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Abstract The paper considers robust parametric optimization problems using multi-point formu-
lations and addresses the issue of the approximation of the gradient of the functional by reduced
order models. The question of interest is the impact of such approximations on the search sub-
space in the multi-point optimization problem. The mathematical concept used to evaluate these
approximations is the principal angles between subspaces and practical ways to evaluate these are
provided. An additional indicator is provided when a descent minimization algorithm is used. The
approach appears also to be an interesting tool for uncertainty quantification of the design in the
presence of models of increasing complexity. The application of these concepts is illustrated in the
design of the shape of an aircraft robust over a range of transverse winds.
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1 Introduction

Reduced order models are widely used in both simulation and design. These can be built, for in-
stance, by assimilation of high fidelity data or experimental results by a parametric model. Once
the model built it can be used in an optimization procedure providing cheap estimation of the
functional and its sensitivity with respect to the model parameters. It can also be locally used
in trust region approaches where the reduced order model needs to be dynamically enriched. Re-
duced order modelling receives different denominations following the field of research it is issued
from: learning in neural networks, fitting with least squares in experimental plans or higher de-
grees polynomials, reduced-order modeling with proper orthogonal decomposition, etc. Exhaustive
referencing is therefore out of scope and we indicate a few review texts such as [1–3].

The performance of a system designed for given functioning conditions often seriously degrades
when these conditions are modified. Typical situations of interest involve a few (typically one or
two) parameters describing the functioning of the system. Multi-point optimization is widely used
to address robustness issues in engineering and we showed [18,12] how to use such formulation
to address the robustness issue when a few functioning parameters are involved. In particular, we
showed how to introduce in this formulation what we would like for the outcome of the design
through a ’target-based’ weighting in the functional. We also discussed optimal sampling of the
functioning parameters intervals and quantitative confidence levels on the quality of our search
direction through Gram-Schmidt orthonormalization of the multi-point gradients. This naturally
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brought into light the question of the sampling size which needs to be monitored to maintain the
calculation complexity low. The aim was to avoid the worst-case theoretical limitation indicating
that the sampling size should be larger by one the size of the control space [20,18,19]. We showed
that this is only necessary if all the associated gradients (i.e. evaluated at the sampling points) are
linearly independent which is never the case in optimizations involving a state equation. Hence,
we showed, again through Gram-Schmidt procedure, that large dimensional parametric optimiza-
tion problems can be treated with very small sampling of the functioning parameters range with
marginal losses on the gradient information.

However, one often uses approximation in the definition of the gradients. And this is the starting
point of this paper. One would like to analyze the impact of these using reduced order models on
the search space defined by the gradients of the functional at the different sampling points of the
functioning parameters. The mathematical tool we use for this analysis is the principal angles
between subspaces. Reduced order modelling also includes situations where lower accuracy and
modelling complexity are accounted for in the linearization step than for the direct simulation
chain used for the definition of the functional. This is often the situation where an approximate
simulation chain is considered for linearization, droping or approximating some of the ingredients in
the direct chain. Of course, if the full gradient (i.e. based on the complete direct model) is accessible
this discussion in pointless. But, calculation complexity and also use of black box simulation tools
make that the linearization often takes place for a variant of the simulation loop.

After discussing algorithmic evaluations of the principal angles between the exact and approx-
imate search spaces, we will compare the evolution of these through optimization iterations for a
complex shape optimization problem for two scenarios of reduced order modelling. Even if non-
intuitive, it will be shown why the modelling errors will have less impact on the design when using
descent minimization algorithms. This approach appears to be a powerful tool to evaluate the per-
tinence of an increase in the modelling complexity and address related uncertainty quantification
issues.

2 Robust parametric optimization

We are interested in a class of optimization problems where the cost function involves a parameter
α not considered as a design parameter:

min
x∈Oad

j(x, α), α ∈ I ⊂ IRn,Oad ⊂ IRN , n� N. (1)

where x is the actual design vector belonging to Oad the optimization admissible domain. Usually,
the functioning parameters α are just a few. Typical situations of interest are where n = 1 or n = 2.

