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Abstract

The circadian clock and the cell cycle are two tightly coupled oscillators.

Recent analytical studies have shown counter-intuitive effects of circadian

gating of the cell cycle on growth rates of proliferating cells which cannot be

explained by a molecular model or a population model alone. In this work, we

present a combined molecular-population model that studies how coupling

the circadian clock to the cell cycle, through the protein WEE1, affects a

proliferating cell population. We show that the cell cycle can entrain to the

circadian clock with different rational period ratios and characterize multiple

domains of entrainment. We show that coupling increases the growth rate for

autonomous periods of the cell cycle around 24 h and above 48 h. We study

the effect of mutation of circadian genes on the growth rate of cells and show

that disruption of the circadian clock can lead to abnormal proliferation.

Particularly, we show that Cry1, Cry2 mutations decrease the growth rate

of cells, Per2 mutation enhances it and Bmal1 knockout increases it for
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autonomous periods of the cell cycle less than 21 h and decreases it elsewhere.

Combining a molecular model to a population model offers new insight on the

influence of the circadian clock on the growth of a cell population. This can

help chronotherapy which takes benefits of physiological rhythms to improve

anti-cancer efficacy and tolerance to drugs by administering treatments at a

specific time of the day.

Keywords: circadian clock, cell cycle, chronotherapy, age-structured

equations

1. Introduction

The circadian clock regulates body daily rhythmic activities, from the

wake-sleep phases succession and hormone production to blood pressure and

body temperature. Several epidemiological studies have shed light on the

fact that individuals with disrupted circadian rhythms have increased risk

of developing tumorigenic diseases [1, 2, 3, 4, 5, 6, 7]. Studies made on

yeast revealed restriction of cell division to the reductive phases of the yeast

metabolic cycle. This type of control was shown to be involved in circa-

dian regulation and may be a general strategy for the robust maintenance

of cellular processes. This regulation insures that the cell cycle evades the

potentially mutagenic redox environment of the oxidative respiratory phase,

helping to minimize the occurrence of futile reactions [8, 9].

The circadian clock interacts with the cell cycle through multiple molecu-

lar pathways [10, 11, 12, 13, 14, 15]. Hence, a disruption of the circadian clock

can lead to abnormal cell proliferation and enhances tumor development.

Circadian rhythms are generated at the cellular level by a finely regu-
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lated gene network that produces sustained 24 h period oscillations in clock

gene and protein expression. This network involves several genes and relies

on transcriptional, translational and post-translational mechanisms. Oscilla-

tions arise from an autoregulatory negative feedback loop system in which a

clock protein inhibits the expression of its own gene by inactivating a tran-

scription factor [16, 17, 18, 19, 20, 21, 22].

The cell cycle is usually divided into four phases G1, S, G2, M. Progression

through each phase depends on the activity of cyclins and cyclin-dependent

protein kinase complexes (Cdks) and a mitosis promoting factor (MPF).

When MPF activity is high, the cell progresses through the cycle. When it

is low, progression stops [23]. Each phase of the cell cycle is controlled by

a different cyclin/Cdk complex: G1 is controlled by cyclin D/Cdk4-6, G1/S

transition by cyclin E/Cdk2, S phase by cyclin A/Cdk2 and G2/M transition

by cyclin B/Cdk1 [14].

The circadian clock and the cell cycle are tightly connected. The circadian

clock gates the cell cycle through the regulation of different Cdks. It has

been reported that BMAL1/CLOCK activates the transcription of the kinase

WEE1 to regulate the G2/M transition [24]. The circadian clock, via the

protein REV-ERBα, regulates the transcription of p21, which inhibits Cdk2

and blocks the G1/S transition [7]. The circadian clock is also involved

in direct control of DNA damage and apoptosis pathways by virtue of its

regulation of Chk2 and other related factors [6, 25].

Two main approaches have been used to model the coupling between

the cell cycle and the circadian clock oscillators. The first approach is to

model the molecular machinery of the cell. It is usually based on ordinary
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differential equations, where the variables describe the intracellular molecular

concentrations of both oscillators. Chauhan and colleagues constructed such

a model to account for the regulation of mammalian cell cycle progression and

its gating by the circadian clock in the regenerating liver [26]. Zamborszky

and colleagues used a minimal model for circadian rhythms coupled to a cell

cycle model that had been originally developed for the yeast cell cycle. Their

model revealed quantized cell cycles and they suggested that cell size control

is influenced by the clock [27]. More recently, Gérard and colleagues used a

detailed computational model for the Cdk network driving the mammalian

cell cycle to study the effect of multiple molecular links to the circadian

clock [28]. They characterized the domains of autonomous periods where the

cell cycle can be brought to oscillate to 24 or 48 h periods, and determined

conditions for switching between these two patterns of entrainment.

The second approach is to model a cell population, leaving aside molec-

ular details. This approach is based on PDEs, especially the category of

physiologically-structured models, or on individual-based models and cellu-

lar automata. In these models, the cell cycle is divided into multiple, discrete

phases and the circadian clock is coupled via time-periodic parameters, such

as the transition coefficients or phases duration. Altinok and colleagues used

a cellular automaton model to examine the entrainment of the cell cycle by

the circadian clock [29]. Clairambault and colleagues used an age-structured

PDE system to model a population of cells under the control of the circadian

clock [30, 31]. The circadian clock was taken into account through periodic

cell cycle phase transition coefficients into the equations.

Compared to population models, molecular models capture more details
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of the fine regulation of the cell cycle, and in particular, can predict the effect

of mutations on the cell cycle regulation. However, molecular models rarely

describe explicitly dividing cell populations and it is not clear how growth

rates are affected by disruptions at the molecular level.

Here, we present a mathematical model that combines the molecular and

the population levels, to study the influence of the circadian clock on the

growth of a population of cells. We study the influence of circadian clock

gene mutations on the net growth rate of a dividing population. We show

that disruption of circadian rhythms can lead to abnormal proliferation. De-

pending on autonomous cell cycle properties and the nature of the disruption,

circadian clock gene mutations can lead to faster or slower growth rates. We

characterize the effect of circadian clock gene mutations, and show that com-

bined molecular/population model brings to the dynamics of cell proliferation

a picture more complete than a molecular model alone.

