
HAL Id: hal-01055567
https://hal.science/hal-01055567

Submitted on 13 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traffic simulation with the GAMA platform
Patrick Taillandier

To cite this version:
Patrick Taillandier. Traffic simulation with the GAMA platform. International Workshop on Agents
in Traffic and Transportation, May 2014, France. 8 p. �hal-01055567�

https://hal.science/hal-01055567
https://hal.archives-ouvertes.fr


Traffic simulation with the GAMA platform

Patrick Taillandier
UMR CNRS IDEES, University of Rouen

7 rue Thomas Becket
Mont Saint Aignan, France

patrick.taillandier@univ-rouen.fr

ABSTRACT

These last years have seen the multiplication of traffic agent-
based frameworks (MATSim, SUMO...). If these frame-
works are well-fitted for the study of normal traffic con-
ditions, it is often complex to adapt them - in particular
for non-computer scientists - for more specific application
contexts such as the study of impacts of uncommon events
(e.g. car accidents, technological hazards). In this paper,
we present a new open-source (GPL) tool, integrated into
the GAMA modeling and simulation platform, allowing to
easily define new microscopic traffic simulations, easily tun-
able, with a detailed representation of the driver operational
behaviors. In particular, it allows to take into account the
road infrastructures and traffic signals, the change of lanes of
the drivers and their respects of norms. Moreover, the tool
allows to run simulations at city level with tens of thou-
sands of driver agents. We illustrate the use of this plug-in
through an example for the traffic simulation of the Rouen
city (France).

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms

Design

Keywords

Agent-based Modeling, Traffic Simulation, GAMA Platform

1. INTRODUCTION
Traffic simulations have proved their interests for urban

planners. Many models have been developed these last years.
These models are often grouped according to their levels
of representation: macroscopic [9], mesoscopic [17], micro-
scopic [12] and nanoscopic [4].

A modeling approach that is particularly well-fitted for
micro-simulation is the agent-based modeling. It allows to
consider the heterogeneity of the driver behaviors and to
take into account the global impact of local processes. This

modeling approach is in particular adapted to the study, at
fine scale (spatial and temporal), of the impacts of uncom-
mon events such as car accidents or technological hazards
(see for example [16]). In this context, being able to simu-
late the traffic in a realistic way while taking into account
the road infrastructure (crossing, traffic signals...), the prop-
erties of the cars (length, max speed...) and the personality
of the drivers (tendency to respect the norms) is mandatory.

Even if there are nowadays many frameworks dedicated to
the development of agent-based traffic models, many models
are still developed from scratch or with a generic platform
(e.g. [6, 3, 16]). Indeed, if the existing frameworks are most
of the time well-fitted to the simulation of normal traffic
conditions, they cannot be easily tuned by domain experts
that are often not computer scientists.

In this paper, we present a new plug-in integrated in the
open-source GAMA modeling and simulation platform [5]
dedicated to the development of fine scale traffic simula-
tions. GAMA provides modelers - which are not, most of
the time, computer scientists - with tools to develop highly
complex models. In particular, it offers a complete model-
ing language (GAML: GAma Modeling Language) and an
integrated development environment that allows modelers
to quickly and easily build models. Indeed, the GAML lan-
guage is as simple to use and to understand as the Netlogo
modeling language [15] and do not requires high level pro-
gramming skills. The plug-in developed allows GAMA user
to easily define traffic simulation at fine scale, with a detailed
representation of the driver operational behaviors.

The paper is organized as follows: Section 2 presents the
related works, in particular the existing agent-based traffic
simulators and frameworks. Section 3 is dedicated to the
presentation of the driving GAMA plug-in. Section 4 gives
an example of a model developed with the plug-in. At last,
Section 5 concludes and presents some perspectives.

2. RELATED WORKS
Many open source traffic simulation frameworks have been

developed these last years.
One of the most famous is MATSim [2] (Multi Agent

Transport Simulation Toolkit). MATSim is an open-source
(GPL) Java application that consists of several modules
which can be combined. MATSim proposes many advance
features dedicated to traffic simulations that can be enrich
by users through the definition of new modules in JAVA.

Another famous open-source framework is SUMO [10].
SUMO is a suite of applications which help modelers to pre-
pare and to perform traffic simulations. Like MATSim, it



proposes many advance features dedicated to traffic simula-
tions that can be enrich using C++.

