
HAL Id: hal-01055569
https://hal.science/hal-01055569v1

Submitted on 13 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GAMAGraM: Graphical modeling with the GAMA
platform

Patrick Taillandier

To cite this version:
Patrick Taillandier. GAMAGraM: Graphical modeling with the GAMA platform. The 4th Interna-
tional Conference on Complex Systems and Applications, Jun 2014, France. 6 p. �hal-01055569�

https://hal.science/hal-01055569v1
https://hal.archives-ouvertes.fr

Proceedings of ICCSA 2014

Normandie University, Le Havre, France - June 23-26, 2014

GAMAGRAM: GRAPHICAL MODELING WITH THE GAMA

PLATFORM

Patrick Taillandier
∗†

Abstract. These last years have seen the multiplication of plat-

forms dedicated to the conception and simulation of agent-based

models for studying complex systems. If these platforms allowed

to democratize this modeling approach, they are often complex to

use by non-computer scientists as most of them require to define

models by writing numerous code lines. In this paper, we present

GAMAGraM, a new graphical modeling plug-in integrated into the

GAMA platform. This plug-in allows users to define models from

a graphical interface. Defining a model with the GAMAGraM plu-

gin means first defining the structure of the model by a conceptual

entity-relationship diagram, then defining the properties of entities

through dedicated dialog boxes. The graphical editor provides auto-

compilation tools allowing to ease the work of the modelers.

Keywords. Complex System, Agent-based Modeling, Graphical

Modeling, GAMA Platform

1 Introduction

Nowadays, agent-based modeling is more and more used
to study complex systems, in particular by researchers
coming from other fields than computer sciences (geogra-
phy, environmental sciences). Unfortunately, the use of
such modeling approach requires to have skill in program-
ing, in particular when the system to model integrates
social and spatial aspects. This issue has for consequence
that most of the models are still developed by computer
scientists and not directly by domain experts, which slows
the diffusion of this modeling approach and the transfer
of knowledge to the decision-makers.

In order to tackle this issue, some agent-based model-
ing platforms have proposed to let the user define his/her
models thanks to a graphical interface allowing to min-
imize the quantity of lines of code to write. However,
these platforms are often complex to use or very limited
in terms of models they allow to build.

The GAMAGraM plugin has for ambition to be simple
to use and at the same time very powerful. It is based on
the GAMA platform [12] that allows to define large-scale
models integrating rich spatial and social dynamics (e.g.
MAELIA [19, 11], MIRO [4]).

∗Patrick Taillandier is with UMR CNRS IDEES, University of
Rouen, France. E-mail: patrick.taillandier@univ-rouen.fr

†Manuscript received April 19, 2009; revised January 11, 2010.

The paper is organized as follows: Section 2 presents
the context of this work, in particular the existing agent-
based modeling platforms and the graphical modeling lan-
guages. Section 3 is dedicated to the presentation of the
GAMAGraM plugin. At last, Section 4 concludes and
presents perspectives.

2 Context

2.1 existing platforms

Nowadays, there are numerous platforms dedicated to the
agent-based modeling of complex systems. These plat-
forms can be divided in 3 - non-exclusive - groups ac-
cording to the type of programing language used to define
models.

The first group is composed of the platforms that re-
quire to define models through a high-level generic pro-
gramming language (Java, C++, Python...). These plat-
forms are most of the time intended to computer scientists
and are the most adapted to the development of large-
scale models. Repast Symphony [17], MASON [15] and
SWARM [16] belong to this category.

The second group is composed of the platforms that
provide a dedicated modeling language. These platforms
are most of the time easier to use than the ones of the
first group. There are intended to a wider range of users.
However, they require some skills in algorithmic. Netlogo
[20] and GAMA [12] belong to this group.

The last group is composed of the platforms that allow
to define a model through a graphical modeling language.
These platforms require less skills in computer science
than the platforms belonging to the two other groups.
Moreover, they offer the advantage to ease the discussion
between modelers and domain-experts/stakeholders and
are thus particularly adapted to be used in a participatory
modeling context.