2. Coupling the cell cycle and the circadian clock

Becker-Weimann and colleagues developed a simple model that takes into

consideration molecular information and analyzed the roles of feedback loops

on the oscillatory dynamics [32]. This model was used to explore the role

of the negative feedback loop created by the transcription factor complex

BMAL1/CLOCK that activates the Period and Chryptochrome genes (Per1,

Per2, Cry1 and Cry2 ) (Figure 1A). After several hours, PER and CRY

proteins form a complex in the cytoplasm, go back to the nucleus and down-

regulate their own synthesis by inhibiting BMAL1/CLOCK. Once the latter

protein complex is inhibited, transcription of PER and CRY stops. Hence,
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BMAL1/CLOCK is no longer inhibited and the cycle starts its process again.

The model also includes a positive feedback loop where Bmal1 transcription

is positively regulated by PERs and CRYs because the complex PER/CRY

also inhibits the transcription of Rev-erbα, which inhibits the transcription

of Bmal1.

Here, we focus on the coupling between the cell cycle and the circa-

dian clock through the protein WEE1. The combined molecular/population

model consists of two coupled systems of equations: one system of ordinary

differential equations that describes the molecular dynamics of the cell cycle

and the circadian clock, and one system of partial differential equations that

describes the growth of a cell population. The molecular model itself is a

coupled system of two core networks, one for the circadian clock, and one for

the cell cycle.

According to Nagoshi et al. [15], cultured fibroblasts harbor self-sustained

and cell autonomous circadian clocks similar to those operative in the neurons

of the suprachiasmatic nuclei. Similar results were obtained for yeast, where

the regulation of oscillations is not the result of a central oscillator, but rather

it emerges from numerous subgraphs with the potential to oscillate with

stable periodicity [8]. Also, circadian gene expression continues during cell

division and daughter cells resume the rhythms of mother cells after mitosis.

We assume that cell cycle divisions do not alter the molecular concentration

of the circadian components, neither their rhythms, which can be linked to

the fact that daughter cells inherit the same circadian expressions of their

mothers.

For the circadian clock, we used the model proposed by Becker-Weimann
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(A) (B)

Figure 1: (A) Scheme of the circadian clock network: the activated heterodimer
BMAL1/CLOCK (BMAL1⋆, y7) activates Per2 and Cry genes, which produce Per2/Cry
mRNA (y1). PER2 and CRY proteins are synthesized and bind in the cytosol to form a
complex (y2) to be transported into the nucleus (y3). This complex inhibits the activity
of BMAL1/CLOCK complex, thus destroying its own source of transcription and closing
the negative feedback loop. The nuclear complex PER2/CRY (y3) also activates Bmal1
transcription, which produces an increase in Bmal1 mRNA (y4), and cytosolic protein con-
centration (y5). The BMAL1/CLOCK complex is then transported to the nucleus (y6),
where it is activated. The activated BMAL1/CLOCK complex (BMAL1⋆, y7) restarts the
activation process of Per2/Cry. (B) Schematic representation of the coupling between the
cell cycle and the circadian clock through the protein WEE1 (z9) [24]. In the model, the
cell cycle is divided into three successive phases G1, S/G2, M. Transitions from one phase
to another depend on the activity of MPF (z8). For cells to leave G1 and enter S/G2,
MPF activity must exceed a fixed threshold θ1 = 0.09. For cells to leave S/G2 and enter
M phase, MPF activity must exceed that of WEE1 (z9). In the M phase, MPF activates
its inhibitor (z10), which represses MPF activity, letting it shut down and forcing the cell
to exit mitosis. Division occurs once MPF activity reaches a low threshold level θ2 = 0.06.
Coupling between the cell cycle and the circadian clock is achieved by the transcriptional
activation of Wee1, which induces WEE1 activity (z9) by the active BMAL1/CLOCK
complex (y7).
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and colleagues [32]. It consists of seven nonlinear ordinary differential equa-

tions describing the concentrations of Per/Cry mRNA and PER/CRY pro-

tein complexes, and Bmal1/Clock mRNA and protein complexes (yi, i =

1, ..., 7).

For the cell cycle, we used a system of three ordinary differential equa-

tions based on MPF activity (zi, i = 8, ..., 10). This model was inspired by a

model by Tyson and Novak [33] (The original model is for fission yeast cell

cycle, we adapt the notations for mammalian cell cycle). The core of the

Tyson and Novak model is based on the activity of the cyclin-dependent pro-

tein kinase complexes CyclinB/Cdk1 (also called MPF for mitosis promoting

factor), which are the engine needed to start DNA replication and mitosis.

The cell cycle is divided into three phases: G1, S/G2, and M. Transitions

from one phase to the other depend on the concentration of MPF and its en-

emies. When the activity of MPF is high, the cell progresses through the cell

cycle; when it is low, the cell blocks its progression. Each phase transition of

the cycle is regulated by specific enemies and helpers, which decide whether

MPF will win or lose. Transition from G1 to S is governed by the antag-

onistic interaction between MPF and its enemies APCG1 and CKI. In the

G2/M transition, the enemy of MPF is the tyrosine kinase WEE1, which can

inactivate Cdk1. At cell division, or M to G1 transition, MPF activity shuts

down to let the cell exit mitosis and enter the G1 phase. The helper molecule

for this transition is the APCM complex, which promotes the degradation

of CyclinB. In the model, three players are included explicitly: MPF (z8),

WEE1 (z9) and the inhibitor of MPF (z10). We supposed that cells enter

S/G2 phase when MPF increases above a fixed threshold (θ1), enter mitosis
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(M phase) when MPF activity rises above that of WEE1, and divide when

MPF reaches back a low threshold level (θ2), as it happens during mitosis.

Even though the cell cycle model presented here is not quantitative due to

the small number of kinetic parameters, it still reproduces a correct quali-

tative behavior of the cell cycle dynamics. Since we were interested in the

effects of coupling the circadian clock to the cell cycle through the protein

WEE1, we only considered the antagonistic relation of WEE1 and MPF to

avoid simulation artefacts, which may come from other interactions that are

not related to our study. Our model reproduces well the evolution of MPF

activity, which oscillates in an antagonistic way with the activity of WEE1.

