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We describe ferroelectric thin films with circular electrodes and develop a thermodynamic theory that explains
exotic experimental results previously reported. It is found to be especially useful for restricted geometries such
as microstructures for which boundary conditions are well known to play an important role in ferroelectric
properties. We have explored a switching mechanism that consists of an inhomogeneous rotational motion of the
polarization and leads to a vortex state. The vortex appearance exhibits characteristic properties of a first-order
field-induced phase transition with three critical electric fields and the possibility of hysteresis behavior.
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I. INTRODUCTION

The knowledge of spatial distribution of polarization in
thin and ultrathin ferroelectric films is very important for
their evaluation for device applications. In fact, the finite-size
ferroelectric samples exhibit properties that are different from
those for bulk materials [1]. Description of the nonuniform
distribution of ferroelectric polarization in the frame of phase
transition theory with suitable boundary conditions has been
successfully used to investigate thin-film properties [2,3]. It
has been recently shown that the domain texture is controlled
by the surface layer properties and related boundary conditions
[4,5]. In term of mathematical formalism, changes in the
boundary conditions for a partial differential equation are re-
quired for the determination of variational problem solutions.
The modification of physical properties with respect to the
bulk induced by the presence of surfaces and/or interfaces can
be investigated. The corresponding solutions are nontrivial in
that sense that they are different from those obtained for a bulk
material.

Unlike the vortex structures studied recently by Jia et al. [6]
or Balke et al. [7], these structures have large radii (∼1 μm).
The primary result is that there is a second critical field
Evortex

c , a vortex nucleation field, much lower than the usual
coercive field Ec for switching rectilinear domains. This has
device implications such as lower energy memory devices for
nonvolatile data storage. The polarization reversal process is
a succession of orthoradial and radial stages. Simulation of
the domain texture evolution with time in two dimensions is
found to be in very good agreement with recent vortex structure
dynamics reported by Gruverman et al. [8]. Moreover, it is
shown that the experimental doughnut shape can exist in such a
ferroelectric system but only as a metastable state as described
by Scott et al. [9], which explains why it disappears in hours.

*laurent.baudry@iemn.univ-lille1.fr

II. THERMODYNAMIC MODEL

The Landau theory of phase transition in the context of
ferroelectric material considers the switchable part of the
polarization P as the order parameter. Since the concept of
an order parameter refers to the description of an infinite
media, the spontaneous polarization corresponds to a global
minimum of the free energy functional F . For thin films with
out-of-plane polarization along the z axis, the experimentally
observed switching mechanism from initial up-state toward a
final down-state is sketched in Fig. 1. Theoretically the direct
switching mechanism as shown from (a) to (e) in Fig. 1 inside
a delimited region [i.e. without considering the nucleation
process (b)] can be described by using the Landau approach
in the presence of an electric field.

Due to the anisotropy, one can consider the switching
mechanism induced by the electric field along the polarization
axis E = Ez by using a one-dimensional approach with the
free energy functional F = ∫

f dV with P = Pz and

f (Pz,Ez) = α

2
P 2

z + β

4
P 4

z + κ

2

(
∂Pz

∂z

)2

− EzPz. (1)

In these conditions, the homogeneous switching mechanism
with uniform Pz occurs by means of progressive change in
the polarization modulus and an abrupt change in sign when
the field value reaches the thermodynamical coercive field

Ec = − 2α

3
√

3

√
−α
β

[Fig. 2(a)]. This field value is many orders

of magnitude higher than the experimental coercive field [10],
the difference between these two values being attributed to the
crudeness of the nucleation process in the thermodynamical
description, so that the switching mechanism is described as a
homogeneous longitudinal phenomenon (in reality ferroelec-
tric switching always occurs via inhomogeneous nucleation).
Some works have been devoted to extend this description to
inhomogeneous switching by including the gradient energy
and a surface term in the free energy [11,12], but nevertheless
without solving the coercive field paradox.

