit Power Masks: Median
Values and 98% Coverage Point

EU Mask US Mask JP Mask
MIMO
Config- Median 98% Median 98% Median 98%
uration Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain
1x1 568 82 499 62 149 6
1x2 651 1.15 126 1.55 571 1.14 103 1.65 184 1.24 23 3.63
1x3 751 1.32 154 1.88 670 1.34 127 2.04 226 1.51 31 4.81
1x4 777 1.37 173 2.12 694 1.39 143 2.30 233 1.56 34 5.37
2x2 971 1.71 153 1.87 851 1.71 121 1.94 257 1.72 23 3.52
2x3 1126 1.98 201 2.46 984 1.97 160 2.57 323 217 35 5.48
2x4 1227 2.16 235 2.88 1077 2.16 190 3.05 367 2.46 41 6.35




In conclusion, the MIMO channel capacity of the full (2 x 4) MIMO configuration is on
average more than double the SISO capacity.
Next, consider the high coverage area (98% point):

* At the high coverage area, the SIMO configurations already offer a significant
gain compared to SISO: factors of 2.12 (EU mask), 2.03 (US mask) and even 5.37
(JP mask) are observed for the 1 x 4 configuration.

¢ In contrast to 1 x 4 MIMO, the 2 x 2 configuration provides less gain: 1.87, 1.94
and 3.52 for the EU, US and JP masks, respectively. The second, weaker stream
(eigenmode) does not contribute much for low SNR channels. It is more important
to collect all the available signal energy at the receiver. This is reflected by the
number of receive ports.

¢ Combining the use of the maximum number of receive ports and the use of two
streams for the 2 x 4 configuration shows the highest gain compared to SISO: 2.88,
3.05 and 6.35 for the EU, US and JP masks, respectively.

The MIMO gain in the high coverage area is even higher compared to the median values.
Thus, MIMO especially improves the difficult links with high attenuation and therefore
low SNR at the receiver, making MIMO a promising method for meeting ambitious cov-
erage requirements. Note that the presented results are the theoretical channel capacity.
The choice of the implemented MIMO scheme and the system parameters for modulation,
coding and implementation aspects and limitations influence the achievable throughput
in real modem implementations (e.g. a 10 bit analogue-to-digital converter (ADC) might not
utilise the full SNR available at the channel).

9.3 MIMO PLC Throughput Analysis

The aim of this section is to verify the MIMO channel capacity gains of the previous section
for different MIMO PLC systems. In particular, the OFDM-based MIMO PLC schemes
introduced in Chapter 8 are investigated with respect to the achieved bitrate. Adaptive
modulation is applied to the SNR after detection (see Section 9.3.1). As for SISO, the SNR
after MIMO processing is still very frequency-selective. This makes subcarrier-specific
adaptive modulation a good choice for maximising the PLC throughput. The achieved
bitrate is analysed in Section 9.3.2 for a large set of MIMO PLC channels.

9.3.1 Adaptive Modulation

The frequency-selective PLC channel leads to high SNR variations for different OFDM
subcarriers. To overcome this problem, adaptive modulation is applied. Each subcarrier
is bit loaded and modulated according to the corresponding SNR. The higher the SNR,
the higher the quadrature amplitude modulation (QAM) constellation. Figure 9.4 shows an
example of a typical SISO PLC channel. The SNR, depending on the frequency from 4 to 30
MHz, illustrates the frequency-selective channel. The QAM constellations with modula-
tion order M used here are binary phase-shift keying (BPSK) (M = 2) and the even or square
QAM constellations from quadrature phase-shift keying (QPSK) to 4096-QAM (M = 4, 16, 64,
256, 1024, 4096). The number of bits per QAM symbol is log,(M). The SNR thresholds 6,,



a0b o hG R .................. ...................
: : B,006(4096-QAM)
35 I —— 1 ———————— I /é ...... .................................. ...................
: : 01024(1024-QAM)
ol e Y = R 1024(102-QAM)
o T 7 R .: ..................... o B56(256-QAM)
= q ) : : : :
& : . : : :
% () [m— = o . Py — o 964(6-4—QAM) .......
[ Notched q @_0 b : :
15 || mEmmBPSK [ ® i <SS ) O — & |
= QPSK ¢ % -
1ol " 16-QAM 5 ' !" ] .Q.: | ®
LT "164-QAM ; ® o O
M @91 256-QAM : o P Yo
S 1024-QaM =T i 1 [0 e » 6,(BPSK)
— 1096-QAM "¢ [ ° e W=E > :
O =T [ N [ T 1 1 I}
0 5 10 15 20 25 30 35 40
Frequency f [MHz]
FIGURE 9.4