Once MPF activity surpasses WEE1 activity, it activates its inhibitor (vari-

able z10 in our model, which can be associated to APCM in the Tyson and

Novak model, Figure 1 in [33]) to help shutting down its own activity and

forces the cell to exit mitosis.
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The full, 10-variable molecular system, reads

dy1
dt

=
ν1b(y7 + c)

k1b(1 + ( y3
k1i

)p) + y7 + c
− k1dy1, (1)

dy2
dt

= k2by
q
1 − k2dy2 − k2ty2 + k3ty3, (2)

dy3
dt

= k2ty2 − k3ty3 − k3dy3, (3)

dy4
dt

=
ν4by

r
3

kr
4b + yr3

− k4dy4, (4)

dy5
dt

= k5by4 − k5dy5 − k5ty5 + k6ty6, (5)

dy6
dt

= k5ty5 − k6ty6 − k6dy6 + k7ay7 − k6ay6, (6)

dy7
dt

= k6ay6 − k7ay7 − k7dy7, (7)

dz8
dt

=
k0mpfk

n
1mpf

kn
1mpf + zn8 + szn10

(1− z8)− dwee1z9z8, (8)

dz9
dt

=
kactw

kactw + dw1

(cw + Cy7)+

( kactw
kactw + dw1

− 1
) kinactwz

n
8 z9

kn
1wee1 + zn8

− dw2z9, (9)

dz10
dt

= kact(z8 − z10). (10)

The dynamical variables of the circadian clock are: y1 Per2 or Cry mRNA

and proteins; y2 PER2/CRY complex (cytoplasm); y3 PER2/CRY complex

(nucleus); y4 Bmal1 mRNA; y5 BMAL1 cytoplasmic protein; y6 BMAL1

nuclear protein; y7 Active BMAL1; The dynamical variables of the cell cycle

are: z8 Active MPF; z9 Active WEE1; z10 Active MPF inhibitor.

For the cell population system, we used age-structured equations de-

scribed in the next Section. The molecular model entrains the cell population
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Figure 2: Cell cycle dynamics with coupling to the circadian clock. Autonomous period of the cell cycle
is equal to 18 h in this example. Increasing the coupling strength tends to regulate the cell cycle to 24 h.
Coupling strength: (A) 0, (B) 0.5, (C) 1, (D) 1.5.

system through cell cycle phase transition rates, which depend on an average

molecular state of the cells.

We first studied the influence of the coupling strength between the circa-

dian clock and the cell cycle. The coupling describes the BMAL1/CLOCK-

mediated rate of WEE1 activation (parameter C in equation 9). Cell cycle

durations reported in the literature range from around 8 h for fast dividing

lymphocytes to more than 60 h for slow tumor cells [34]. Thus, character-

istic division times of most mammalian cells coincide with the 24 h period

of the day. To see how cells could entrain to the circadian clock period, we
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chose a cell cycle with an autonomous period (period without coupling to

the circadian clock) close, but not equal to 24 h. The cell cycle period was

set by scaling the time in the cell cycle equations to obtain the right period.

This means that all kinetic events (activation and deactivation) are scaled

uniformly. We simulated the influence of the coupling on a cell cycle with an

autonomous period of 18 h, for different coupling strengths C = 0, 0.5, 1, 1.5.

We observed that when the coupling strength increases, the period of the cell

cycle increases (Figure 2). This behavior was expected for two reasons: (i)

WEE1 blocks the cell cycle in G2 phase, and hence slows it down, and (ii) the

period of entrainment of the circadian clock is longer than the autonomous

period of the cell cycle.

We then asked whether coupling to the circadian clock always slows down

the cell cycle, or whether it could speed it up. To answer this question,

we looked at the influence of the coupling strength on the cell cycle for

autonomous cell cycle period ranging from 8 to 60 h. Our simulations led

to different modes of locking between the circadian clock and the cell cycle.

For certain combinations of coupling strength and autonomous periods, the

cell cycle can entrain to the circadian clock with a rational period ratio,

referred to as n:m phase-locking or entrainment (Figure 3A). For a n:m

locking, the cell divides n times each m days. These regions of the coupling

strength/autonomous periods are called Arnold tongues [35]. Arnold tongues

show that the cell cycle can phase-lock to a wide range of orders with m up

to 5. 1:1 and 1:2 phase-locks have the widest range of entrainment, but other

ratios can be found for large coupling strengths, such as 1:2 and 2:3.

For a fixed coupling strength (C = 1.2), the graph of the domains of
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Figure 3: (A) Arnold tongues showing the regions of n:m entrainment for different coupling
strengths and autonomous periods. Each region corresponds to an order of entrainment.
The order n:m means that cells divide n times every m days. Hence, the 1:1 phase-lock
region contains all cell cycles that are entrained to one division per day, or a cycle of 24
h, under an appropriate coupling strength. (B) The 24h/T’ vs T plot for a fixed coupling
strength (C = 1.2) has a characteristic shape, the devil’s staircase [35]. T’ is the period
after entrainment by the circadian clock and T is the autonomous period of the cell cycle.

entrainment leads to a devil’s staircase (Figure 3B). The devil’s staircase

shows the frequencies (in number of cell cycles per day) of the phase-locked

cell cycles as a function of the autonomous period. Phase-locked frequencies

are distributed below (Figure 3B, shaded region) and above the autonomous

frequencies (white region), indicating that entrainment by the circadian clock

can either slow down, or speed up the cell cycle. The cell cycle is accelerated

for intervals of autonomous periods above 24 and 48 h. Therefore, although

in our model the circadian clock only acts as a break for cell cycle progres-

sion, cells with autonomous periods above 24 or 48 h can cycle faster under

circadian entrainment.
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Figure 4: Effects of coupling the circadian clock to the cell cycle with autonomous period of 20 h. (A)
Without coupling (C = 0): MPF activity follows a 20-h autonomous cycle. BMAL1/CLOCK period is
equal to 24 h. (B) With coupling (C = 1.2): the cell cycle period is entrained to 24 h. (C) The population
in M phase is entrained to 24 h, hence cells have a division cycle of 24 h instead of 20 h. (D) With
coupling, the growth rate does not decrease even though the cell cycle period becomes longer.