Possible solution of this paradox can be in the shown
[Fig. 2(b)] switching of the polarization by means of a
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FIG. 1. Simplistic switching process stages. (a) Homogeneous
up-state, (b) nucleation of a down-oriented region, (b) → (c) forward
growth, (c) → (e) lateral growth, (e) homogeneous down-state.

rotational homogeneous mechanism as was proposed recently
[13]. In this case the polarization reversal occurs without pass-
ing through the state P = 0, but rather by rotation of its direc-
tion. Such mechanism, which we refer to as “Iwata switching,”
can be relevant for the cubic perovskite-type oxides in the bulk

(b)

(a)

FIG. 2. Switching mechanisms: (a) longitudinal switching,
(b) rotational switching.

form, when the transition is described by the three-component
order parameter P = (Px,Py,Pz), and the free energy density
f has the following expression [14,15]:

f (P,Ez) = α

2

(
P 2

x + P 2
y + P 2

z

) + β1

4

(
P 4

x + P 4
y + P 4

z

) + β2

2

(
P 2

x P 2
y + P 2

y P 2
z + P 2

z Px

) + 1

2
G11[(∂xPx)2 + (∂yPy)2 + (∂zPz)

2]

+G12[∂xPx∂yPy + ∂yPy∂zPz + ∂xPx∂zPz] + 1

2
G44[(∂xPy + ∂yPx)2 + (∂zPy + ∂yPz)

2 + (∂xPz + ∂zPx)2]

+1

2
G′

44[(∂xPy − ∂yPx)2 + (∂zPy − ∂yPz)
2 + (∂xPz − ∂zPx)2] − EzPz. (2)

However the potential problem of such scenario is the
appearance of the surface bound charges provided by the per-
pendicular polarization component that is virtually emerged
at the lateral sample during rotation. These charges produce
the energy-unfavorable depolarization field that finally makes
the homogeneous rotational switching inefficient in finite-size
samples.

The proposed mechanism however can be realized via the
nonuniform rotation of polarization vector inside the sample,
when P stays parallel to the surface and bound charges do
not appear at the boundary. In addition, the distribution of
polarization inside the sample should satisfy the condition
divP = 0 to not cause the internal bound charges and related
depolarization field.

In the present article we investigate the possibility of such
nonuniform switching, via the vortex formation mechanism
as shown in Fig. 2(b). To reflect the geometry of the process
we present the polarization vector in cylindrical coordinates
P = (Pρ,Pϕ,Pz) (Fig. 3).

From basic electrostatic considerations related to symmetry
and invariance properties we have Pρ = 0, Pϕ(ρ), and Pz(ρ).

θ
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z
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nz
P
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FIG. 3. Sketch of the structure studied.

For the present case concerned with vortex formation, one
can expect that it is also possible to switch the polarization
by mean of progressive change in the angle θ ; we now
investigate carefully such kind of possibility (i.e., switching by
polarization rotation inside an orthoradial plan with divP = 0).
In these conditions the free energy f given by Eq. (2) becomes

f (P,Ez) = α

2
P 2

ϕ + β1 + β2

4
P 4

ϕ + α

2
P 2

z + β1

4
P 4

z + β2

2
P 2

ϕ P 2
z

+ G

[(
∂Pz

∂ρ

)2

+
(

1

ρ

∂(ρPϕ)

∂ρ

)2]
− EzPz, (3)

where G = G44 + G′
44.

Further simplification can be done close to the mor-
photropic phase boundary where the anisotropic terms in
Eq. (3) are negligible and the rotational degrees of P are not
coupled with its modulus. In this case we can use the constant
modulus Goldstone approximation and parametrize the radial
polarization distribution structure by the only parameter, which
is the inclination angle θ (ρ).

By introducing scalar variables P , E related to the vector
components Pz, Pϕ , Ez by Pz = P cos θ , Pϕ = P sin θ , and
Ez = −E (with E > 0), we obtain the expression of the free
energy with θ = θ (ρ):

f (P,E) = GP 2

[(
∂θ

∂ρ

)2

+ 1

ρ2
sin2 θ + 1

ρ

∂ sin2 θ

∂ρ

]

− PE cos θ. (4)

It is convenient to use the rescaled quantities f̃ = f

−α0ζ
2
0 P 2

and Ẽ = E

−α0ζ
2
0 P

, where ζ0 = √
G/−α0 and α0 = α|T =0 =

−aTc < 0, the parameter α = a(T − Tc) being analogous to
the coefficient of P 2 in the classical Landau free energy
expansion [Eq. (1)].
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Finally we obtain the expression of the rescaled free energy
functional F̃ of the ferroelectric cylinder in the presence of the
applied field