StarLogo [18] and Modelling4All [13] belong to this
group. These tools that can be used by all types of users
are mostly pedagogical tools and are limited to the devel-
opment of simple models.

Another platform that belongs to this group is Repast
Symphony. It proposes to define models through three
ways: by using Java, using the ReLogo language or

Patrick Taillandier

through a graphical modeling language [17]. If for sim-
ple models (or rapid prototyping) the ReLogo language
and the graphical modeling tools can be used, develop-
ing a complex model with this platform requires to have
knowledge in Java.
In its last version, the Cormas platform [8] provides as

well some graphical modeling tools (definition of activity
diagram). However, this platform, specialized for par-
ticipatory modeling, does not offer the same richness as
GAMA or Repast Symphony in terms of model develop-
ment, in particular for the development of models based
on vector geographical - GIS - data.
At last, the MAGeo platform [14] allows to simply de-

fine a model through a dedicated graphic interface. It pro-
poses to formalize the agent behavior as an aggregation of
basic behaviors with a simple grammar. This grammar is
perfectly adapted to the definition of simple agents, but
does not allow (or not directly) to define more complex
agents.
To conclude on the existing platforms allowing to de-

velop models through a graphical interface, they are ei-
ther too complex to use for non-computer scientists (e.g.
Repast Symphony) or too limited to develop large-scale
models (e.g. StarLogo, Modelling4All, Cormas, MAGeo).

2.2 graphical modeling

Numerous graphical languages were proposed for model-
ing purpose. The most famous and used one is UML.
In the context of agent-based modeling, some works have
shown the interest of using such graphical language for
communication [6]. However, some authors have point
out that the use of UML as an agent-oriented modeling
language is inappropriate [7].
Other graphical language based on UML and dedicated

to multi-agent systems have been proposed: the most fa-
mous ones are AUML [5] and AML [9]. These languages
allow to introduce some specific features linked to the
agent paradigm. However, their scope goes beyond the
agent-based modeling and covers all the multi-agent as-
pects, which can make these languages difficult to appre-
hend by non-computer scientists.
A last modeling language to cite is the one proposed by

the MAGeo platform. This language is based on the AOC
(Actor - Organization - Behavior) meta-model [10]. This
graphical language is close to the UML one and respects
most of the properties of the OOP (Objected-Oriented
Programming). In addition, it allows to natively define
multi-level models. However, this language does not al-
lows to define complex behaviors for the agents. In partic-
ular, no difference is made between what an agent can do
and what it is going to do (capabilities versus behavior).
For the GAMAGraM plugin, our goal is to propose

a modeling language simple to manipulate (with a very
small number of concepts) and that allows to develop
large-scale models. In order to achieve this objective, we
identified several properties that our modeling language

should respect:

• Properties of the OOP

• Differentiate what an agent can do and what it is
going to do (capabilities versus behavior)

• Native handling of multi-level modeling

• Possibility to define elements related to the simula-
tion visualization

To conclude, if numerous graphical modeling languages
exist, none of them covers all the properties that we have
identified. Moreover, generic languages such as UML,
A-UML and AML can be more complex to use as they
propose many features that are not useful for agent-based
modeling and lack of specific features that can help mod-
elers.

3 Modeling with GAMAGraM

3.1 General properties of GAMAGraM

GAMAGraM has for objective to fill the need in platforms
accessible to the highest number and at the same time al-
lowing the definition of large-scale models. We chose to
develop GAMAGraM as a plugin of GAMA, because this
open-source platform provides already numerous features
to develop models, in particular concerning the manage-
ment of GIS data. Moreover, GAMA is easily extensible.

GAMAGraM allows GAMA users to graphically de-
fine their models and eventually to translate them to the
GAML language (GAMA Modeling Language). In ad-
dition, GAMAGraM allows to translate a GAML model
into a graphical one. This feature aims at facilitating the
discussions (and communication) about a model. GAM-
AGraM is based on the Graphiti plugin of Eclipse [3].

3.2 Definition of the model structure

The modeling process with GAMAGraM consists first
in defining a conceptual model consisting in a entity-
relationship diagram, then to fill all the defined entities
through dialog boxes.