14



(A)
0 10 20 30 40 50 60

 0.2

 0.3

 0.4

Autonomous period of the cell cycle (hours)

G
ro

w
th

 r
a

te

 

 

C = 0

C = 0.4

C = 0.8

C = 1.2

C = 1.6

(B)
0 10 20 30 40 50 60

 0.2

 0.3

 0.4

Autonomous period of the cell cycle (hours)

G
ro

w
th

 r
a

te

 

 

C = 0

C = 1

C = 2

C = 3

C = 4

(C)
0 10 20 30 40 50 60

 0.4

 0.5

 0.6

 0.7

Autonomous period of the cell cycle (hours)

G
ro

w
th

 r
a

te

 

 

C = 0

C = 0.4

C = 0.8

C = 1.2

C = 1.6

Figure 5: Effects of coupling on the growth rate. (A) Present model. (B-C) Effects of
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3. From molecular concentrations to population growth

The simulations so far show that the circadian clock could make the cell

cycle model run faster or slower, depending on its autonomous period. How

does this translate into a net growth rate in a dividing cell population is

unclear, and recent analytical results have shown counter-intuitive effects of

periodic forcing on growth rates of proliferating cells. There is no systematic

inequality when comparing growth rates of a population under circadian

control versus a population with a constant, average control [30, 31], but it

seems that populations under circadian control that have a cell cycle period

close to multiples of 24 h proliferate faster [38].

We would expect the cell cycle period to be inversely proportional to

the growth rate, as in the devil’s staircase (Figure 3B). If this were so, the

knowledge of the clock-entrained period should be enough to determine the

cell population dynamics, without the need of population models. To test

that hypothesis, we set up a cell population model entrained by the circadian

clock. We used an age-structured model that tracks the time elapsed by cells

in each cell cycle phase [39, 40, 41]. We divided the cell cycle model into

three phases corresponding to the three phases of the molecular model: G1,

S/G2, and M phases. The equations read

∂tni(t, x) + ∂xni(t, x) +Ki(y, z)ni(t, x) = 0, (11)

ni+1(t, 0) =

∫

∞

0

Ki(y, z)ni(t, x)dx, (12)
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for i = 1, 2, and

n1(t, 0) = 2

∫

∞

0

K3(y, z)n3(t, x)dx, (13)

The variable ni(x, t) represents the density of cells in phase i. The vari-

able x represents the time spent by a cell in a phase. The parameter Ki is the

transition rate from phase i to the next phase. The transition between phase

i = 3 and phase i = 1 marks the cell division, which accounts for the coeffi-

cient 2 in the boundary condition for n1. Each transition rate Ki depends on

an average molecular state of the cells. The molecular state is given by the

coupled systems of ODEs for the circadian clock and the cell cycle (Equations

1–10). The functional form of the transition rates is a Goldbeter-Koshland

function:

K(y, z) =
2yJi

z − y + zJa + yJi +
√

(z − y + zJa + yJi)2 − 4yJi(z − y)
. (14)

This function has been used to generate a switching behavior [33]. If the ratio

y/z becomes larger than one, the function switches to the upper state and the

transition occurs. Ja and Ji are two constants that determines the stiffness

of the switch, if they tend to zero, the switch tends to a step function. The

transition rate from G1 (i = 1) to S/G2 (i = 2) is switched ON when the

concentration of MPF reaches a certain threshold value θ1 that instructs the

cell to start DNA synthesis (K1 = K(z8, θ1)). The G2 to M (i = 3) transition

rate depends on the balance between MPF and WEE1. The cell is blocked

in S/G2 and cannot transit to mitosis until MPF concentration exceeds that

of WEE1 (K2 = K(z8, z9)). The transition from M to G1, and cell division,
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occur when the activity of MPF goes back to baseline level (K3 = K(θ3, z8)).

The total cell number in each phase is given by

Ni(t) =

∫

∞

0

ni(t, x)dx, (15)

i = 1, ..., 3 and the total cell number is N(t) =
∑3

i=1 Ni(t).

To examine the effect of coupling on the growth rate, we made simulations

with and without coupling to the circadian clock. Based on the Arnold

tongues for C = 1.2, the autonomous period of the cell cycle was set to 20 h,

inside the 1:1 phase-lock region (Figure 3A). When coupled to the circadian

clock, the activity of MPF and WEE1 is well entrained and follows a rhythm

of 24 h (Figure 4A,B). Driven by the new rhythm of MPF and WEE1, the

fraction of dividing cells follows a rhythm of 24 h (Figure 4C). Even though

the coupling slows down the cell cycle, the population growth rate stays

practically unchanged (Figure 4D). This can be justified by the fact that not

all cells divide at each cycle. Indeed, there was 0.38 cell division per cell

per cycle with coupling, while there was 0.32 cell division per cell per cycle

without coupling. Therefore, a longer cell cycle can be compensated by a

larger number of division at each cycle, resulting in a higher growth rate

than would be inferred from the cell cycle duration only.

To gain more insight on this non-intuitive result, we examined the impact

of the coupling strength on the growth rate, for autonomous cell cycle periods

ranging from 8 to 60 h. In absence of circadian coupling, the growth rate

decreases almost linearly with the cell cycle period (Figure 5A, solid line).

In presence of circadian coupling, the growth rate is decreased for most of

18



the autonomous cell cycle periods (Figure 5A, non-solid lines). A notable

exception is the interval between 20 h and 31 h, where the growth rate

is elevated compared to the growth rate without coupling. This interval

corresponds to the range of 1:1 phase-lock (Figure 3). For the larger coupling

strengths (C ≥ 1.2), the growth rate is almost constant on this interval, as

is to be expected from a synchronized population. The elevated growth rate

in phase-locked populations is not systematic. For autonomous cell cycle

periods above 31 h, which include the 1:2 phase-lock region, the growth

rate is almost constant. In this phase-lock region, the cell cycle is entrained

on a 48 h period, and the growth rate is close to the autonomous growth

rate at 48 h. These results are in agreement with previous theoretical studies

made with population models [30, 31, 38], which showed that under circadian

forcing, the growth rate was elevated near 24 h. Taken together, these results

show that the growth rate is related to the entrainment of the molecular cell

cycle, but that it is not possible to compare the growth rates with or without

coupling.

To test the robustness and genericity of these results, we performed the

same simulations on the effect of the coupling strength with two other pub-

lished models for the circadian clock, one by Mirsky et al. [36], and the other

by Leloup et al. [37]. For the Leloup et al. [37] model, we used parameter

set 4. Both models showed the same qualitative result for the impact of the

coupling strength on the growth rate. The coupling to the circadian clock

increases the growth rate for periods around 24 h, over 48 h and decreases it

elsewhere (Figure 5B,C).
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Mutation Circadian clock period
Experimental Simulation

Per2 Arrhythmic [36] Arrhythmic
Bmal1 Arrhythmic [36] Arrhythmic
Cry2 Rhythmic, long period [36] Rhythmic, T = 24.2 h
Per2/Cry2 Rhythmic [42] Rhythmic, T = 22.7 h

Table 1: Effects of mutations on the period of the circadian clock: comparison between
experimental data and simulations.