In [12] we showed how to use multi-point optimization to address such optimization problem.
The aim is to remove during the optimization the dependency in α. This is done minimizing a
functional J(x) encapsulating this dependency:

J = µ, such that σ ≤ σ0,

where

µ =
1

ω

∑
αl∈Im

ωlj(x, αl), ω =

m∑
l=1

ωl, (2)

with Im a given sampling of I whose choice has been discussed in [12] as well as the weights ωl
which account for the kind of performance we eventually want for the design: constant performance
over the functioning parameters ranges.

For the sake of simplicity and without loss of generality one can consider here both the sampling
and the weighting to be uniform.

As in First-Order Second Moment (FOSM) methods [14], σ is to monitor the regularity of the
final performance which should be as regular as possible with respect of α:

σ =
1

2

∑
αl∈Im

< ∇αj(x, αl),∇αj(x, αl) >, (3)
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where <,> is the Euclidean scalar product. σ0 is the level of variability for the initial design or of
a reference configuration. As n is small, ∇αj is evaluated by finite differences on Im.

Such minimization problems have brought new interest to descent methods and this not only
because of their lower computational complexity than the gradient free methods. Indeed, we will
see that gradients are useful to see what should actually be the search space in a context of robust
multi-point design. More precisely, the definition of the suitable search space is only possible after
identification of the maximal free subspace in the space generated by the gradients of the functional
at the sampling points Im. Indeed, as mentioned in the introduction, previous theory suggested that
the size of the sampling should be larger than the dimension of the control space (i.e. m = N + 1)
while we noted [18,12] that the dimension of the maximal free search subspace is usually much
smaller than N .

3 A multi-point descent algorithm

We consider the following iterative descent algorithm for our constrained minimization problem
involving a direct simulation chain linking the parameters (x, α) to the state U solution of a state
equation F (U(q(x, α)) = 0 and to a functional j is:



Given x0, 0 < ρ, 0 < η � 1, Im, pmax, 0 < ε� 1,

optimization iterations p = 1, ..., pmax

-m parallel state equation solutions F (U(q(xp), αl)) = 0, αl ∈ Im ,

-m parallel evaluations of j(xp, αl), αl ∈ Im ,

-m parallel solutions of the adjoint state V equation:

V tFU (U(q(xp), αl)) = jtU , αl ∈ Im,

-m parallel evaluations of ∇xj(xp, αl) = jx + (V tFx)t, αl ∈ Im ,

-define d the descent direction, d = ∇xµ− < ∇xµ,∇xσ > ∇xσ + η∇xσ,

-control parameter variation, xp+1 = xp − ρd,
Stop if ‖d‖ ≤ ε,

where a = a/‖a‖ is the normalized vector a and

∇xµ =
1

ω

∑
αl∈Im

ωl∇xj(x, αl), (4)

∇xσ =
∑
αl∈Im

< ∇αj(x, αl),∇αxj(x, αl) > . (5)

∇xαj(x, αl) is obtained from ∇xj(x, αl) by finite differences on Im, component by component,
following what has been done for ∇αj. The definition of the descent direction permits to make sure
that both µ and σ decrease for small descent steps. Indeed, a first order development in x gives:

σ(xp+1)− σ(xp) = ‖∇xσ‖ ∇xσ.(xp+1 − xp) = −ρη‖∇xσ‖ ≤ 0,

and we have

µ(xp+1)− µ(xp) = ‖∇xµ‖ ∇xµ.(xp+1 − xp) = −ρ‖∇xµ‖ (1− ζ2 + ηζ),

where ζ =< ∇xµ,∇xσ >. Therefore, µ is also decreasing as 1 − ζ2 + ηζ ≥ 0 for |ζ| ≤ 1 and
0 < η � 1 as chosen in the algorithm.

