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Abstract 

This paper is expected at the study of Ga1-xInxP/GaAs based solar cell. The effects of indium concentration, lattice parameter 
mismatch and thickness of the SiO2 insulating layer on the characteristics and efficiency of the Ga1-xInxP/GaAs structure were 
investigated. We noticed that for higher indium concentration, the band gap energy decreases considerably. We found that the 
efficiency reaches 18% in a lattice-matched =50 . For a concentration x  0.48, we have a compressive strain a/a  0 which 
leads to a higher efficiency. For x=90%, =5nm and a strain equal a/a= 3%, we achieved an efficiency of 27%. The results 
show that light conversion efficiency has considerably boosted by varying insulating strain values. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Euro-Mediterranean Institute for Sustainable Development (EUMISD). 
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1. Introduction 

Materials with a bandgap energy  Eg< 1.4 eV grown on GaAs substrates are of major interest for optoelectronic 
devices like multi-junction solar cells [1], 1.3 m wavelength emitting lasers [2]. The ternary Ga1-xInxAs is an 
attractive material with a bandgap ranging from 1.44 eV for GaAs decreasing to 0.35 eV for InAs. Unfortunately, the 
lattice constant of this material also changes significantly when we modify the composition. Besides, lattice-matched 
substrates are not available for most Ga1-xInxAs compounds. This letter is the first report on the successful deposition 
of Ga0.35In0.65 P/Ga0.83In0.17P tandem solar cells grown lattice mismatched to the GaAs substrate material. 
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 GaInP/GaAs tandem cells currently represent the highest efficiency monolithic solar cells and are in commercial 
production for space applications [4].  Strained semiconductors can be successfully incorporated into photovoltaic 
devices, as long as the critical thickness is respected for each separate layer as for the whole structure [5]. 
Metal/semiconductors heterojunctions (SC) and SC A / SC B have a great impact on the realized PV solar cells. The 
electronic structure of the interface determines the electronic behavior of heterojunctions and Schottky barrier height 
[6]. In our work, we have used indium/gallium-based compounds to prepare our structures. With these materials we 
are able to prepare different alloys by adding III-V compounds. Ternary alloys like Ga(1-x)InxP and InxAs(1-x)P or 
quaternary compound like InxGa(1-x)AsyP(1-y). In this type of materials, the forbidden band width could be changed 
which means that optical properties could be altered and improved at a certain spectral wavelengths range..  

2. Solar cell structure 

We have realized a solar cell using N-type  epitaxially grown on P-type . We have followed by 
the deposition of a thin Tin oxide ( ) film that replaces the metal layer and acts as window layer and 
antireflective coating due to its interesting optoelectronic characteristics (gap = 3.6 eV, refractive index 1.9-2.0). the 
last step is the deposition of silicon (Si) thin layer  which have a large forbidden band of  9eV with a high resistivity. 
Under light illumination, the generated electrons-holes pairs are directly separated by the internal electrical fields 
which yield a photocurrent density . Two types of electrical fields are produced; one at the depletion region of the 
MIS contact and the other field is located at the contact depletion region of semiconductor 1 and semiconductor 2     
( Fig;1).  
The insulating layer inserted between the metal and the semiconductor leads to the decrease of the thermoelectronic 
current as a result of the higher Schottky barrier. Concerning the  /  interface, we have noticed that 
the two semiconductors have different conduction band energies and valence band energies.  The electric potential 
difference V of the illuminated solar device is the sum of two components: Vi, generated at the insulating layer and 
Vs, produced at the depletion region of the semiconductor. The difference of potential is then V=Vs+Vi. The voltage 
Vi heightens the barrier between  and  which will make difficult for electrons to pass through by thermal 
effect B*=Bn+Vi . A higher barrier means that tunnel effect is the common mechanism for electron to get through the 
insulating layer. The current density in the   structure is: J=JTH-JTE. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig .1: structure of the studied solar cell 

3. Electrical characteristics of the  solar cell  

In the electrical characterization of solar cells, we have to extract Current-Voltage J(V), curves under illumination 
condition and calculate the maximum power delivered by the device and its light conversion efficiency. The current 
density of the structure is given by the equation: 
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(1) 

 
The short-circuit current ( ) of the solar cell is expressed: 

                                                                                                   (2) 

: absorption coefficient of the semiconductor. 
Open-circuit voltage Voc of the solar cell is the sum of two voltages :Voc=Voc1+Voc2 . 
 

of structure  is given by: 

                                                                           (3)

of the heterojunction structure is given by 

(4) 

The photocurrent density crossing the MIS device is expressed by the equation below [7]: 

                                                                                                                                    (5)

: is the solar spectrum AMG1.5, and  are wavelengths limits of absorbed solar spectrum. Taking into 
account the multiple reflections of light in the front and rear surfaces of the solar cell, optical electron-hole pair’s 
generation rate is expressed in the following: 
 

                                                           (6) 
 
Where  is the surface spectrum reflectivity, the first exponential factor results from the attenuation of light in 
the previous layers of the cell,  and  are respectively the absorption coefficient and the width of the precedent 
layers. It is noted that in our case, the upper layers are SnO2 and SiO2 which possess an absorption coefficient 

, and  are the absorption coefficient and the width of the bulk material GaAs,   and 
 are respectively the absorption coefficient and the width of the top lattice layer.  