Adaptive modulation: available SNR depending on the frequency, and application of QAM constellations
depending on the available SNR, SISO, transmit power to noise power level p = 65 dB.

for each modulation order M are illustrated by the horizontal lines in Figure 9.4 for each
modulation scheme. These thresholds define the assignment of the QAM constellation
depending on the SNR of each subcarrier. A subcarrier can also be omitted (notched) if the
SNR is too low to carry any information.

If A(n) is the SNR of subcarrier n (1 < n < N), the assignment to modulation order M(n) of
subcarrier n depends on the thresholds 6, of each modulation order M:

1, A(n) < 6, (not modulated).
2, 0,<A(n)<0,(BPSK).
4, 0, < A (1) < 0,6 (QPSK).

16, 816 < A(11) < Bs (16-QAM).

64, O6s < A (1) < Bas6 (64-QAM).
256,  Base < A(11)< 8104 (256-QAM).
1024, Oy004 < A (1) < Bag06 (1024-QAM).
4096,  Buns < A (1) (4096-QAM).

©9.12)
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In Equation 9.12, the modulation order M = 1 indicates that no information is assigned to
the subcarrier, that is, log,(1) = 0 bit is assigned. The choice of the SNR thresholds 6,, influ-
ences both the achieved bitrate and the bit error ratio (BER).

The bitrate D is the sum of the bits assigned to each subcarrier divided by the OFDM
symbol length T

" log, (M
D:Z”:1 O;‘f( (n)). ©.13)

10



The BER depends on the SNR A and the modulation order M. For an AWGN channel, the
BER is given by the tight approximation [19,20]:

%~erfc(\/X), M=2,

9.14)
2 1 3A
o () |ty | o v

with erfe(x) = 2 exp(—t?)dt being the complementary error function. Binary reflected
T Jx

Gray bit labelling is assumed for the even constellations (log,(M) even) in Equation 9.14.

With M(n) the modulation order and A(n) the SNR of subcarrier # (1 < n < N), the BER
of each subcarrier P,(M(n),A(n)) can be calculated according to Equation 9.14. The overall
average BER P, is given as the average number of bits in error divided by the total number
of transmitted bits [20] and can be calculated as

B,(M,A) =

N
5 _ Number of errors _ 2 - By (M(n), A())-1og,(M(n))
b= — = N .
Number of bits E :nzllogz(M(Tl))

(9.15)

Recall that the SNR thresholds 6,, determine the modulation order M(n) of each subcarrier
according to Equation 9.12 and thus influence both the bitrate according to Equation 9.13
and the average BER according to Equation 9.14. The design of the SNR thresholds 0,, can
be optimised with respect to two different criteria:

¢ Minimising the BER for a fixed bitrate
* Maximising the bitrate for a fixed BER

The second criterion is considered here. A simple algorithm that guarantees a certain tar-
get BER B’ with P, < P, uses fixed SNR thresholds. For a given target BER P,' and modula-
tion order M, Equation 9.14 can be solved for A which is then used as SNR threshold 6,,.
Figure 9.5 shows the BER depending on the SNR for different modulation orders. The
figure also provides the SNR thresholds for a target BER of P,' =107°. The BER value of 103
may be sufficient for the raw physical layer since additional forward error correction (FEC)
will improve the BER. This algorithm guarantees that the average BER P, does not exceed
the target BER P/ in every case. Usually, the average BER P, will be lower than the target
BER P, since many subcarriers have higher SNR than the SNR thresholds.

Schneider et al. [5,8] propose an algorithm which maximises the bitrate D, for a desired
target BER P;. The algorithm takes the SNR distribution of the given channel into account,
that is, the algorithm adapts the SNR thresholds to the current channel conditions.