Despite the natural presence of parallelism in this algorithm in the m independent evaluations
of the state, functional and its gradient, computational complexity remains an issue. Possible
solutions for the reduction of the sampling size have been presented in [12] together with the use
of incomplete sensitivity concept in the evaluation of the gradients. This latter permits to avoid
the solution of the m adjoint equations in the algorithm. This is particularly suitable when using
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black-box state equation solvers not providing the adjoint of the state variables. We will mention
these issues in section 7.

Beyond individual gradient accuracy (i.e. at each of the sampling point), what is important in
these multi-point problems is the global search space defined by the ensemble of the gradient vectors.
This means that one might tolerate higher error levels in each of the gradient defined at the different
sampling point than for a single-point optimization situation as what is important is for the global
search space to remain nearly unchanged. An interesting mathematical concept which permits to
measure the deviation between two subspaces is the principal angles between subspaces.

4 Angles between subspaces

We use the mathematical concept of ’principal angles’ between subspaces in the Euclidean space
IRN ) initially introduced by C. Jordan [4]. If the maximum principle angle between the two sub-
spaces is small, the two are nearly linearly dependent. Geometrically, this is the angle between two
hyperplanes embedded in a higher dimensional space.

Let us briefly recall the concept of principal angles and how to practically compute them [5,8].
For simplicity, suppose A and B are two subspaces of dimension k of IRN , N ≥ 2k, although this
is not a prerequisite to define the principal angles. The k principal angles {θi, i = 1, ..., k} are
recursively defined as:

cos(θi) =
< ai, bi >

‖ai‖‖bi‖
= max{< a, b >

‖a‖‖b‖
: a ⊥ am, b ⊥ bm;m = 1, ..., i− 1},

where aj ∈ A and bj ∈ B.
The principal angles θi are between 0 and π/2. This is an important point and will be used later
to take advantage of the positivity of the cosine of the angles. The procedure finds unit vectors
a1 ∈ A and b1 ∈ B minimizing the angle θ1 between them. It then takes the orthogonal complement
of a1 in A and b1 in B and iterates. This procedure is not useful in practice as computationally
inadequate. We would like to be able to find the angles θi from the inner products < ai, bj > of the
elements of two bases of A and B [9]. This would be interesting in our multi-point optimization
context where we can exhibit an orthonormal basis of the global search space for the multi-point
optimization problem using Gram-Schmidt orthonormalization.
Now, let {ai, i = 1, ..., k} and {bi, i = 1, ..., k} be two arbitrary orthonormal bases for A and B.
Orthonormal bases are easy to obtain through the Gram-Schmidt orthonormalization procedure.
Consider M being the matrix of the projection operator Pr

A
of B onto A defined by:

Pr
A

(bi) =

k∑
j=1

< bi, aj > aj , M = (< bi, aj >)i,j .

The principal angles can be linked to this operator [9] through:

M = GΣHt,

where G and H are orthogonal matrices and Σ = diag(cos(θi)).
As G and H are orthogonal matrices, this is a Singular Vector Decomposition (SVD) of M .

G and H are unknown at this point. But, we will show that we do not need them to get the θi.
Otherwise, the approach will be again computationally useless.

We recall that the columns of G are the left-singular vectors of M and eigenvectors of MM t

and the columns of H are the right-singular vectors of M and eigenvectors of M tM . And most
important that cos2(θi) are the eigenvalues of Prt

A
Pr

A
which writes in matrix form as: M tM =

(GΣHt)t(GΣHt) = HΣ2Ht with Σ2 = diag(cos2(θi)).
Therefore, to find the principal angles between subspaces A and B, knowing an orthonormal

basis in each subspace, one should calculate M and find the eigenvalues of M tM and take the
square root of them. This last operation is valid as the angles are between 0 and π/2, and their
cosine therefore always positive.