4. Circadian clock and cancer

To investigate the role of the circadian clock in tumor development, we

looked at the effect of mutations or deletions of circadian genes on the growth

rate. Different types of mutations were examined, namely Per2, Bmal1, Cry2

mutations and Per2/Cry2 double mutations. Per2 and Bmal1 mutations

abolished circadian clock rhythmicity, while Cry2 and Per2/Cry2 mutations

maintained rhythmicity, in agreement with experimental data (Table A.4 and

reference [32], details on simulating mutants are below). Two cases were

studied, one considering an autonomous period of the cycle equal to 28 h and

one equal to 20 h. By choosing an appropriate coupling strength (C = 1.2

for example) to the circadian clock, these two cycles could be entrained to

a 1:1 cycle (Figure 3). We looked at changes that occurred after simulating

a mutation in the circadian clock. Finally, to have a more global view, we

investigated the effect of mutations for autonomous periods ranging from 8

to 60 h.

We studied the effect of mutating Per2 gene by considering that PER2

is a main actor in the negative feedback loop and simulated Per2 mutation

by decreasing the rate of PER2/CRY complex formation (we set k2b = 0.01).
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Figure 6: Effects of mutating circadian genes on the fraction of cells entering mitosis. (A) Autonomous
period of the cell cycle is equal to 28 h. (B) Autonomous period of the cell cycle is equal to 20 h.

Autonomous period 28 h Autonomous period 20 h
mutation period (h) g.r. (d−1) period (h) g.r. (d−1)
Wild-type 28.0 0.3389 20.0 0.3282
Per2 56.4 0.3364 38.4 0.3954
Bmal1 60.0 0.2938 42.7 0.3558
Cry2 24.2 0.1895 24.2 0.0986
Per2/Cry2 22.6 0.3348 22.7 0.3289

Table 2: Effects of mutations on the period of the M phase (column period) and the growth
rate (column g.r.).
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Simulations showed that Per2 mutants have a slower division cycle (Figure

6A,B, dash-dotted lines). This mutation tends to increase the growth rate in

the case of 20 h autonomous cell cycle and keeps it almost equal to that of

wild type cells for autonomous period of 28 h (Table 2). Even though the cell

cycle becomes much slower in mutants, in the case of 28 h autonomous period,

1.05 cell divisions occur during each 56 h-cycle, compared to 0.4 divisions

per cycle in wild type cells. This means that for Per2 mutants, some cells

must divide more than once during the cycle and explains why the mutants

proliferate at the same rate as the wild-type. We also supposed that PER2

activates Bmal1 transcription and simulated Per2 mutation by decreasing

Bmal1 transcription rate (we set ν4b = 1.5). Similarly, we obtained that Per2

mutants have a slower division cycle and an increased growth rate (Figure 7

dot-dashed lines).

We simulated Bmal1 knockout by setting the transcription rate of Bmal1

ν4b equal to 0. Simulations showed that this mutation tends to slow the

cell division cycle for both 20 and 28 h autonomous period (Figure 6A,B,

dotted lines). We observed that this mutation decreases the growth rate for

autonomous periods of 28 h and increases it for autonomous periods of 20 h

(Table 2).

We simulated deficient Cry2 mutants by decreasing the strength of the

negative feedback loop (the constant k1i was increased to k1i = 0.8). Cry2

mutation preserves the periods of mitotic divisions (Figure 6A,B grey-dashed

lines), but decreases the growth rate for both 20 and 28 h-autonomous the

cell cycle periods (Table 2).

We simulated Per2/Cry2 double mutants by assuming that Per2 muta-
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Figure 7: Effects of mutating circadian genes on the growth rate. Mutation of Per2, assuming its role
in the negative feedback loop (dot-dashed line), decreases the growth rate for periods ranging from 27
to 31 h, for periods larger than 40 h and increases it elsewhere. Mutation of Per2 assuming its positive
regulation of Bmal1 (grey dot-dashed line) increases the growth rate almost everywhere. Bmal1 knockout
(dotted line) increases the growth rate for periods shorter than 21 h and decreases it elsewhere. Cry2

mutation (grey dashed line) decreases the growth rate everywhere. Per2/Cry2 double mutation (dashed
line) maintains a normal proliferation.

tion decreases the rate of PER2/CRY complex formation, and that Cry2 mu-

tation decreases the strength of the negative feedback loop (we set k1i = 0.8

and k2b = 0.01). Our simulations showed that these double mutants have

recovered a mitotic division cycle similar to that of wild type. They also have

the same growth rate (Figure 6A,B, dashed lines; Table 2).

Finally, we compared the growth rates for mutants and wild type cells for

autonomous cell cycle periods ranging between 8 and 60 h. Per2 mutation

generally increases the growth rate. Cry2 mutation decreases it, and Bmal1

mutation increases it for autonomous periods less than 21 h and decreases

it elsewhere. Our simulations also predict that Per2/Cry2 double mutants

recover a normal proliferation rate and have approximately the same growth

rate for all autonomous periods of the cell cycle (Figure 7).

We tested the robustness and the genericity of these results by performing

the same simulations on the effect of circadian genes mutations with the
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models proposed by Mirsky et al. [36] and Leloup et al. [37]. Results given

by the model proposed by Mirsky et al. [36] were consistent with current

model. Namely, Per2 mutation increases the growth rate, Cry1 decreases

it, Bmal1 mutation increases it for autonomous periods less than 22 h and

decreases it elsewhere. Simulations on Per and Cry mutations done with the

model proposed by Leloup et al. [37] did not show a difference in growth rate

compared to the wild type (Figure 8). These results may be explained by

the fact that this model is relatively robust to parameter variations. For the

parameter set 4 in Leloup et al. [37], the circadian clock was most sensitive to

parameters related to Bmal1, for which the effect on the population growth

rate was similar to the current model and the model by Mirsky et al. [36].

Taken together, these results predict a differential effect of certain clock

gene mutations, depending on the autonomous cell cycle period of the cell

population. For instance, Per2 mutant populations grow faster when the

autonomous period is shorter than 40 h, but can also grow more slowly if their

autonomous period is longer. Other mutations, such as Cry2, systematically

slow down the population growth rate.