We chose to base the conception of the conceptual
model on a new modeling language based on the GAMA
meta-model. Indeed, if many agent-oriented meta-models
were proposed in the literature (see [7] for a presenta-
tion of the most famous ones), most of them are not di-
rectly dedicated to simulation purpose and very difficult
to grasp for non-computer scientists. Another advantage
of using the GAMA meta-model is to limit the gap be-
tween the conceptual model and the final implemented
GAMA model.

Figure 1 presents the meta-model of GAMA. The
main component of this meta-model is the Species. A
Species, like a class in OOP, defines the common char-
acteristics to all the agents of a population. In particular,

GAMAGraM: Graphical modeling with the GAMA platform

Figure 1: Meta-model of GAMA

it defines their variables, their actions, their reflexes and
their aspects. An Action is a capabilities that the agents
of the population have, i.e. something that the agents can
do. A Reflex is a behavior, i.e something that the agents
of the population are going to do (if some conditions are
respected). An Aspect represents a possible display of
the agents. Note that a species can specifies several ac-
tions, reflexes and aspects. In addition, a species specifies
the spatial topology and scheduling of the agent popula-
tion. A containment relationship between species allows
to describe the hierarchical levels of agency. At last, a spe-
cialization relationship between species allows to define
inheriting links between them. An ExperimentSpecies

represents a context of execution of a model. It is a partic-
ular species that contains a set of species (the one defined
in the model) and a set of displays.
More details about the meta-model of GAMA can be

found in [21]. The use of this meta-model allows to re-
spect the 4 properties defined in Section 3. Note that
this meta-model is close to the AOC one, but offers more
freedom in terms of agent behavior definition.
Figure 2 presents the modeling graphical framework

of GAMAGraM. The right palette allows to select the
type of elements to add to the diagram. This framework
proposes all the classic features of graphical editors (undo,
drag and drop....).
Table 1 presents all the elements that can be added to

the conceptual diagram.
When a graphical model is created, a first species of

agents is automatically created: the world species. The
world species corresponds to the first level of agency that
describes the global spatial topology of the model, its
basic scheduling, its parameters and global behaviors, and
is the host of the populations of agents described by the
species written by the modeler.
Thus, the development of the conceptual model consists

in defining all the species (with their chosen topology:
continuous, grid) living in the world, their capabilities
(actions), their behavior (reflexes) and possible displays

(aspects). Note that the inheriting relation can be used
between species. In addition, the definition of the con-
ceptual model consists in defining the possible contexts
of execution of the simulation (experiments) and for each
of them the corresponding outputs (displays). Each time
the user modifies the diagram, this one is validated: if
there is no error in the diagram, all its components ap-
pear with green borders, and buttons corresponding to
each defined experiments appear in the top of the edi-
tor (for example, see the my GUI xp button in Figure 2).
But clicking on one of the experiment buttons, the user
can load it (and run the corresponding simulation(s)). If
there are errors in the diagram, the problematic compo-
nents appears with red borders.

As an example, Figure 3 presents the conceptual model
of a simple predator prey model. In this model, 4 species
of agents live in the world:

• vegetation cell : species with a grid topology that will
be used as spatial environment for the other agents.
This species has only one behavior (reflex): grows.

• animal : species with a continuous topology that will
be used as the generic species to define the predators
and preys. This species has 4 behaviors (reflex): eats,
moves, reproduces and dies. It also has one action
called eating and one aspect called circle.

• prey : species with a continuous topology that inher-
its from the animal species. This species overrides
the eating action.

• predator : species with a continuous topology that in-
herits from the animal species. This species overrides
the eating action.

In addition, we define one GUI experiment called main xp

that has a display called map and a display called charts.
A tutorial describing how to build this diagram can be
found on the GAMA website [2].

Patrick Taillandier

Figure 2: Graphical User Interface of the GAMAGraM plug-in

Table 1: Entities of the graphical modeling language
Symbol Source Description

A species Species: A species of agents with a continuous
topology.

A species Grid: A species of agents with a grid topology

- World: the first level of agency. It contains
all other species of agents.