The SNR thresholds shown in Figure 94 are obtained according to the algorithm
described earlier for a target BER of 10-%. Note that the SNR thresholds are lower com-
pared to the fixed SNR thresholds shown in Figure 9.5. Thus, the bitrate of the proposed
algorithm is higher compared to the algorithm with fixed thresholds.

The MIMO scheme and detection algorithm determine the SNR of the MIMO streams
as shown in Chapter 8. Adaptive modulation is applied for each MIMO stream separately.
Figure 9.6a shows the block diagram of the adaptive modulation algorithm for MIMO.
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FIGURE 9.5

BER depending on SNR for different QAM orders and SNR values required for a target BER of 10-.

The SNR thresholds 6, are calculated according to the SNR of the subcarriers after MIMO
detection. These thresholds are used to assign the QAM constellation to each subcarrier.
Note that the blocks adaptive QAM pattern and adaptive thresholds in Figure 9.6 require
knowledge of the SNR for all subcarriers; thus, these blocks operate in parallel. The cal-
culation of the PA coefficients is based on the SNR and the QAM constellations (see
Section 8.3). This results in a dependency between the PA and the adaptive modulation
as highlighted in Figure 9.6b. The combination of adaptive modulation and PA has to be
calculated iteratively in this case.

9.3.2 Simulation Results

The MIMO-OFDM system described in Chapter 8 forms the basis of the system simulations.
1296 subcarriers are used in the frequency range from 4 to 30 MHz. Each subcarrier is adap-
tively modulated, according to the adaptive modulation algorithm described in Section
9.3.1. The target average BER of the uncoded system is adjusted to 10-3. An additional FEC
might easily reduce this BER. The bitrate is obtained as the sum of the number of bits
assigned to all subcarriers divided by the OFDM symbol length. This bitrate describes the
raw physical layer bitrate without considering the guard interval length, training data or
FEC overhead. The basic system parameters are summarised in Table 9.3.

The noise is modelled by AWGN with zero mean, and it is assumed that the noise is
uncorrelated and that the noise power is the same for all receive ports. The transmit power
to noise power level is assumed to be p = 65 dB. This value corresponds to a transmit
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FIGURE 9.6
Block diagram of the adaptive modulation algorithm, without PA (a) and with PA (b).

TABLE 9.3

Basic System Parameters

FFT points 2048

Nyquist frequency (MHz) 40

Frequency band (MHz) 4-30

Number of active subcarriers (4-30 MHz) 1296

Carrier spacing (kHz) 19.53

Symbol length (ps) 51.2

Modulation (per subcarrier) BPSK, QPSK, 16-, 64-, 256-, 1024-, 4096-QAM
Uncoded target BER 103

PSD of 55 dBm/Hz (see Chapter 6) and an average noise PSD of —-120 dBm/Hz (this cor-
responds to the 90% point of CDF of the noise according to Chapter 5). Impulsive noise is
not considered. The focus is on the comparison between MIMO and SISO schemes. It is
expected that impulsive noise will influence all receive ports in a similar way. Thus, miti-
gation techniques known from SISO systems can be applied [21,22]. The measured MIMO
PLC channels obtained during the European measurement campaign (ETSI STF410, see
Chapter 5) are used in the system simulations. In the case of MIMO, the two feeding ports
D1 and D3 (i.e. L-N and L-PE, see Chapter 1) and all four receive ports (51, S2, S3 and S4)
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are used; in the case of SISO, the D1 (L-N) port is used at the transmitter and the S1 port
(L) at the receiver. It was observed that using the 52 (N) at the receiver yields the same per-
formance as using the S1 port. The corresponding SNR is calculated based on the channel
matrix of each subcarrier (channel estimation is assumed to be perfect), depending on the
MIMO scheme as shown in Chapter 8. Then, the derived SNR is used with the adaptive
modulation algorithm to determine the subcarrier’s constellations. Adaptive modulation
is applied to each of the MIMO schemes in this section.