AgentPolis [7] is another open source framework dedi-
cated to traffic simulations. In comparison to the two pre-
viously cited frameworks, AgentPolis adopts a fully agent-
based modeling approach. Drivers are represented as au-
tonomous agents with asynchronous control modules and
the ability to interact freely with the environment and other
agents. AgentPolis is implemented in JAVA and can be en-
rich using the JAVA programming language.

These three frameworks are powerful and propose many
advance features. However, for modelers without high level
programming skills, adapting these platforms to specific ap-
plication contexts is out of reach as they require to write
code in JAVA or C++.

Concerning the generic modeling and simulation platforms,
only few propose tools that can be used to develop traffic
simulations. One of them is Repast Symphony [13] that
proposes interesting features concerning GIS loading and
graphs. However, using this platform to develop complex
models require to write code in JAVA. Note that for simple
models, modelers can use the Relogo modeling language.

The GAMA platform [5] provides as well different features
that can be used by modelers to develop traffic models. In
particular, GAMA allows to simply load GIS data (shape
files, OSM data...), to define graphs from polyline geome-
tries, to compute shortest paths and to move agents on a
polyline networks. If these features are well-suited for the
development of traffic simulations at large time scale (see
for example the MIRO project [3] - time scale: 10 minutes
per step), they do not allow to simply account the driver
behaviors at fine scale: his/her change of lanes, the effect of
traffic signals...

In this context, we have developed a new driving plug-in
for the GAMA platform. The goal is to offer to modelers a
tool that is at the same time easy to use for all application
contexts and that allows to build realist traffic simulations.

3. DRIVING GAMA PLUG-IN

3.1 Presentation of the plug-in
The developed tool is integrated in the GAMA platform

as a plug-in. It provides modelers with new GAML instruc-
tions allowing to support the definition of traffic simulation.
GAML is an agent-oriented language, in which modelers de-
fine species of agents, i.e. archetype of agents, their charac-
teristics (variables), behaviors and aspects. The behaviors
of agents are defined through actions and reflexes. An action
is a block of instructions executed when called. A reflex is a
block of instructions executed at each simulation step when
its optional attached condition is true. An aspect represents
how an agent can be displayed. The richness of GAML
comes from the numerous optimized operators it integrates.
In particular, GAMA provides modelers with a native in-
tegration of GIS data and allows to easily load shapefiles,
OSM data and to use databases. It integrates as well many
graph operators.

Concerning our tool, we chose to represent all the road
infrastructures (road, traffic signals) as agents. The main
interest of this is to give the modelers the possibility to sim-
ply add dynamics to these infrastructures: e.g. to add a
deterioration dynamic to roads.

Our tool takes the form of three GAMA skills. A skill

Figure 1: Roads and nodes

is a built-in module that provides a set of related built-in
variables and built-in actions (programmed in JAVA) to the
species of agents that declare them. In particular, we define
3 new skills:

• Advanced driving skill : dedicated to the definition of
the driver species. It provides the driver agents with
variables and actions allowing to move an agent on a
graph network and to tune its behavior.

• Road skill : dedicated to the definition of roads. It
provides the road agents with variables and actions
allowing to registers agents on the road.

• RoadNode Skill : dedicated to the definition of node.
It provides the node agents with variables allowing to
take into account the intersection of roads and the traf-
fic signals.

3.2 Structure of the network: road and roadNode
skills

A key issue for our tool is to be versatile enough to be
usable with most of classic road GIS data, in particular OSM
data. We choose then to use a classic format for the roads
and nodes (See Figure 1). Each road is a polyline composed
of road sections (segments). Each road has a target node
and a source node. Each node knows all its input and output
roads. A road is considered as directed. For bidirectional
roads, 2 roads have to be defined corresponding to both
directions. Each road will be the linked road of the other.
Note that for some GIS data, only one road is defined for
bidirectional roads, and the nodes are not explicitly defined.
In this case, it is very easy, using the GAML language, to
create the reverse roads and the corresponding nodes (it only
requires few lines of GAML).

A lane can be composed of several lanes (Figure 2) and the
vehicles will be able to change at any time its lane. Another
property of the road that will be taken into account is the
maximal authorized speed on it. Note that even if the user
of the plug-in has no information about these values for some
of the roads (the OSM data are often incomplete), it is very
easy using the GAML language to fill the missing value by
a default value. It is also possible to change these values
dynamically during the simulation (for example, to take into
account that after an accident, a lane of a road is closed or
that the speed of a road is decreased by the authorities).