We presented the approach for subspaces of the same dimension k, but it is not necessary
for the two subspaces to be of the same size in order to find the angles between them. We need
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N ≥ 2k to be able to exhibit two orthogonal subspaces. If N < 2k, some principal angles necessarily
vanish and for N = k they all vanish. This procedure is still valid if the subspaces have different
dimensions. The projection operator can be defined as well as its transpose and the eigenvalues of
M tM are real as this is a symmetric square matrix.

In our optimization applications we always proceed first with a reduction in size of the search
space using a sampling reduction size algorithm [12]. This makes the calculation of the whole set
of eigenvalues feasible in terms of calculation complexity. However, if this is out of reach, one can
evaluate the bounds on the angles to see the global pertinence of our reduced order models and
gradient approximations. This can be done without an exact calculation of the all eigenvalues.
It is sufficient to use the Gershgorin circle theorem to find these bounds as every eigenvalue of
M tM lies within at least one of the Gershgorin discs D((M tM)ii, Ri) centred on (M tM)ii and
with radius Ri =

∑
j 6=i |(M tM)ij |. And because M tM is symmetric, the eigenvalues being real, we

only consider the intersection of the discs with the x-axis. Alternatively, the largest and smallest
principal angles can be found using iterative power and inverse power methods applied to M tM .

One should however be aware that these bounds might not be sufficiently sharp to discrimi-
nate between two reduced order models and decide, for instance, which one is the more adequate
for sensitivity analysis. Figure 1 shows a typical sketch. It represents principal angles calculated
between a first subspace generated by the exact gradients of a transport model for a 10 points
sampling of one of the functioning parameters of the model and two subspaces generated by the
sensitivities derived from two approximations of this model for the same sampling. Details of the
models can be found in [13]. But the modelling problem is not of a main concern here. What is
important is that if one only considers the first and last principal angles, model M2 is found being
a better approximation to be used in a linearization procedure. However, with the whole spectrum
in hand the picture is quite different and M1 appears be more suitable if one intends to use this
reduced order model for sensitivity analysis.
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Fig. 1 Principal angles between the subspaces generated by an exact gradient calculation and the linearization of
two reduced order models. This permits to quantify the pertinence of an approximation from the whole spectrum.
Model M1 is found to be a better approximation even with a first principal angle slightly larger than with M2.

Principal angles between multi-point search spaces are interesting to measure the pertinence
of sensitivity definitions based on reduced order models. Indeed, the design will be unaffected
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by a reduction in the model’s complexity if the search subspaces, generated by the gradients at
the sampling points of the functioning parameter interval and their approximations, remain the
same. In the sequel we discuss the application of these ideas in our multi-point robust optimization
context.

5 Definition of the subspaces

Let us define subspaces A and B in the context of our multi-point optimization problems defined
in section 2. In our problem the size N is very large and is given by the dimension of the control
space. But, the subspaces A and B are of dimension k and we have 2k � N . For the sake of
simplicity we consider that both subspaces are of the same dimension. These are free subspaces
and we make sure by Gram-Schmidt orthonormalization that dim(A) = dim(B) = k.

Let us denote by  an approximation of the functional j. The orthonormalization is applied to
a set of exact G(αl) and incomplete g(αl) gradient vectors with respect to the control variable x
evaluated at αl ∈ Im the sampling of size m:

G(αl) = ∇xj(x, αl), g(αl) = ∇x(x, αl).

The choice of m is such that k < m� N . The issue of minimal sampling still providing an enough
large search space has been discussed in [12].

So we have A = Span(G(αl), αl ∈ Im) and B = Span(g(αl), αl ∈ Im). Now, the or-
thonormal bases {ai, i = 1, ..., k} and {bi, i = 1, ..., k} are defined by the Gram-Schmidt orthonor-
malization procedure applied to {G(αl), αl ∈ Im} and {g(αl), αl ∈ Im}. Hence, we will have
A = Span(ai, i = 1, ..., k) and B = Span(bi, i = 1, ..., k) but with k < m.