A species Action: A capability that the agents have.

A species Reflex: A behavior that will be activated at
each simulation step (according to a given con-
dition).

A species Aspect: A possible display for the agents.

The world GUI Experiment: load only one simulation
with the graphical user interface

The world Batch Experiment: load a set of simulations
without the graphical user interface

A GUI Experi-
ment

Display: frame allowing to display outputs
(map, charts...)

GAMAGraM: Graphical modeling with the GAMA platform

Figure 3: Conceptual model of the predator-prey model

3.3 Definition of the properties of each

entity

Once the conceptual model defined, the next step consists
in describing the properties of each defined entities.
When the user clicks on an entity, a new dialog box

allowing to parameterize it appears. It is through these
dialog boxes that the modeler will be able to transform
his/her conceptual model into a simulation. Most of the
time, the parameterization will just consist in making a
choice between different options, but sometimes it will
consist in writing GAML instructions. Note that a com-
plete description of the GAML language can be found in
the GAMA documentation [1].
The most important entity to parameterize is the

species one. The species dialog box allows to define many
properties of the species without having to write code (see
Figure 4). In particular, it allows to define the geometry
of the agents (point, line, or polygons) and variables. For
each variable the modeler has to define its name and its
type (among many types such as integer, float number,
string, list, matrix, map, point, geometry, graph, path...).
In addition, the modeler can define optional facets for
each variable such as its initial value, a minimum, a max-
imum, an expression that will be used to re-compute the
variable at each simulation step or a function that defined
how the variable will be computed each time it is called.
In addition, the modeler can give skills to the species. A
skill is a predefined set of variables and actions coded in
Java. For instance, the moving skill gives to the species
the variables speed, heading and destination and the ac-
tions move,goto,wander and follow. At last, the modeler
can define an init block that represents the constructor of
the species, i.e. define what will happen at the creation
of the agents.
Note that the dialog boxes for the world species and

the grid definition are very similar. For the grid, the

Figure 4: Dialog box for Species definition

Patrick Taillandier

dialog box allows just to additionally define the number
of cells in the rows and in the columns, and the type of
neighborhood: Moore, van Neumann or Hexagonal. For
the world species , the dialog box allows to additionally
define if the environment is torus or not.
Concerning the parameterization of reflexes, the dialog

box allows to choose the condition of the reflex activation
and its effect. The activation condition and the effect are
described using the GAML language. The action dialog
box is very similar to the reflex one. The only difference
is that no condition can be defined.
For the aspect definition, the dialog box allows to define

the layers (and their order) that will compose the aspect.
These layers are defined through a dialog box, in which
the modeler can choose the shape to display (a simple
shape such as a circle, a square, a rectangle..., an icon,
a text or a complex geometry such as a polyline or a
polygon), its color, and some specific properties (rotation,
fill/empty shape...).
The experiment definition dialog box allows to de-

fine the parameters that the user will be able to modify
through the simulation interface.
At last, concerning the display definition, the dialog

box allows to define the layers that will compose the dis-
play (and their order), to choose a color for the back-
ground and the refreshing rate. The layers are defined
through a dialog box, in which the modeler can choose
the elements to display (a list of agents, a chart, an im-
age, a text...), the level of transparency of the layer, its
size and its position.
The complete description of these dialog boxes can be

found on the game website [2].

4 Conclusion

In this paper, we presented the GAMAGraM plugin that
allows to define agent-based models through a graphical
interface. This plug-in, which is under GPL license, is
available from the GAMA website [2].
In order to validate our claims concerning the ease of

use of our plugin and its powerfulness in comparison to
others platforms, we plan to carry out tests with end-users
(in particular geographers).
In addition, we plan numerous improvements for the

plugin. A first one will consist in adding tools to de-
fine the reflexes and actions of agents directly through a
graphical interface. We plan for that to add the possi-
bility to define these elements thanks to an activity dia-
gram. At last, we plan to add a WYSIWYG interface for
the display definition.

References

[1] Gama modeling guide 1.6: https://code.google.com/p/gama-
platform/wiki/modelingguide16, January 2014.