The road skill provides the road agents with several vari-
ables that will define the road properties:

• lanes: integer, number of lanes.



Figure 2: Roads and lanes

• maxspeed : float point value; maximal authorized speed
on the road.

• linked road : road agent; reverse road (if there is one).

• source node: node agent; source node of the road.

• target node: node agent; target node of the road.

It provides as well the road agents with one read only
variable:

• agents on: list of list (of driver agents); for each lane,
the list of driver agents on the road.

The roadNode skill provides the road agents with several
variables that will define the road properties:

• roads in: list of road agents; the list of road agents
that have this node for target node.

• roads out : list of road agents; the list of road agents
that have this node for source node.

• stop: list of list of road agents; list of stop signals, and
for each stop signal, the list of concerned roads.

It provides as well the road agents with one read only
variable:

• block : dictionary (map): key: driver agent, value: list
of road agents; the list of driver agents blocking the
node, and for each agent, the list of concerned roads.

3.3 Advanced driving skill
Concerning the driver agents, we propose a driving model

based on the one proposed by [16]. In the model proposed by
[16], each driver agent has a planned trajectory that consists
in a succession of edges. When the driver agent enters a
new edge, it first chooses its lane according to the traffic
density, with a bias for the rightmost lane. The movement
on an edge is inspired by the Intelligent Driver Model [8]. A
difference with our driving model is that in our model the
drivers have the possibility to change their lane at any time
(and not only when entering a new edge). In addition, we
have defined more variables for the driver agents in order to
give more possibilities for the modelers to tune the driver
behavior.

The advanced driving skill provides the driver agents with
several variables that will define the car properties and the
personality of the driver:

• final target : point; final location that the agent wants
to reach (its goal).

• vehicle length: float point value; length of the vehicle.

• max acceleration: float point value; maximal accelera-
tion of the vehicle.

• max speed : float point value; maximal speed of the
vehicle.

• right side driving : boolean; do drivers drive on the
right side of the road?

• speed coef : float point value; coefficient that defines if
the driver will try to drive above or below the speed
limits.

• security distance coeff : float point value; coefficient
for the security distance. The security distance will
depend on the driver speed and on this coefficient.

• proba lane change up: float point value; probability to
change lane to a upper lane if necessary (and if possi-
ble).

• proba lane change down: float point value; probabil-
ity to change lane to a lower lane if necessary (and if
possible).

• proba use linked road : float point value; probability to
take the reverse road if necessary (if there is a reverse
road).

• proba respect priorities: float point value; probability
to respect left/right (according to the driving side) pri-
ority at intersections.

• proba respect stops: list of float point values; probabil-
ities to respect each type of stop signals (traffic light,
stop sign...).

• proba block node: float point value; probability to ac-
cept to block the intersecting roads to enter a new
road.

It provides as well the driver agents with several read only
variables:

• speed : float point value; speed expected according to
the road max value, the car properties, the personality
of the driver and its real speed (see Equation 1 for more
details).

• real speed : float point value; real speed of the car (that
takes into account the other drivers and the traffic sig-
nals).

• current path: path (list of roads to follow); the path
that the agent is currently following.

• current target : point; the next target to reach (sub-
goal). It corresponds to a node.

• targets: list of points; list of locations (sub-goals) to
reach the final target.

• current index : integer; the index of the current goal
the agent has to reach.

• on linked road : boolean; is the agent on the linked
road?

Of course, the values of these variables can be modified
at any time during the simulation. For example, the proba-
bility to take a reverse road (proba use linked road) can be
increased if the driver is stucked for several minutes behind
a slow vehicle.

In addition, the advanced driving skill provides the driver
agents with several actions:



Figure 3: Drive action

• compute path: arguments: a graph and a target node.
This action computes from a graph the shortest path
to reach a given node.