The size k depends on the accuracy requested in the Gram-Schmidt procedure we recall briefly
(in practice modified Gram-Schmidt is applied for numerical stability). This algorithm stops when
a given tolerance is achieved and k will be the rank at which the rest after successive projections
is found smaller than this tolerance:

Given Im, TOL,

a1 = G(α1),

iterations k = 1, ...

ak = G(αk)−
∑k−1
j=1

<G(αk),aj>
<aj ,aj>

aj ,

until ‖ak‖ < TOL.

(6)

This gives us the basis {ai, i = 1, ..., k}. The same procedure is applied to g′s to get the basis
{bi, i = 1, ..., k}. Again, the theory is valid even if the two bases do not have the same number of
vectors for the same accuracy TOL (i.e. A and B have different dimension).

6 Evolution of the principal angles during optimization

We would like to use the principal angles concept to evaluate gradients approximation by reduced
order modelling. These can be evaluated versus exact gradients when available or against each
other. This former permits to estimate, for instance, how much deviation is caused in the search
space by different levels of approximation in an incremental modelling process.

To implement these we modify the algorithm in section (3) introducing a few extra steps in
order to dynamically evaluate during the optimization the principal angles between the subspaces
generated by the set of exact and incomplete gradients over the functioning parameters sampling Im
and described in section 5. We think this procedure is necessary because unlike in the single-point
optimization, the approximation here needs to be valid over a range of the functioning parameters
and one would like also to make sure that the approximation holds over the optimization history
for the different control parameter values visited.
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The algorithm given in section 3 is modified as:

Given x0, ρ, η, Im, pmax, ε, TOL,

optimization iterations p = 1, ..., pmax

-m parallel state equation solutions F (U(q(xp), αl)) = 0, αl ∈ Im ,

-m parallel evaluations of j(xp, αl), αl ∈ Im ,

-m parallel evaluations of Gl(αl), αl ∈ Im ,

-m parallel evaluations of gl(αl), αl ∈ Im ,

-define the maximal free subspaces A ⊂ Span(G(αl), αl ∈ Im)

and B ⊂ Span(g(αl), αl ∈ Im),

-evaluate the principal angles between A and B,

-define d the descent direction as in 3,

-control parameter variation, xp+1 = xp − ρd,
Stop if ‖d‖ ≤ ε,

As A and B are the ’approximate’ largest free subspaces (in the sense given in section 5), they
generate the respective gradient-based search spaces and we have dim(A) = dim(Span(G(αl),
αl ∈ Im)) and dim(B) = dim(Span(g(αl), αl ∈ Im)) assuming that what falls beyond the

threshold TOL is related to numerical artefacts and should not be considered as potential search
directions. Indeed, we give in section 8 an example of how to numerically chose TOL. It is shown
that its value should not be too small in order to avoid adding to the maximal free search subspace
additional directions related to numerical noises and not containing any pertinent information.
Avoiding these extra dimensions also improves the convergence of the optimization algorithm for
the solution of our multi-point minimization problem. Indeed, extra gradients would make an
admissible descent direction harder to find.

7 Sensitivity analysis

In the algorithms given in sections 3 and 6, at each iteration of minimization we need to provide
∇xj(xp, αl) for different values of αl. This is computer intensive even if it is fully parallel. Our aim
is to see how to reduce the complexity of this optimization problem using reduced order modelling.
Beyond the computational complexity issue, the necessity for such alternatives also comes from the
fact that it is not always possible to proceed with the linearization of the direct simulation chain
used for the definition of j. Indeed, consider a general simulation loop linking the independent
parameters (α,x) to a functional j. As described in section 2, α is not a design parameter, but one
would like the design to be robust over a range of α:

j : (α,x)→ (α, q(x))→ U(α, q(x))→ j(α,x, q(x), U(α, q(x))), (7)

where q and U are dependent variables. Suppose q is cheap to compute and U expensive. For
instance, q represents geometrical quantities and U state related variables related to the physics of
the problem and solution of some costly governing equation. The gradient of j with respect to x
is:

∇xj(x, α) = j,x + (j,q + j,UU,q)q,x, (8)

where j,x, j,q and j,U are easy to access and are usually provided by the user as external modules
in an industrial simulation platform. Uq and qx are, on the other hand, difficult to access. The
major part of the cost of this evaluation is due to U,q and one usually uses an adjoint method to
make this cost independent of the size of the control space as recalled in algorithm 3. However,
today’s industrial simulation platforms are more and more based on black-boxes and commercial
packages not enabling the user for a direct access to the source of the codes. Differentiating the
simulation codes, by automatic differentiation [11] for instance, is therefore off the table. In the
same way, it is quite unconceivable to develop in-house adjoint solvers when the cost function
calculation relies on commercial packages. The only feasible gradient calculation approach with
black-boxes is with finite difference approximation which has a cost proportional to the size of
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the control parameter space. Despite this limitation, this technique remains the most widely used.
Here, we consider it only as an alternative when an adjoint solution is not available and it is only
used to validate sensitivity analysis based on reduced order modelling together with the ingredients
presented above.

Suppose we have q̃ and Ũ two reduced order models for q and U expressed at iteration p of
optimization as Φq̃(xp) = q(xp) and ΨŨ(α, q̃(xp)) = U(α, q(xp)). Φ and Ψ are scaling or transfer
functions which will be frozen during linearization. The model involves control parameters values
xp at iteration p of optimization. This indicates that the reduced order model is enriched during
the iterations assimilating the new high-fidelity data by (7). Simple forms of the transfer functions
are Φ = q/q̃ and Ψ = U/Ũ . We consider the approximate simulation loop  where only black-box
and high complexity terms have been approximated:

 : (α,xp)→ (α,Φq̃(xp))→ ΨŨ(α, q̃(xp))→ j
(
α,xp, Φq̃(xp), ΨŨ(α, q̃(xp))

)
. (9)

We need both q̃ and Ũ as q is now often part of a black-box package. Actually, considering a shape
optimization situation for instance, the q-code which includes the CAD manipulation tools (CAD:
Computer Aided Design) is even more difficult to access than the U -code. An example of Φ linking
3D surface meshes and the corresponding CAD-based geometry definitions is given in the problem
of section 8. Φ−1 describes the path used to go from the CAD shape definition to the mesh and
for a given mesh M, Φ(M) is defined in order to minimize the distance between M and Φ−1ΦM
meshes. An example of these relations is shown in figure 2. The notation Φ−1 is formal and this
operator is not built as the inverse of Φ (same for the operator Ψ and Ψ−1 below).

We consider the following linearization of (9) at iteration p of the optimization algorithms in 3
or 6:

∇x(xp, α) = j,x + (j,q + j,U (ΨŨ,q̃ (Ψ−1U)))Φq̃,x, (10)

where Ũ,q̃ (Ψ−1U) indicates the linearization of the reduced order model around the high-fidelity

solution U restricted to the domain of definition of Ũ . Again, the notation Ψ−1 is formal and this
transfer operator is not built as the inverse of Ψ (see the multi-grid context in section 7.1.2.

7.1 Examples of reduced order models

The ingredients of the paper will be tested on two examples of low complexity models in the
context of shape optimization. The first approximate modelling concerns Hadamard incomplete
sensitivity formulation and the second is based on grid coarsening for sensitivity analysis. Below
we describe both briefly using the notations above and refer to mentioned references for details
of each approach. These two approximations represent two major classes of complexity reduction
based either on a model simplification on the continuous level or use of lower accuracy in the
discretization for the sensitivity analysis.