These results can be explained by looking at the impact of mutations on

the MPF/WEE1 dynamics, which dictates the rhythm for cells to enter into

mitosis and then divide. Mutation-induced change in BMAL1/CLOCK dy-

namics, either its period or concentration, directly influences WEE1 activity

and the cell cycle dynamics. For example, in case of a 28 h autonomous

period, even though the cell cycle becomes longer for Per2 mutants, the

growth rate does not change. Per2 mutation produces an arrhythmic clock

with low BMAL1/CLOCK concentration (Figure A.9B, dash-dotted line). A
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comparison of MPF/WEE1 dynamics between mutants and wild type cells

shows how the transition rates for the M phase differ (Figure A.10). For

Per2 mutants, the transition rate is at a high level for a longer time. This

means that even though the cell cycle is longer, much more cells will have

the time to enter M phase and divide. This explains why growth rates are

similar in Per2 mutants, even though the cell cycle period is longer. For

Cry2 mutants, growth rate decreases. Cry2 mutation leads to higher rates

of BMAL1/CLOCK, which in turn increases WEE1 activity (Figure A.9B,

grey-dashed line). Increasing WEE1 activity will decrease the activity of

MPF (Figure A.9A, grey-dashed line), which means that cells are blocked in

G2 phase for a longer time and are prevented from transiting into mitosis. A

comparison of the transition rate between wild type and Cry2 mutants shows

that transition rate for wild type cells stays on a high level for a longer time

than for mutant cells (Figure A.11).

5. Discussion and Conclusion

5.1. Mathematical model for the regulation of the cell cycle by the circadian

clock

We developed a combined molecular/population mathematical model to

study how the coupling of the circadian clock to the cell cycle, through the

protein WEE1, affects a proliferating cell population. The model has the

novelty of combining both, intracellular and population levels. We investi-

gated the influence of coupling on the period of the molecular cell cycle and

on the growth rate of the population. The molecular model displays wide

ranges of entrainment to the circadian clock, where there is a n:m ratio in
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Figure 8: Effects of mutating circadian genes on the growth rate. Simulations were per-
formed with other models chosen from literature for the circadian clock (Mirsky et al. [36]
(A), and Leloup and Goldbeter [37] (B)). Both models gave a result for Bmal1 mutants
similar to our result, Bmal1 mutation increases the growth rate for autonomous periods
less than 22 hours and decreases it elsewhere. For other types of mutations, the first model
is more consistent with our model. It gave similar result for Per2 mutants, Per2 mutation
increases the growth rate (dot-dashed line (A)). Results for Cry1 mutation were also in
agreement with our results. Cry1 mutation (grey solid line (A)) seems to decrease the
growth rate for a large interval of autonomous periods. Results for Cry2 mutation are not
in agreement with ours, since Cry2 mutation (grey dashed line (A)) seems to increase the
growth rate and do not decrease it as it was predicted by our model. Simulations on Per
and Cry mutations done with the model proposed by Leloup et al. did not show much
difference for the growth rate compared to wild type cells (dot-dashed and grey solid lines
(B)).
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the number of cell cycles and the number of circadian oscillations. We found

that molecular information about the cell cycle was not always sufficient to

predict how the growth rate in a dividing cell population is affected. The

combined molecular/population could predict an increase in growth rate in

Per2 mutants that could not be explained by the molecular model alone.

We used the combined model to look at the influence of circadian clock gene

mutations on the population growth rate. We found a differential effect of

clock gene mutations, depending on the autonomous cell cycle period of the

cell population.

5.2. Entraining the cell cycle by the circadian clock

We examined the influence of coupling the cell cycle to the circadian

clock on the number of cell cycle divisions per day. We showed that for

certain combinations of coupling strength and autonomous periods, the cell

cycle can entrain to the circadian clock with a rational period ratio, re-

ferred to as n:m phase locking or entrainment. These regions in the coupling

strength/autonomous periods space are the Arnold tongues already intro-

duced (Figure 3A). Gérard and colleagues characterized domains of entrain-

ment to 24 and 48 h periods [28], which correspond to 1:1 and 1:2 phase-

locking, respectively. While their model and the current model both predict

wide ranges of 1:1 and 1:2 entrainment, there are small differences. In the

current model, the 1:2 entrainment region is larger than the 1:1, while the

converse is true for the model by Gérard and Goldbeter ([28], their Figure 4B,

our Figure 3A). In the current model, 1:2 entrainment is observed at large

coupling strength in a autonomous period range where 3:2 occurs (around

autonomous periods of 36 h). It looks like that in the Gérard and Goldbeter
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model, the 1:1 entrainment takes over for larger coupling strengths. Recently,

Feillet et al. used multispectral imaging of single live cells and mathematical

modeling to investigate how the temporal organization of cell division at the

single cell level produces daily rhythms at the population level [43]. They

demonstrated that there are multiple coexisting robust oscillatory dynamical

states of the coupled clock and cell cycle in proliferating mammalian cells,

namely 1:1, 5:4 and 3:2 phase locking states. We have characterized a wide

range of entrainment modes, including high order phase-locking (3:5, 4:5,

5:4, 5:3), which is consistent with the experimental data of Feillet et al. and

which may partly explain the observed quantized cell cycle times discussed

previously [27]. The devil’s staircase provides a way to predict the frequency

of cell divisions as a function of the autonomous cell cycle period. Although

the circadian clock acts as a break by activating the inhibitor WEE1, for

certain autonomous periods, the cell cycle frequency can still be higher with

the clock than without (Figure 3B).

5.3. Modulation of population growth rate by the clock

We investigated the influence of coupling on the growth rate for au-

tonomous periods of the cell cycle varying from 8 to 60 h. Clairambault

and colleagues [31] showed, using population models, that there is no general

inequality between growth rates with and without coupling to the circadian

clock. Bernard et al. [38] found that cells under circadian control that have

an interdivision time close to multiples of 24 h proliferate faster. Here, we

showed that coupling increases the growth rate for autonomous periods of the

cell cycle around 24 h and above 48 h. For most other periods, the growth

rate is decreased. These results could not have been obtained based only on
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the molecular model, which predicted a smaller growth rate for autonomous

periods just below 24 h.