F̃ =
∫ 2π

0

∫ R

0

∫ h

0
f̃ (ρ,θ )ρdρdϕdz, (5)

with

f̃ (ρ,θ ) =
(

∂θ

∂ρ

)2

+ 1

ρ2
sin2 θ + Ẽ cos θ + 1

ρ

∂ sin2 θ

∂ρ
. (6)

We are interested in a thin film homogeneously up-polarized
at the initial state, i.e., with θinitial(ρ) = 0, and would like to
determine the possible final states obtained after applying
a down electric field by means of a circular electrode with
radius R. One can expect that there exists an intuitive solution
which consists of a homogeneously down polarization state
in the region where the field is applied (i.e., located under
the circular electrode). In other words this solution for the
final state corresponds to θfinal(ρ) = π on the interval [0,R].
This solution is also from both mathematical and physical
viewpoints a trivial solution when the diameter of the electrode
is infinite, because it corresponds to a global minimum
(polarization parallel to the field) for the free energy for
an infinite system. For the case of real systems with finite
electrode diameter, the finite character of the ferroelectric
media would play an important role and the interaction with
the exterior will be crucial via boundary conditions.

We have to solve a variational problem to search for
functions θ (ρ) which are extrema of the functional F̃ and first
develop the variation of the functional by carefully paying
attention to the contribution of boundary conditions:

δF̃ = 2πh

∫ R

0
g(θ (ρ,e))δθdρ + 2πh

[
∂θ

∂ρ
δθ

]R

0

+ 2πh

[
1

2
sin 2θδθ

]R

0

, (7)

with

g(θ (ρ,e)) = −2∇2
ρθ + 1

ρ2
sin 2θ − e sin θ. (8)

Here we have assumed that the polarization is pinned
at ρ = R in the initial up-oriented state and θ (R) = 0. The
regularity of the solution at ρ = 0 imposes another boundary
condition θ (0) = 0. Note that the boundary condition at ρ = R

depends, in reality, on the conditions of the experiment and
other constraints, such as the free boundary conditions, or
the condition of matching of the inner and outer solutions
can be imposed. We have shown, however, that the choice of
the boundary conditions causes only insignificant quantitative
change in θ (ρ) dependence without modification of the
qualitative conclusion [16].

Finally variational calculation leads to the following state
equation expressed in terms of rescaled variables ρ̃ = ρ/R

and ẽ = ẼR2 � 0:

∂2θ

∂ρ̃2
+ 1

ρ̃

∂θ

∂ρ̃
− 1

2ρ̃2
sin 2θ + ẽ

2
sin θ = 0. (9)

The determination of the extremum of the functional requires
one to solve the previous nonlinear second-order differential

FIG. 4. Maximum value of θ (ρ̃) as a function of ẽ/ẽ0. The solid
and dashed lines respectively correspond to two different vortex states
with different free energy minimum F̃ (Fig. 5). Particular selected
points correspond to (a�) ẽc−min ≈ 0.94ẽ0, (b�) ẽc−abs ≈ 0.96ẽ0, and
(c�) ẽc−max = ẽ0. Vertical dashed-dotted lines correspond to critical
fields for transition between absolute stable states. The range of field
values delimited by vertical dotted line corresponds to the maximal
extension of possible electric hysteresis phenomena.

equation with corresponding boundary conditions for θ (ρ̃,ẽ)
at ρ̃ = 0 and ρ̃ = 1.

We obtain the equilibrium state by using a numerical
method suitable for solving the nonlinear state equation
Eq. (9). We have plotted in Fig. 4 the evolution of the
maximum θmax = max θ (ρ̃), as a function of rescaled electric
field ẽ/ẽ0 with ẽ = ẽ0 ≈ 29.36. There exists a critical field
ẽ�
c−min ≈ 0.94ẽ0 upon which there exist nonzero solutions of

Eq. (9).
Between ẽ�

c−min and ẽ�
c−max = ẽ0 there are two possibilities

for the vortex state with two different values for θmax. From
ẽ�
c−min we observe two branches; the first one with negative

slope which reaches 0 at ẽ�
c−max and the second one with

positive slope which approaches ẽ�
c−max.