7.1.1 Model reduction on the continuous level

One example of gradient approximation useful in our shape optimization problems is Hadamard
incomplete sensitivity which addresses the following context [10,15]:

– the cost function j and control x have the same domain of definition D(x) (e.g. a shape and
an aerodynamic coefficient defined over it),

– j is a product of functions such as j(x) = f(x, q(x)) g(U(q(x))).

If these requirements hold, we can use an incomplete evaluation of this gradient, neglecting the
sensitivity with respect to the state, leading to the approximation ∇x = j,x +j,Uq,x = ∇xfg. This
is very interesting as ∇xf can be analytically calculated in some situations. If not we will again
need an approximate model q̃ as described above leading to ∇x = j,x + j,U (Φq̃,x). An example of
such implementation is given in the problem of section 8 for the linearization of the normal to the
shape with respect to the shape parameterization necessary to get the gradient of the aerodynamic
coefficients, such as the lift and drag, with respect to the shape. Finally, the approach is also
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interesting because the quantities involved are all locally defined on the domain of definition D(x)
of x and do not involve the full domain of definition of the state variable U or even q.

One can go one step further from incomplete sensitivities introducing simple algebraic relations
in Ũ [10]. Examples of such algebraic relations are, for instance, the Newton relation for the pressure
distribution over the shape or wall functions describing the tangent velocity and temperature
distribution along the direction normal to the wall.

Let us illustrate our purpose with the former relation. Designing a shape with minimum
drag with respect to a parameter x (scalar for clarity) involves an integral on the shape of
p(q(x), α)u∞(α) · n(x):

Cd(x, α) =
1

2ρ∞‖u∞(α)‖2

∫
shape(x)

p(q(x), α)(u∞(α).n(q(x))dγ, (11)

where superscript∞ indicates inflow conditions. The Newton or the cosine-square law for the pres-
sure is: p(x, α) = p

tot
(α)(u∞(α) · n(x))2 where p

tot
(α) is the total pressure function of the inflow

conditions α (e.g. inflow Mach number and fluid density). We therefore have p(x, α)u∞(α).n(x) =
ptot(α)(u∞(α)·n(x))3. Its derivative with respect to x is (pu∞(α)·n),x = (pu∞(α))·n,x+p,x(u∞(α)·
n) = 3ptot(α)u∞(α)(u∞(α) · n)2n,x. The first term in the sum is what we called above incomplete
sensitivity and it worths (pu∞(α))n,x = p

tot
(α)u∞(α)(u∞(α).n)2n,x. We see that if the pressure is

defined by the cosine-square law, the exact and incomplete derivatives only differ by a factor of 3 and
have the same sign. Now what happens when the pressure is through the solution of the Euler equa-

tions for instance. The expression above can be rewritten as pu∞(α).n = p|u∞(α)| cos(
u∞(α)

|u∞(α)|
.n).

The incomplete gradient is therefore p(u∞(α).n)x = −p|u∞(α)| sin(
u∞(α)

|u∞(α)|
.n) = 0 when n is aligned

with u∞(α). Otherwise, the incomplete sensitivity fails (e.g. in the area near the leading edge for
an airfoil at no incidence). On the other hand, the model tells us that the pressure sensitivity
with respect to shape variations vanishes if those are along the normal to the shape such that
n,x = 0. But this is compatible with the pressure boundary condition p,n = 0 one uses with the
Euler equations as in the problem of section 8. We therefore expect the incomplete sensitivity to
be a good approximation of the gradient if the shape deformation parameterization is along the
normal to the shape. Finally, if Ũ is the cosine-square law, Ψ is defined as a scaling term ratio of
the pressure by the Euler equations over this expression.

7.1.2 Complexity reduction on the discrete level

Another widely used strategy for gradient approximation is using different space and time dis-
cretizations for the high-fidelity calculation with (7) and its approximation (9). This is particularly
adapted to multigrid implementations [16,6,7] where Ψ = IhH is the transfer (interpolation) opera-
tor from the coarse H to the fine level h. The two meshes can be separated by n intermediate levels

and in this case Ψ = Ihh1U
h1

h2
...I

hn−1

hn
Ihn

H . Ψ−1 = RHh denotes the restriction operator from the fine

h to the coarse level H. And in the presence of n intermediate levels Ψ−1 = RHhn
Rhn

hn−1
...Rh2

h1
Rh1

h .