 
4. Results 

Figure.1 shows the variation of the bandgap energy vs indium content. We have noticed that the gap decreases with 
increasing indium concentration whereas the strain decreases. For In concentration x=0.48 (lattice matching), the 
gap equals 1.7eV but for x  0.48 the uniaxial compression gap is less than  1.7eV with the strain a/a  0. A given 
example is for x=0.90, the strain is a/a = 3% with the strain gap being Eghh-st=1.46eV. We have maximum structure 
absorption in the case of a compressive strain as found elsewhere [8]. Figure.2 shows the variation of the absorption 
with incident light energy E. The absorption increases with higher indium concentration.  In the case we have a 
compressive strain; the absorption is more significant than the case of a lattice match in grand extensive strain. For 
example, if a/a =3% the maximum absorption is max=2.35.105cm-1. After the results of the structure GaInP absorbs 
better than InAsN.  Figure.3 shows the J(V) characteristics for different indium concentrations. For higher indium 
concentration, we notice that current density Jcc decreases while the open circuit voltage Voc increase. The opposite 
happens in an extensive strain case a/a < 0, Jcc is at a maximum and Voc is minimal. The opposite effect is obtained 
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for a compressive strain a/a > 0 and where we can see that the fill factor FF increases.  Figure.4 shows the 
variation of the structure power with the voltage. The maximum power delivered by the solar cell augments with 
higher compressive strain and lowers with an extensive one. For example, in the case of lattice matching a/a =0, 
the maximal power amounts to 43mW but if we increase the strain to a/a =3% the power reaches 49mW that is an 
increase of Pmax=6mW. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig.1:  variation of the bandgap energy as a function of the indium concentration. 

 

 

Fig.2:  absorption variation of GaInP structure as a function of the incident energy for different indium concentrations 
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Figure. 5 depicts the efficiency evolution of the GaInP/GaAs structure vs the strain a/a. It is clearly seen that  
increases when the strain increases. The solar cell efficiency is maximum when a/a > 0 and is higher for thicker 
SiO2 insulating layers. For a deformation of a/a =3% and a thickness of = 50  we will have an efficiency of 27%. 
For example, if we consider a GaInP/GaAs structure with a 50  thick insulating layer and a deformation            

a/a =1.2%, having an efficiency =23%, raising the deformation to a/a=3% will raise  to 27% : this is a relative 
improvement of =3.4%. If we keep the deformation constant at a/a =1.2% and let the SiO2 insulating layer 
thickness vary between 10 and 50 , the efficiency get boosted by =7%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.3: J(V) characteristic for various indium concentrations, voltage variation (Voc) and the current density (Jcc) 
 as a function of indium concentration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Variation of power according to the voltage for different indium concentrations 
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Figure.6 represents the variation of solar spectrum versus wavelength. The width of the absorption becomes larger 
when the strain varies. For an extensive strain of a/a = - 0.025, we notice that the absorption width varies between 
310 to 520 nm. In a lattice matched case, the width is larger and varies between 310 to 710 nm. In the opposite 
situation, where we have a compressive strain a/a =+0.03, the absorption width varies from 310 to 860 nm. Our 
structure prove the ability to turn more light into current and obtain higher efficiency by modifying the strain value 
and SiO2 insulating layer thickness. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.5: efficiency variation as a function of the thickness of the insulating layer Sio2 for different indium concentrations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The effect of the indium concentration on the absorption of solar spectrum 
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5. Conclusion 

In our study, it has been shown the influence of the Ga1-xInxP/GaAs structure strain and SiO2 insulating layer 
thickness  on the solar cell light conversion efficiency. We have demonstrated that the compressive strain 
influences considerably and enhances the absorption, the quantum efficiency and the efficiency. We noticed that a 
thicker SiO2 insulating layer ameliorates the efficiency ( ). Our findings show that for a compressive strain of    

a/a= 3% and SiO2 thickness =5nm, the efficiency is 27% where as EQE reaches 92% in the spectral range 310-
860 nm. These results show the effects of insulating layer thickness and strain parameters and their role in 
optimizing multi-junction and quantum multiwell structures. 
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