• drive: no argument. This action moves the driver on
its current path according to the traffic condition and
the driver properties (vehicle properties and driver per-
sonality).

the drive action works as follow (Figure 3): while the
agent has the time to move (remaining time > 0), it first de-
fines the speed expected. This speed is computed from the
max speed of the road, the current real speed, the max speed,
the max acceleration and the speed coef of the driver (see
Equation 1). Then, the agent moves toward the current tar-
get and compute the remaining time. During the movement,
the agents can change lanes (see below). If the agent reaches
its final target, it stops; if it reaches its current target (that
is not the final target), it tests if it can cross the intersection
to reach the next road of the current path. If it is possible,
it defines its new target (target node of the next road) and
continues to move.

speeddriver = Min(max speeddriver,

Min(real speeddriver +max accelerationdriver,

max speedroad ∗ speed coefdriver))

(1)

The function that defines if the agent crosses or not the
intersection to continue to move works as follow (Figure 4):
first, it tests if the road is blocked by a driver at the inter-
section (if the road is blocked, the agent does not cross the

Figure 4: Crossing of an intersection (case where
right side driving is true)

intersection). Then, if there is at least one stop signal at
the intersection (traffic signal, stop sign...), for each of these
signals, the agent tests its probability to respect or not the
signal (note that the agent has a specific probability to re-
spect each type of signals). If there is no stopping signal or
if the agent does not respect it, the agent checks if there is
at least one vehicle coming from a right (or left if the agent
drives on the left side) road at a distance lower than its secu-
rity distance. If there is one, it tests its probability to respect
this priority. If there is no vehicle from the right roads or if
it chooses to do not respect the right priority, it tests if it is
possible to cross the intersection to its target road without
blocking the intersection (i.e. if there is enough space in the
target road). If it can cross the intersection, it crosses it;
otherwise, it tests its probability to block the node: if the
agent decides nevertheless to cross the intersection, then the
perpendicular roads will be blocked at the intersection level
(these roads will be unblocked when the agent is going to
move).

Concerning the movement of the driver agents on the cur-
rent road (Figure 5), the agent moves from a section of the
road (i.e. segment composing the polyline) to another sec-



Figure 5: Move on the current road

tion according to the maximal distance that the agent can
moves (that will depend on the remaining time). For each
road section, the agent first computes the maximal distance
it can travel according the remaining time and its speed.
Then, the agent computes its security distance according to
its speed and its security distance coeff. While its remain-
ing distance is not null, the agent computes the maximal
distance it can travel (and the corresponding lane), then
it moves according to this distance (and update its current
lane if necessary). If the agent is not blocked by another
vehicle and can reach the end of the road section, it updates
its current road section and continues to move.

The computation of the maximal distance an agent can
move on a road section consists in computing for each pos-
sible lane the maximal distance the agent can move. First,
if there is a lower lane, the agent tests the probability to
change its lane to a lower one. If it decides to test the lower
lane, the agent computes the distance to the next vehicle
on this lane and memorizes it. If this distance corresponds
to the maximal distance it can travel, it chooses this lane;
otherwise it computes the distance to the next vehicle on its
current lane and memorizes it if it is higher than the cur-

Figure 6: Define the maximal distance possible
to travel and the corresponding lane (case where
right side driving is true)

rent memorized maximal distance. Then if the memorized
distance is lower than the maximal distance the agent can
travel and if there is an upper lane, the agents tests the
probability to change its lane to a upper one. If it decides
to test the upper lane, the agent computes the distance to
the next vehicle on this lane and memorizes it if it is higher
than the current memorized maximal distance. At last, if
the memorized distance is still lower than the maximal dis-
tance it can travel, if the agent is on the highest lane and
if there is a reverse road, the agent tests the probability to
use the reverse road (linked road). If it decides to use the
reverse road, the agent computes the distance to the next
vehicle on the lane 0 of this road and memorizes the distance
if it is higher than the current memorized maximal distance.

3.4 Discussion
As presented above, the plug-in allows to simplify the

work of modelers for the definition of traffic simulations
with the GAMA platform. Of course, the plug-in does not



make GAMA as rich as the existing frameworks for the de-
velopment of such simulations. In particular, it proposes
no tools for the pre-processing of data and do not propose
any features concerning the definition of the construction of
the driver daily activities. However, our tool is perfectly
adapted to modelers that are not computer scientists and
that want to quickly create a specific traffic model (or at
least a prototype) that is not possible to create using di-
rectly the existing framework. The success of generic and
simple platforms such as Netlogo [15] or GAMA have proved
the interest of researchers from many research fields (geog-
raphers, sociologists...) for this kind of tools.