Figure 9.7 compares the C-CDF of the bitrate at p = 44 dB for different MIMO schemes,
namely, SISO, the Alamouti scheme and spatial multiplexing (SMX) with different detection
algorithms (see Chapter 8) and BE. The measured MIMO PLC channels form the basis
of the comparison. No PA is applied here. SISO is expected to offer the lowest bitrate.
However, SMX with zero-forcing (ZF) detection performs about the same or even worse,
compared to SISO for most channels and bitrates up to about 40 Mbit/s. The high cor-
relation of the power line channels results in high values of the detection matrix entries,
leading to an amplification of the noise (refer also to Section 8.6). This effect is mitigated
using more advanced detection algorithms. The bitrate is increased, as seen in Figure 9.7
for minimum mean squared error (MMSE), successive interference cancellation (SIC)-ZF and SIC-
MMSE. Ordered SIC (OSIC) receivers are not shown in Figure 9.7, because their perfor-
mance improvement compared to SIC is only marginal. Eigenbeamforming (EBF) achieves
the highest bitrate. The Alamouti scheme performs almost as well as EBE, especially for
low bitrates or the high coverage point. The bitrate gain of MIMO compared to SISO is
highest for the low bitrate region in Figure 9.7, that is, for channels with high attenuation.

Figure 9.8 is similar to Figure 9.7 with a higher transmit signal to noise power level
of p = 65 dB. Here, SMX with ZF detection overrides SISO in contrast to Figure 9.7.

]. I I I I I I T T
! ! ! ! ! | | =¥ SISO
! ! ! ! ! ! =1 = Alamouti
09hgm - T Tt Pttt Tt Pt 1”77 | P SMX-ZF
: : : : : i | =q= SMX-MMSE
Y L - T A R O S S |___| A SMX-SIC-ZF ||
’ Q } ! |~ SMX-SIC-MMSE

C-CDE(D),
Prob [bitrate > D]

i i i i
0 20 40 60 80 100 120 140 160 180 200
Bitrate D [Mbit/s]

FIGURE 9.7
C-CDF of the bitrate for different MIMO schemes, p =44 dB, no PA, N; =2, Ny = 4.
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FIGURE 9.8

C-CDF of the bitrate for different MIMO schemes, p = 65 dB, no PA, Ny =2, Ny =4.

The gain of MMSE versus ZF becomes smaller compared to the lower transmit to noise
power level in Figure 9.7. The SIC receivers reach the performance of EBF. However, it
has to be kept in mind that no PA and no error propagation of the SIC receiver are con-
sidered here. The Alamouti scheme performs well for high values of the C-CDEF, that is,
for channels with low bitrate due to high attenuation and correlation. However, due to
the transmission of replicas, no multiplexing gain is achieved for channels with high
bitrate (as can be seen by the low values of the C-CDF in Figure 9.8 where the line of the
Alamouti scheme reaches the SISO’s line).

Figure 99 compares the PA for SMX and EBF for p = 44 dB and p = 65 dB. There is
only a marginal performance improvement of mercury water filling (MWEF) compared to
the simplified PA (as introduced in Chapter 8). The gain of PA is most visible for low p.
As explained also by the SNR results in Chapter 8 (see Figure 8.14), EBF benefits most from
PA. The PA’s gain of SMX (SMX-ZF) is relatively small. This is observed for all different
receivers for SMX.

Figure 9.10 is similar to Figure 9.7. However, it includes PA. Additionally, one-stream
BF is shown where the total power is assigned to the first stream. Figure 9.10a shows the
complete coverage range, Figure 9.10b shows the median coverage point and Figure 9.10c
shows the high coverage point. Most carriers of the EBF’s second stream turn out to carry
no information for highly attenuated channels. The shift of the second stream’s power to
the first stream of EBF results in 3 dB higher SNR of the first stream if none of the carriers
of the second stream are carrying any information. Obviously, the performance of one-
stream BF is close to two-stream BF because as only a few carriers of the second stream
contribute to the bitrate. The superior performance of BF over the Alamouti scheme is
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TABLE 9.4

Mean Values of the Bitrates for Different MIMO and Power Allocation Schemes, 2 x 4 MIMO
Configuration

p=44dB p=65dB
Simplified Simplified
MIMO No PA PA MWF No PA PA MWF
Scheme Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain Mbit/s Gain
SISO 55 1 PA cannot be used 147 1 PA cannot be used
Alamouti 79 1.4 PA cannot be used 201 1.4 PA cannot be used
One- 93 1.7 PA cannot be used 217 1.5 PA cannot be used
stream BF
SMX-ZF 85 1.6 88 1.6 91 1.7 264 1.8 266 1.8 269 1.8
SMX- 92 1.7 98 1.8 101 1.8 270 1.8 273 19 276 19
MMSE
SMX- 105 19 110 2.0 113 2.1 306 2.1 309 2.1 313 2.1
SIC-ZF