FIG. 5. Energy F̃ as a function of ẽ/ẽ0 for different polarization
distributions: homogeneous up-state (thick solid line), vortex state
dθmax/dẽ < 0 (dashed line), and vortex state dθmax/dẽ > 0 (solid
line). Particular selected points correspond to (a�) ẽc−min ≈ 0.94ẽ0,
(b�) ẽc−abs ≈ 0.96ẽ0, and (c�) ẽc−max = ẽ0.
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FIG. 6. θ as a function of ρ̃ for different electric field values,
from the bottom to the top: (a�) ẽc−min ≈ 0.94ẽ0, (b�) ẽc−abs ≈ 0.96ẽ0,
(c�) ẽc−max = ẽ0, 1.2ẽ0, 1.4ẽ0, 1.6ẽ0, 1.8ẽ0.

In order to determine the state which is the most stable we
have plotted in Fig. 5 the evolution of the free energy F̃ as
a function of ẽ/ẽ0 from the different kinds of solutions. With
the dotted line, we have represented the free energy πhẽ of
the homogeneous up-oriented state. From ẽ�

c−min we observe
also the evolution of the free energy which corresponds to
the two branches previously described in Fig. 4. The curve
with dashed line in Fig. 5 corresponds to the part of the curve
with dashed line in Fig. 4. In that case the energy is greater
than the energy πhẽ of the trivial solution θ = 0 all over the
range of fields ẽ�

c−min − ẽ�
c−max for which this solution exists,

so that it does not correspond to the more stable state which
remains the homogeneous up-state. The curve with solid line
in Fig. 5 corresponds to the part of the curve with solid line
in Fig. 4 and also exhibits an energy greater than πhẽ up
to ẽ = ẽ�

c−abs ≈ 0.96ẽ0 so that the vortex state is less stable
than the homogeneous state. On the contrary, upon reaching
ẽ = ẽ�

c−abs the energy of the second solution is lower than
πhẽ. As a consequence this second solution corresponds to
the more stable solution in the presence of an applied field
greater than ẽ�

c−abs. At ẽ = ẽ�
c−max we observe the existence

of a single solution which corresponds to the prolongation of
the second solution in the range ẽ�

c−min − ẽ�
c−max (Fig. 5). We

have represented in Fig. 6 the distribution θ (r̃) for different
electric fields. The shape observed for the metastable state at
ẽ�
c−min is slightly asymmetric. It becomes more asymmetric as

ẽ increases. For the highest electric field the θ (r̃) distribution
is highly asymmetric which reveals an important characteristic
of the vortex state.

III. DISCUSSION OF EXPERIMENTAL SITUATIONS

The experimental study of circular closure or vortex
domains began experimentally with the study by Dawber et al.
[17] of nucleation and growth of ferroelectric domains in
unpoled PZT films. By measuring the frequency response
of thin films to ac signals, they found that a resonance
was observed with frequency equal to the reciprocal of the
specimen’s perimeter. This relationship was interpreted as
nucleation at the edge, propagation around the circumference,

leaving an unswitched core at the center. The effect was not
proportional to the diameter or area of the specimen, only the
perimeter, as verified by using square and rectangular samples
of very different aspect ratios, from 1 × 1 μm to 130 × 180 μm
(4 μm to 620 μm). However, these circular closure domains
were not initially tested via direct spatial observation, either
electron microscopy, optical microscopy, or piezoelectric force
microscopy (PFM). It is important in the present context that
these closure domains were observed only in films that had
not been pre-poled but which had simply been cooled from
above the Curie temperature. Even more important, this was
observed to be a low-field phenomenon. It occurred only for
E � 100 kV/cm and in fact could occur for fields 10 times
smaller than the nominal coercive field Ec. For larger applied
fields, the switched polarization was homogeneous, from +P

to −P , with no unswitched hole in the center. This early work
implied two distinct coercive fields: a low coercive field for
vortex instability, and a higher coercive field for homogeneous
switching. However, these experiments showed that the speed
of propagation of the closure domain was given ballistically
[18] by the formula

τ = 2λ

v0
exp

(
R

2l

)
, (10)

where R is the disk radius, l is the phonon wavelength causing
viscous drag with coefficient, and v0 the domain wall velocity.