4. APPLICATION EXAMPLE
We illustrate the use of our plug-in for a simple model

concerning the simulation of the traffic of the city of Rouen
(France, Normandie). This city of 111553 inhabitants is
built on the two sides of the Seine River. Five bridges allow
to cross the river. These bridges are particularly critical for
the traffic in Rouen. For instance, a truck (transporting fuel)
accident has caused the closing of the Mathilde bridge since
the 29th October of 2012. This bridge, which was the most
used to cross the Seine (80 000 vehicles per day), should
remain closed until summer 2014. This accident had (and
still have) an important impact on the traffic as it has led
to the multiplication of traffic jams.

As the goal of this model is just to illustrate the use of
the new driving plug-in, we did not use real data to de-
fine the driver origin and destination: we affected to each
driver agent a random initial location (one of the node) and
a random final target (one of the node). When a driver
agent reaches its destination, it just chooses a new ran-
dom final target. In the same way, we did not define any
specific behavior to avoid traffic jam for the driver agents:
once they compute their path (all the driver agents use for
that the same road graph with the same weights), they
never re-compute it even if they are stucked in a traffic
jam. Concerning the traffic signals, we just consider the
traffic lights (without any pre-processing: we consider the
raw OSM data). One step of the simulation represents 1
second. At last, in order to clarify the explanation of the
model, we chose to do not present the parts of the GAML
code that concern the simulation visualization. The com-
plete model is available on the GAMA SVN (is downladable
from the GAMA website [1]).

Figure 7 shows the total area (road and node shapefiles)
that we choose to take into account in the simulation. This
area is composed of 8000 roads and 6000 nodes. We used
the OSM data (converted as shapefiles) of Rouen. A pre-
process has been applied on the data in order to create a
node shapefile from the road shapefile: a node is created
at the extremity of each road (when several roads intersect
each other, only one node is created at the intersection).
Note that a GAMA model, available on the GAMA SVN,
allows to directly pre-process the OSM data and to create
the node and road shapefiles from them.

The following code shows the definition of species to rep-
resent the road infrastructure:

species road skills: [skill_road] {

string oneway;

}

Figure 7: Total area simulated: in black the roads
and in yellow the nodes

species node skills: [skill_road_node] {

bool is_traffic_signal;

int time_to_change <- 100;

int counter <- rnd (time_to_change) ;

reflex dynamic when: is_traffic_signal {

counter <- counter + 1;

if (counter >= time_to_change) {

counter <- 0;

stop[0] <-empty(stop[0])? roads_in : [];

}

}

}

In order to use our driving plug-in, we just have to add
the skill road node to the node species and the skill road to
the road species. In addition, we added to the road species
a variable called oneway that will be initialized from the
OSM data and that represents the traffic direction (see the
OSM map features for more details). Concerning the node,
we defined 3 new attributes:

• is traffic signal : boolean; is the node a traffic light?

• time to change: integer; represents for the traffic lights
the time to pass from the red light to the green light
(and vice versa).

• counter : integer; number of simulation steps since the
last change of light color (used by the traffic light
nodes).

In addition, we defined for the node species a reflex (be-
havior) called dynamic that will be activated only for traffic
light nodes and that will increment the counter value. If this
counter is higher than time to change, this variable is set to
0, and the node change the value of the stop variable: if the
traffic light was green (i.e. there is no road concerns by this
stop sign), the list of block roads is set by all the roads that



enter the node; if the traffic light was red (i.e. there is at
least one road concerns by this stop sign), the list of block
roads is set to an empty list.

The following code shows the definition of driver species:

species driver skills: [advanced_driving] {

reflex time_to_go when: final_target = nil {

current_path <- compute_path(

graph: road_network, target: one_of(node));

}

reflex move when: final_target != nil {

do drive;

}

}

In order to use our driving plug-in, we just have to add
the advanced driving to the driver species. For this species,
we defined two reflexes:

• time to go: activated when the agent has no final tar-
get. In this reflex, the agent will randomly choose
one of the nodes as its final target, and computed
the path to reach this target using the road network
graph. Note that it will have been possible to take
into account the knowledge that each agent has con-
cerning the road network by defining a new variable of
type map (dictionary) containing for each road a given
weight that will reflect the driver knowledge concern-
ing the network (for example, the known traffic jams,
its favorite roads....) and to use this map for the path
computation.

• move: activated when the agent has a final target. In
this reflex, the agent will drive in direction of its final
target.