SMX-SIC- 109 2.0 114 2.1 117 2.1 310 2.1 313 2.1 316 2.1
MMSE

Two- 110 2.0 119 2.2 120 2.2 311 2.1 315 2.1 317 2.2
stream BF

more visible compared to no PA in Figure 9.7. Please note that PA cannot be used for the
Alamouti scheme since each symbol is transmitted via each transmit port.

Table 9.4 summarises the mean values of the bitrates for the different MIMO schemes.
The two transmit to noise power levels of p = 44 dB and 65 dB are considered. The gain of
a MIMO scheme is defined as the ratio of the MIMO bitrate to the SISO bitrate.

9.4 Conclusions

This chapter analysed the theoretical MIMO channel capacity based on an extensive
measurement set of MIMO PLC channels obtained during the ETSI measurement cam-
paign of STF410. The channel capacity was computed under different regulatory con-
straints, that is, different transmit power masks. Not only were the measured MIMO CTF
taken into account but also the measured noise statistics, which incorporate the spatial
correlation of the noise. The MIMO channel capacity is, on average, doubled compared to
SISO. In particular, highly attenuated channels benefit most from the application of MIMO
which makes MIMO a promising method for improving PLC coverage.

In a next step, the gain of throughput was verified for different MIMO PLC systems.
Adaptive modulation was applied to the SNR after MIMO detection of the MIMO PLC
schemes introduced in Chapter 8, and the achieved bitrate was analysed. Similar con-
clusions as for the SNR analysis in Chapter 8 can be drawn for the throughput analysis.
Generally, there is a significant increase of bitrate for all MIMO schemes compared to SISO
transmission. This confirms the channel capacity gain found in the first part of this chap-
ter. The Alamouti scheme improves the bitrate compared to SISO and showed good perfor-
mance for highly attenuated channels. However, no multiplexing gain is achieved because
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of the transmission of replicas of each symbol. Adaptive modulation already adapts to
the frequency-selective channel, making the property of the Alamouti scheme to combat
fading counterproductive. SMX increases the bitrate compared to the Alamouti scheme
for low attenuated channels. Care has to be taken with respect to which MIMO detection
algorithm is used. ZF detection fails for a high correlation of the channel, and more com-
plex detection algorithms (like MMSE and SIC) are suggested to increase the performance.
The earlier MIMO schemes are open-loop MIMO schemes which require no channel state
information at the transmitter. An additional performance gain is achieved by closed-loop
MIMO schemes like BF which use channel state information at the transmitter. BF offers
the highest bitrate in all scenarios and comes closest to the channel capacity by adapt-
ing the transmission to the eigenmodes of the channel. The full spatial diversity gain is
achieved for highly attenuated channels and maximum bitrate gain is achieved for chan-
nels with low attenuation.

BF requires knowledge about the channel state information at the transmitter. Usually,
only the receiver has channel state information. Thus, information about the precoding
matrix has to be fed back from the receiver to the transmitter. The application of adap-
tive modulation already requires feedback about the constellation maps from the receiver.
This feedback path might also be used to return the BF information to the transmitter.
The feedback rate can be kept low because the in-home PLC channel is less time varying
compared to, for example, a mobile channel. Schneider et al. [5,8] investigated the amount
of feedback overhead needed to feed back the information about the precoding matri-
ces and showed that the required feedback for the precoding matrices lies in the same
order of magnitude as the feedback required for adaptive modulation. For these reasons, a
BF-based MIMO-OFDM system with adaptive modulation is a well-suited MIMO system
for PLC. The adoption of MIMO and precoded SMX or BF to the latest PLC specifications
is discussed in detail in Chapter 12 for G.hn/G.9963 and in Chapter 14 for HomePlug AV2.
A study of a MIMO PLC hardware implementation with BF can be found in Chapter 24.
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