5.4. Effect of mutating clock genes on the growth rate

We investigated the effect of single or double circadian clock gene mu-

tations on a cell population growth rate. Fu and colleagues showed that

loss of Per2 functions increased tumor development [5]. The roles of PER2

in the circadian clock mechanism have been unclear. It is usually consid-

ered as a main actor in the negative feedback loop, repressing the activ-

ity of BMAL1/CLOCK through the complex PER2/CRY. But some studies

also suggest that PER2 activates Bmal1 transcription in an indirect manner

[44, 45, 46]. We first examined Per2 mutation by considering that PER2

plays a repressive role in the negative feedback loop. Our simulations are in

agreement with experimental results and show that Per2 mutation increases

the growth rate for a wide range of autonomous periods of the cell cycle.

When a positive action of PER2 on Bmal1 was assumed, we also obtained

an increased growth rate for this mutation. We examined Cry2 mutation.

We showed that Cry2 mutation decreases the growth rate for almost all pe-

riods of the cell cycle. This may explain the experimental results obtained

by Matsuo and colleagues, who showed that the weight of regenerating liver

in Cry deficient mice was significantly lower than in wild type mice [24].

We examined Per2/Cry2 double mutation. We showed that Per2/Cry2

double mutants recover normal proliferation rates and have similar growth

rates for all autonomous periods of the cell cycle. Oster et al. showed that

inactivation of Cry2 gene in Per2 mutant mice restored circadian rhythmicity

as well as normal clock gene expression patterns [42]. They showed that both
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the period and amplitude of Bmal1 (also of Per1 and Cry1 ) expressions in

Per2/Cry2 double mutant animals were comparable to those of wild types.

Hence, if both period and amplitude of Bmal1 are comparable to those of wild

type, WEE1 profile will not be changed for these double mutants, preserving

normal dynamics for the cell cycle.

We also explored Cry1 mutation and Cry1/Cry2 double mutation, based

on the assumption that CRY1 plays a more important role in the negative

feedback loop [47]. In the current model, these mutations completely abol-

ished cell proliferation (data not shown). There is no experimental evidence

that disruption of the circadian clock can totally prevent cell cycle progres-

sion, and it is likely that the cell cycle relies on factors not included in the

current model to proceed through division.

5.5. Robustness of the results

To test the robustness of our results, we performed our main simulations

with two other models for the circadian clock (Mirsky et al. [36], Leloup et

al. [37]). We simulated the effect of coupling and circadian genes mutation

on the growth rate. Both models show the same qualitative result that

we obtain for the impact of the coupling on the growth rate. Results on

mutating circadian genes obtained with the model proposed by Mirsky et

al. were more consistent with our results. The model proposed by Leloup

et al. did not show a difference between mutated and wild type cells. This

may be explained by the fact that the model proposed by Mirsky et al. was

designed to study the effects of mutating circadian genes, whereas the model

proposed by Leloup et al. was designed to generate sustained oscillations,

which makes it more robust about parameter variation.
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The current circadian clock model [32] shows limitations in reproducing

experimental data that are inherent to models with simplifying assumptions

and distinct molecular species lumped together. To check how the simplifying

assumptions affect the results, we made a detailed comparison between the

current model and the model by Mirsky et al. [36] on the effects of circadian

gene mutations. What it is critical in our model is the effect specific muta-

tions on the activity of BMAL1/CLOCK (period and concentration), which

regulates directly WEE1 and the cell cycle. Hence, we simulated the effects

of circadian gene mutations on BMAL1/CLOCK using Mirsky et al. model

(in the same way the authors did it in the original study, Table S3 in [36]) and

compared the results with those obtained by the current model. Both models

showed similar effects for Bmal1 and Per2 mutations. Bmal1 mutation re-

sults in an arrhythmic clock with zero concentration of BMAL1/CLOCK and

Per2 mutation results in an arrhythmic clock with a low BMAL1/CLOCK

concentration (Figures A.9B,C and Tables A.4, A.5). Consequently, Bmal1

and Per2 mutations have similar effects on the growth rates (Figures 7 and

8A, dotted and dash-dotted lines). Cry2 mutation results in a rhythmic

clock with a longer period for both models. However, the period obtained

with the model of Mirsky et al. is longer than with the current model (T

= 32.1 h vs T = 24.2 h, Table A.4). The effect on BMAL1/CLOCK con-

centration is different: the Mirsky et al. model showed a lower concentration

compared to wild type, while the current model showed a higher concentra-

tion (Figures A.9B,C and Table A.5). This results in different growth rates

for the two models (Figures 7 and 8A, grey dashed lines). Per2/Cry2 dou-

ble mutation results in a rhythmic clock with the current model (T = 22.7
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h), with a concentration similar to wild type, while it results in an arrhyth-

mic clock using the model of Mirsky et al. (Figures A.9B,C and Tables A.4,

A.5). Finally, both models gave an arrhythmic clock for Cry1 mutation,

with higher BMAL1/CLOCK concentration compared to wild type (Figures

A.9B,C, grey solid line).

The main differences between the two models are the effects of Cry2

and Per2/Cry2 mutations. Mirsky et al. predict a longer period for Cry2

mutants, which may be more realistic in the case of lung explants and fi-

broblasts. The model by Mirsky et al. predicts an arrhythmic clock for

Per2/Cry2 double mutation, in contrast to the current model and experi-

ments showing normal rhythmicity for these double mutants [42] . The model

by Forger and Peskin also predicts a rhythmic clock for this double mutation

[48]. The main limitation of the current model is the way Cry1 mutation

and Cry1/Cry2 double mutation are approached. Both are simulated in the

same way, by decreasing further the strength of the negative feedback loop.

This leads to an arrhythmic clock with high constitutive BMAL1/CLOCK

concentration inhibiting cell proliferation, which cannot be supported by ex-

perimental data (data not shown). Results given on the growth rate by the

model of Mirsky et al. on Cry1 mutation seems more coherent. Cry1 mu-

tants have a decreased growth rate compared to wild types for a wide interval

of autonomous periods of the cell cycle (Figure 8A, grey solid line).

5.6. Conclusion

Combining a molecular model to a population model offers new insight

on the influence of the circadian clock on the growth of a cell population.

Disruption of the circadian clock can increase or decrease the growth rate, as
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well as the period of mitotic divisions, depending on which clock gene is af-

fected. In some cases, even though the cell cycle slows down, the growth rate

can still increase, making the combination of a molecular model and popu-

lation model unavoidable to study the effect of circadian clock disruption.