We describe in the following code how we initialize the
simulation:

init {

create node from: file("nodes.shp") with:[

is_traffic_signal::read("type")="traffic_signals"];

create road from: file("roads.shp")

with:[lanes::int(read("lanes")),

maxspeed::float(read("maxspeed")),

oneway::string(read("oneway"))]

{

switch oneway {

match "no" {

create road {

lanes <- myself.lanes;

shape <- polyline(reverse

(myself.shape.points));

maxspeed <- myself.maxspeed;

linked_road <- myself;

myself.linked_road <- self;

}

}

match "-1" {

shape <- polyline(reverse(shape.points));

}

}

}

}

map general_speed_map <- road as_map

(each::(each.shape.perimeter/(each.maxspeed)));

road_network <- (as_driving_graph(road, node))

with_weights general_speed_map;

create driver number: 100000 {

location <- one_of(node).location;

vehicle_length <- 3.0;

max_acceleration <- 0.5 + rnd(500) / 1000;

speed_coeff <- 1.2 - (rnd(400) / 1000);

right_side_driving <- true;

proba_lane_change_up <- rnd(500) / 500;

proba_lane_change_down <- 0.5+ (rnd(250) / 500);

security_distance_coeff <- 3 - rnd(2000) / 1000);

proba_respect_priorities <- 1.0 - rnd(200/1000);

proba_respect_stops <- [1.0 - rnd(2) / 1000];

proba_block_node <- rnd(3) / 1000;

proba_use_linked_road <- rnd(10) / 1000;

}

}

In this code, we create the node agents from the node
shapefile (while reading the attributes contained in the shape-
file), then we create in the same way the road agents. How-
ever, for the road agents, we use the oneway variable to
define if we should or not reverse their geometry (oneway =
”-1”) or create a reverse road (oneway = ”no”). Then, from
the road and node agents, we create a graph (while taking
into account the maxspeed of the road for the weights of
the edges). This graph is the one that will be used by all
agents to compute their path to their final target. Finally,
we create 10000 driver agents. At initialization, they are
randomly placed on the nodes; their vehicle has a length of
3m; the maximal acceleration of their vehicle is randomly
drawn between 0.5 and 1; the speed coefficient of the driver
is randomly drawn between 0.8 and 1.2; they are driving
on the right side of the road; their probability of chang-
ing lane for a upper lane is randomly drawn between 0 and
1.0; their probability of changing lane for a lower lane is
randomly drawn between 0.5 and 1.0; the security distance
coefficient is randomly drawn between 1 and 3; their prob-
ability to respect priorities is randomly drawn between 0.8
and 1; their probability to respect light signal is randomly
drawn between 0.998 and 1; their probability to block a node
is randomly drawn between 0 and 0.003; their probability to
use the reverse road is randomly drawn between 0 and 0.01;

We carried out a simulation of 1000 simulation steps (1000
seconds) on a i7 computer using only one of the computer
cores. The duration of the simulation (without taking into
account the time taken by the displaying of the simulation)
was 1 second per step if we take into account the time spent
by the shortest path computation by the Dijkstra algorithm
or 0.3 second per step if we do not. Figure 8 shows a snap-
shot of the simulation. We can observe the emergence of
traffic jams, driver agents stopping at a red traffic light and
using the different lanes of the roads.

5. CONCLUSION
In this paper, we presented a new plug-in for the GAMA

platform dedicated to the development of traffic simulations.
This plug-in allows to define new traffic simulations with a
detailed representation of the driver operational behaviors.



Figure 8: Snapshot of the simulation (simulation
step: 1000): The driver agents are represented by
the rectangles with a triangle on top; the traffic
lights are represented by the sticks with a red/green
sphere on top

In particular, it allows to take into account the road in-
frastructures and traffic signals, the change of lanes of the
drivers and their respect of norms. We illustrated the use of
our plug-in by a simple model concerning the simulation of
the traffic of the city of Rouen.

In comparison to existing traffic simulation frameworks,
the advantage of our tool is to enable modelers to easily
define models adapted to their application context. Indeed,
the use of the GAML language enables modelers without
high-level programming skills to develop their own models
or at least prototypes.

If the plug-in allows yet to simulate tens of thousands
of driver agents, we plan to improve its efficiency by using
High Performance Computing and in particular distribution
on GPU to enable to carry out large scale simulation with
millions of driver agents.