D = 1
2ρAv2

0, (11)

where ρ is the sample density and A is the cross section.
Velocity v0 was fitted to be 3 m/s in PZT. In the present model
we not only assume a much faster wall velocity, but we neglect
damping.

The second experimental paper [8] revealed spatially (via
PFM), and with 100 ns time resolution, closure domains in
circular disks at higher fields (∼70 kV/cm) but not in squares
of the same diameter (2 μm) and thickness, indicating a
significant role of boundary conditions. A model simulation,
based on ferromagnetic Landau-Lifshitz-Gilbert equations,
reproduced the experiments well and also indicated that this is
a low-field phenomenon. Further modeling by the authors of
Ref. [8] showed that there was a critical size for these closure
domains, which for disks was ∼2 μm diameter and smaller
for squares. Triangular specimens in the simulation did not
exhibit closure domains for any field or lateral size.

The third experimental paper [9] showed that the circular
unswitched center (Fig. 7) in the closure domains was only
metastable and disappeared in zero field after ∼24 hours.
At longer times the outer edge became faceted along high-
symmetry planes, indicating relaxation caused by crystalline
anisotropy [19,20].

Most recently the study of closure domains in nanodots
[21] revealed that they arise from experimentally cooling
through Tc with very small or zero field. This time simulation
was done via the standard finite-element micromagnetics
software MAGPAR [22] and again supported the experiments.
The MAGPAR calculation had been done as a simple magnetic
domain analogy and surprisingly displays the basic qualitative
features of the experiment, although unlike the present work
it offers no explanation for the real mechanism or numerical
values. It does illustrate the sensitivity to boundary conditions
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FIG. 7. Closure domain with circular unswitched center (adapted
from Ref. [8]).

and size in the problem, and the basic Bessel-function-like
solutions.

Taken as a whole, these experiments show, in agreement
with the theory above, that there are two coercive fields in
ferroelectric nanodots: a very small coercive field for vortex
instability switching Evortex

c , and a large coercive field for
conventional switching Ec from homogeneous +P to −P

states. There is an indication that there may be a critical radius
for these effects, but that is uncertain; none was found in
Ref. [17].

These closure domains may have important application
for memory storage in ferroelectric memories (FRAMs): as
Prosandeev et al. have shown [23,24], these configurations
permit very high bit density and can be reversed by application
of external electric fields.

IV. DYNAMICAL PROPERTIES

Up to now we have studied the static case and determined
the equilibrium polarization state in the presence of an electric
field. We now turn our attention to discuss the essence of the
dynamical polarization reversal process on the basis of the
Landau-Khalatnikov equation of motion. The evolution of the
polarization with time is expressed as follows:

∂Pi

∂t
= −Li

δF

δPi

, (12)

where Li are the damping coefficients, i ={ϕ,z}.
In our model the time evolution of the polarization is

parametrized by the inclination angle θ and corresponding
Landau-Khalatnikov:

∂θ

∂t
= −L

δF

δθ
. (13)

The switching mechanism is initiated by a weak angle
instability δθ . For a field e > ẽc we observe the polarization
switching by means of progressive change of the angle θ .
This phenomenon is inhomogeneous and first affects a region
located close to the half radius of the electrode. Then we
distinguish two stages, the first one which is almost symmetric
with respect to the half radius and a second one which consists
of a radial extension of the switched region.

FIG. 8. From the bottom to the top: Evolution of the distribution
θ (ρ̃) with time for ẽ = 1.2ẽ�

c−min (a) and ẽ = 2ẽ�
c−min (b). At the

initial time the polarization is homogeneous and up oriented (θ = 0).
The time-step values and the value of L are chosen to favor the
visualization of the evolution of θ (ρ̃) until the final state is reached
(curve at the top of the figure).

We present in Figs. 8(a) and 8(b) the time evolution of
the polarization profile during the switching process. On the
whole this polarization reversal exhibits characteristics similar
to the process in thin films described in Fig. 1: The switching
occurs in the orthoradial direction and is followed by a growth
in a perpendicular radial direction. This suggests that the
behavior of the polarization component could be a universal
characteristic of the switching mechanism in ferroelectric
materials.