This can have beneficial impacts on chronotherapy, which aims to develop

new strategies in cancer therapies by a better understanding of the circadian

clock and its impact on cell proliferation.

The combined model presented in this study is the first step in developing

a fully multiscale model for the interaction between the circadian clock and

the cell cycle. The multiscale model describes a cell population p structured

with a molecular content (y, z) describing the circadian clock and the cell cy-

cle. Heterogeneity among cells can be fully taken into account in a multiscale

model, but at the cost of a high-dimensional phase space (here 10D). Even

though it has limitations, the current molecular model is simple enough to

be amenable to a multiscale description, which, in our view, is essential.

Several studies have shown that the tolerance and the toxicity of drugs

varies according to their administration time [49, 50, 51]. Clinical stud-

ies showed that compared to standard chemotherapies, chronomodulated

chemotherapies, which aim to deliver drugs at an optimal time of the day,

could be more efficient and better tolerated by patients [52, 53]. In a re-

cent work, Bernard et al. [54] used a simple cell population model under

chronomodulated treatment and developed a quantitative method to identify

biological parameters important for the successful design of a chronotherapy

strategy. They found that optimal times depend not only on the circadian

status but also on the cell cycle kinetics of the tumor. They suggested that
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the length of the cell cycle is important to determine the best treatment

times and intervals. For fast growing tumors, with short S phase, adminis-

tering a drug that targets the S phase of the cell cycle at 28.8 h intervals may

be safer than treating at 24 h intervals, and that for slow growing tumors,

with a long S phase, treating at 24 h intervals would be the best option. The

circadian clock is often disrupted in advanced stage cancers, perhaps because

this gives a competitive advantage to growing tumor cells [55]. The current

model could be useful to predict how the cell cycle is modified following cir-

cadian clock disruption. Combined with the method proposed by bernard et

al. [54], this may be of great importance to determine the right time for drug

delivery. By taking into account complex interactions between the cell cycle,

the circadian clock and the treatment, the combined molecular/population

model can be a helpful tool for chronotherapy.
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Parameters Values Units Description
Circadian clock

c 0.01 nM Concentration of constitutive activator
p 8 Unit less Hill coefficient

ν1b 9 nMh−1 Maximal rate of Per2/Cry transcription
k1b 1 nM Michaelis constant of Per2/Cry transcription

k1d 0.12 h−1 Degradation rate of Per2/Cry mRNA
k1i 0.56 nM Inhibition constant of Per2/Cry transcription

k2b 0.3 nM−1h−1 Formation rate of cytoplasmic PER2/CRY complex

k2d 0.05 h−1 Degradation rate of cytoplasmic PER2/CRY complex

k2t 0.24 h−1 Nuclear import rate of PER2/CRY complex

k3t 0.02 h−1 Nuclear export rate of PER2/CRY complex
q 2 Unit less Number of PER2/CRY2 complex forming subunits

k3d 0.12 h−1 Degradation rate of nuclear PER2/CRY complex

ν4b 3.6 nM−1h−1 Maximal rate of Bmal1 transcription
r 3 Unit less Hill coefficient of Bmal1 transcription

k4b 2.16 nM Michaelis constant of Bmal1 transcription

k4d 0.75 h−1 Degradation rate

k5b 0.24 h−1 Translation rate of BMAL1

k5d 0.06 h−1 Degradation rate of BMAL1

k5t 0.45 h−1 Nuclear import rate of BMAL1

k6t 0.06 h−1 Nuclear export rate of BMAL1

k6d 0.12 h−1 Degradation rate of nuclear BMAL1

k6a 0.09 h−1 Activation rate of nuclear BMAL1

k7a 0.003 h−1 Deactivation rate of nuclear BMAL1⋆

k7d 0.09 h−1 Degradation rate of nuclear BMAL1⋆

Cell cycle

k0mpf 10 h−1 Activation rate of MPF
k1mpf 0.05 nM Activation rate of MPF

s 20 nM Inhibition constant of MPF

dwee1 5 h−1 Degradation rate
n 2 Unit less Hill coefficient

kactw 1 h−1 Activation rate of WEE1 due to BMAL1/CLOCK
dw1 1 nM Michaelis constant
cw 0.5 nM Concentration of constant activator
C 0 nM Coupling strength to the circadian clock

kinactw 200 h−1 Deactivation rate
k1wee1 0.5 nM Michaelis constant

dw2 1 h−1 Degradation rate

kact 0.01 h−1 Activation rate of MPF inhibitor
Population model

θ1 0.09 nM Threshold value for G1 to S/G2 transition
θ2 0.06 nM Threshold value for mitotic division (M to G1)
Ja 0.1 Unit less Stiffness of the switch
Ji 0.1 Unit less Stiffness of the switch

Table A.3: Parameters description.

Mutation Circadian clock rhythmicity
Current Mirsky et al.

Per2 Arrhythmic Arrhythmic
Bmal1 Arrhythmic Arrhythmic
Cry2 Rhythmic, T = 24.2 h Rhythmic, T = 32.1 h
Per2/Cry2 Rhythmic, T = 22.7 h Arrythmic
Cry1 Arrhythmic Arryhthmic

Table A.4: Effects of mutations on the period of the circadian clock: comparison between
the current model [32] and the model of Mirsky et al. [36].
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Figure A.9: Effects of mutating circadian genes. (A) MPF activity under different clock mutations.
(B) BMAL1/CLOCK activity under different clock mutations, current model [32]. (C) BMAL1/CLOCK
activity under different clock mutations, model of Mirsky et al. [36].

Mutation BMAL1/CLOCK
Current Mirsky et al.

Per2 Lower Lower
Bmal1 Lower Lower
Cry2 Higher Lower
Per2/Cry2 Similar Lower
Cry1 Higher Higher

Table A.5: Effects of mutations on the BMAL1/CLOCK concentration compared to wild
type: comparison between the current model [32] and the model of Mirsky et al. [36].
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Figure A.10: (A) Per2 mutants. (B) Wild type cells.
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Figure A.11: (A) Cry2 mutants. (B) Wild type cells.
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[51] F. Lévi, Therapeutic implications of circadian rhythms in cancer pa-

tients, Novartis Found. Symp. 227 (2000) 136–42.
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