[2] Gama website: https://code.google.com/p/gama-platform,
January 2014.

[3] Graphiti: http://www.eclipse.org/graphiti/, 2013 October.

[4] A. Banos, N. Marilleau, and M. Team. Improving individual
accessibility to the city: an agent-based modelling approach.
In ECSS, 2012.

[5] B. Bauer, J. Müller, J. Odell, and A. Arbor. Agent uml: A
formalism for specifying multiagent interaction. Agentoriented
software engineering, 1957:91–103, 2001.

[6] H. Bersini. Uml for abm. JASSS, 15(1):9, 2012.

[7] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis,
J. J. Gomez-Sanz, J. Pavon, and C. Gonzalez-Perez. Faml:
a generic metamodel for mas development. Software Engi-

neering, IEEE Transactions on, 35(6):841–863, 2009.

[8] F. Bousquet, I. Bakam, H. Proton, and C. Le Page. Cormas:
Common-pool resources and multi-agent systems. In Tasks

and Methods in Applied Artificial Intelligence, pages 826–837.
Springer Berlin Heidelberg, 1998.

[9] R. Cervenka, I. Trencansky, and C. M. Modeling social aspects
of multiagent systems: the aml approach. In AOSE, 2005.

[10] E. Daudé, P. Langlois, B. Blanpain, E. Sapin, et al. Aoc, une
ontologie formelle pour la modélisation de systèmes complexes
en géographie. In Outils, méthodes et modèles en géomatique

pour la production de connaissances sur les territoires et le

paysage, 2010.

[11] B. Gaudou, C. Sibertin-Blanc, O. Therond, F. Amblard,
J. Arcangeli, M. Balestrat, M. Charron-Moirez, E. Gondet,
Y. Hong, T. Louail, E. Mayor, D. Panzoli, S. Sauvage,
J. Sanchez-Perez, P. Taillandier, V. Nguyen, M. Vavasseur,
and P. Mazzega. The maelia multi-agent platform for inte-
grated assessment of low-water management issues. In MABS,
2013.

[12] A. Grignard, P. Taillandier, B. Gaudou, D. Vo, N. Huynh, and
A. Drogoul. Gama 1.6: Advancing the art of complex agent-
based modeling and simulation. In PRIMA 2013: Principles

and Practice of Multi-Agent Systems, volume 8291 of Lecture
Notes in Computer Science, pages 117–131, 2013.

[13] K. Kahn and H. Noble. The modelling4all project a web- based
modelling tool embedded in web 2.0. In International Confer-

ence on Simulation Tools and Techniques, 2009.

[14] P. Langlois, B. Blanpain, and E. Daudé. Magéo, une plate-
forme de simulation multi-agents pour tous. In SimTools, 2013.

[15] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan. Mason:
A new multi-agent simulation toolkit. In SwarmFest Work-

shop, volume 8, 2004.

[16] N. Minar, R. B. Y, and C. L. Z. The swarm simulation sys-
tem: A toolkit for building multi-agent simulations. Technical
report, Santa Fe Institute, 1996.

[17] M. North, N. Collier, J. Ozik, E. Tatara, C. Macal, M. Bra-
gen, and P. Sydelko. Complex adaptive systems modeling with
repast simphony. Complex Adaptive Systems Modeling, 1(1):3,
2013.

[18] M. Resnick. Starlogo: an environment for decentralized mod-
eling and decentralized thinking. In Conference companion on

Human factors in computing systems, pages 11–12, 1996.

[19] P. Taillandier, O. Therond, B. Gaudou, et al. A new bdi agent
architecture based on the belief theory. application to the mod-
elling of cropping plan decision-making. In IEMSs, 2012.

[20] S. Tisue and U. Wilensky. Netlogo: A simple environment for
modeling complexity. In International Conference on Complex

Systems, pages 16–21, 2004.

[21] D.-A. Vo, A. Drogoul, and J. Zucker. An operational meta-
model for handling multiple scales in agent-based simulations.
In RIVF, pages 1–6. IEEE, 2012.