In order to test the capability of our model to describe the
experimental behavior, we have carefully examined the results
reported by Gruverman [8], and compared with those given
by our model by means of quasi-2D numerical simulation
of θ (ρ̃,ϕ), presented in Fig. 9. The main characteristics of
PFM measurements, (i) orthoradial rotation, (ii) radial rotation
which leads to a doughnut with a small central peripheral
unswitched region, and (iii) nucleation of down-state at
different places, were reproduced. To catch the last feature
we assumed the existence of sample-dependent nucleation
centers, accounted for by the slight spatially random variation
of initial orientation of the polarization vector. This caused
the transient inhomogeneities in distribution θ (ϕ), similarly
to what was observed by Gruverman et al. The initial state
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BAUDRY, SENÉ, LUK’YANCHUK, LAHOCHE, AND SCOTT PHYSICAL REVIEW B 90, 024102 (2014)

FIG. 9. (Color online) Evolution of the polarization texture be-
low the circular electrode during the switching process. With black
color, the “up” state; with white color, the “down” state.

and a stage which corresponds to the appearance of many
switched regions are respectively shown in Figs. 9(a) and 9(b).
The next stages reproduce orthoradial extension [Figs. 9(c)
and 9(d)] which can be interpreted as a time delay between
polarization rotation induced by the inhomogeneous nature
of the instabilities’ distribution δθ (ρ̃,ϕ). It leads to the
doughnut shape with a large central unswitched region. The
last stage corresponds to the radial rotation which contributes
to reduction of the central region area [Fig. 9(e)]. At the end
of the process when the stable state is reached [Fig. 9(f)], the
doughnut shape reported by Gruverman, with the small central
region and peripheral unswitched region, is obtained.

V. CONCLUSION

We have considered a finite ferroelectric cylinder with top
and bottom electrodes used to apply an electric field. By
using a thermodynamical approach we have demonstrated that

there exist nontrivial mathematical solutions induced by the
boundary conditions at the perimeter of the cylinder. These
solutions correspond to a metastable polarization state and
are observed only when an external electric field is greater
than a coercive value ẽcoercive. We have also demonstrated that
the switching mechanism has the behavior of a field-induced
discontinuous transition with hysteresis in the interval ẽ�

c−min −
ẽ�
c−max. However, the kinetic contribution can influence the

precise value of coercive field ẽcoercive, which would not
strongly deviate from the range ẽ�

c−min − ẽ�
c−max.

One can argue that the order of magnitude of ẽcoercive is given
by the value ẽ0 itself and is governed by the boundary condition
at the perimeter of the electrode. One can estimate the coercive
field for the vortex-formation switching by the field Evortex

c =
α0( ζ0

R
)2P ẽ0 and compare it with the classical thermodynamic

coercive field Ec. These two fields are found to be equal when
R = R0 ≈ 8.73ζ0. Usually R > R0 and Evortex

c < Ec.
In the case of Gruverman’s [8] study, one can estimate from

the experimental parameters the value of Evortex
c . It is found

to be many times lower than the rectilinear-domain coercive
field. In these conditions it seems reasonable that the existence
of a coercive field for vortex formation has not been reported
in Gruverman’s [8] article. The evolution of the polarization
texture in two-dimensional films allowed us to describe the
vortex formation. The calculated final steady state is similar
the unusual domain pattern with the doughnut shape previously
experimentally observed only in the case of a circular capacitor
[8]. The metastable characteristic of the doughnut distribution
[9] is also followed from our consideration since it vanishes
when the electric field is suppressed. The fact that the central
and peripheral unswitched regions are very small is also
consistent with the results given by the present theory which
predicts polarization saturation with θ = π along the radius
and unswitched regions with θ = 0 at the center and at the
peripheral edge of the electrode. The effect of the electric
field tends to enlarge the proportion of the region where
the polarization saturates and to decrease the central and
the peripheral regions. The dimensions of the unswitched
regions are very small, which is relevant for an applied electric
field much higher that the value given by our calculation.
Hence one should carefully investigate experimentally the
role of the applied field on the possible vortex formation.
Since the polarization reversal rotational mechanism costs
less energy than the classical one provided by change in the
modulus, usually observed in thin films, one can expect that
this alternative switching mechanism, induced by both the
geometry and the interface properties, would be especially
useful in memory storage.
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