In addition, we plan to enrich the driving skill in order
to make the driver agents more cognitive, in particular con-
cerning their choice of path and their adaptation to the their
current context. For this, we plan to give the driver agents
a BDI architecture that can be based on [14, 11].

As last, we plan as well to develop new tools to help people
to prepare their data. The goal will be to offer the possibility
from incomplete OSM data (OSM are often incomplete) to
automatically fill the missing attributes, and to create a con-
sistent network (with its infrastructure and traffic signals).
A particular attention will be brought on traffic signals and
traffic lights.

6. REFERENCES

[1] Gama website:
https://code.google.com/p/gama-platform, January
2014.

[2] M. Balmer, M. Rieser, K. Meister, D. Charypar,
N. Lefebvre, K. Nagel, and K. Axhausen. Matsim-t:
Architecture and simulation times. Multi-Agent
Systems for Traffic and Transportation Engineering,
pages 57–78, 2009.

[3] A. Banos, N. Marilleau, and M. Team. Improving
individual accessibility to the city: an agent-based
modelling approach. In ECSS, 2012.

[4] N. Daiheng. 2dsim: A prototype of nanoscopic traffic

simulation. In Intelligent Vehicles Symposium, pages
47–52, 2003.

[5] A. Grignard, P. Taillandier, B. Gaudou, D. Vo,
N. Huynh, and A. Drogoul. Gama 1.6: Advancing the
art of complex agent-based modeling and simulation.
In PRIMA 2013: Principles and Practice of
Multi-Agent Systems, volume 8291 of Lecture Notes in
Computer Science, pages 117–131, 2013.

[6] M. Horn. Multi-modal and demand-responsive
passenger transport systems: a modelling framework
with embedded control systems. Transportation
Research Part A: Policy and Practice, 36(2):167–188,
2002.

[7] M. Jakob and Z. Moler. Modular framework for
simulation modelling of interaction-rich transport
systems. In Proceedings of the 16th IEEE Intelligent
Transportation Systems Conference (ITSC 2013),
2013.

[8] A. Kesting, M. Treiber, and D. Helbing. General
lane-changing model mobil for car-following models.
Journal of the Transportation Research Board,
1999:86–94, 2007.

[9] A. Kotsialos, M. Papageorgioy, C. Diakaki, Y. Pavlis,
and F. Middleham. Traffic flow modeling of large-scale
motor- way networks using the macroscopic modeling
tool metanet. IEEE Transactions on Intelligent
Transportation Systems, 3(4):282–292, 2002.

[10] D. Krajzewicz, J. Erdmann, M. Behrisch, and
L. Bieker. Recent development and applications of
SUMO - Simulation of Urban MObility. International
Journal On Advances in Systems and Measurements,
5(3&4):128–138, 2012.

[11] V. M. Le, B. Gaudou, P. Taillandier, and D. A. Vo. A
new bdi architecture to formalize cognitive agent
behaviors into simulations. In Advanced Methods and
Technologies for Agent and Multi-Agent Systems
(KES-AMSTA), volume 252 of Frontiers in Artificial
Intelligence and Applications, pages 395–403. IOS
Press, 2013.

[12] J. E. Miller, D. J. Hunt, J. E. Abraham, and S. P. A.
Microsimulating urban systems. Computers,
Environment and Urban Systems, 28:9–44, 2004.

[13] M. North, N. Collier, J. Ozik, E. Tatara, C. Macal,
M. Bragen, and P. Sydelko. Complex adaptive systems
modeling with repast simphony. Complex Adaptive
Systems Modeling, 1(1):3, 2013.

[14] P. Taillandier, O. Therond, and B. Gaudou. A new
bdi agent architecture based on the belief theory.
application to the modelling of cropping plan
decision-making. In International Environmental
Modelling and Software Society (iEMSs), 2012.

[15] S. Tisue and U. Wilensky. Netlogo: A simple
environment for modeling complexity. In International
Conference on Complex Systems, pages 16–21, 2004.

[16] P. Tranouez, E. Daudé, and P. Langlois. A multiagent
urban traffic simulation. Journal of Nonlinear Systems
and Applications, 3(2):98–106, 2012.

[17] K. Waldeer. Numerical investigation of a mesoscopic
vehicular traffic flow model based on a stochastic
acceler- ation process. Transport Theory and
Statistical Physics, 33(1):31–46, 2004.