Hence, principal angles permit to evaluate the impact on the multi-point search space of the
different transfer operators between grids. These operators concern, for instance, reconstruction by
high order interpolations or different smoothing/filtering strategies to remove the high frequency
features of the solution. The angles will tell how the introduction of a new operator impacts the
search space defined by the multi-point gradients in a context of robust design.

7.1.3 Evaluation of an incremental or adaptive modelling procedures

Beyond mesh refinement, the most interesting application of this approach is the evaluation of
the pertinence of an incremental or adaptive modelling procedure through the evolution of the
associated search spaces generated by the gradients at the sampling of the functioning parameter.
Indeed, the interest of an increase in modelling complexity, and therefore cost, should be evaluated
through its true impact on the search space which is the truly important entity in a design process.
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7.2 Defining the descent direction

We need to define d the descent direction in both algorithms given in 3 and 6. Either with an exact
or incomplete evaluation of the gradients, one remarks that one should not use all the available
vectors G(αl) or g(αl) for αl ∈ Im, but only those ’clearly’ linearly independent (at given tolerance
TOL) and generating subspaces A or B which are of dimension k such as k < m. This is because
what falls below this tolerance threshold does not bring pertinent information on the problem and
is rather due to numerical artifacts. With the approximate models, the descent direction d given
in section 3 is evaluated with  instead of j giving d̃:

d̃ = ∇xµ()− < ∇xµ(),∇xσ() > ∇xσ() + η∇xσ(). (12)

To make sure we only consider the relevant part in the descent direction we proceed with a pro-
jection on subspace A or B when working respectively with the exact or incomplete gradients.
Recalling that {ai, i = 1, ..., k} and {bi, i = 1, ..., k} are orthonormal bases of A and B, the descent
directions then becomes:

PrA(d) =
∑

i=1,...,k

< d, ai > ai and PrB(d̃) =
∑

i=1,...,k

< d̃, bi > bi.

In a context of optimization, these are eventually the most important quantities. Therefore, instead
of the principal angles between A and B we might consider the reduced order modelling pertinent
if the deviation between these descent directions remains small. This is the case if the following
holds through the optimization iterations:∣∣∣∣∣1− < PrA(d)

‖PrA(d)‖
,
P rB(d̃)

‖PrB(d̃)‖
>

∣∣∣∣∣� 1. (13)

This estimator avoids the calculation of the eigenvalues of M tM described in section 4. We show
in section 8 an example of the evolution of this indicator during optimization iterations for a shape
design problem.

8 Full aircraft shape optimization

In this section, we show how the pertinence of gradient approximations can be evaluated using the
principal angles between the subspaces generated by the gradients of different approximate models
and the exact gradient.

The numerical example concerns a shape optimization problem for a full aircraft in transonic
cruise condition. For such configurations, an efficient single-point optimization is already a difficult
task as it involves several software elements. It also requires coherent geometrical manipulation of
the shape parameterization and the surface and volume meshes.

Several sources of variability exist for these problems where large deviations appear between
the prescribed shape and the shape during the flight, which we suppose stationary. These may be
due to a change in the weight of the aircraft or due to variability in the flight conditions. One
example of the latter is when the aircraft cruises against transverse winds which are very common.
Usually aircraft are designed for a range of angle of incidence. These designs are usually realized
with the sideslip angle set to zero.

We previously used this problem [12] to illustrate robustness and optimal sampling issues in
parametric optimization. And also how to provide quantitative confidence levels on the search
direction compatible with a search space defined by parametric gradient evaluations. Here, we
would like to go one step further and evaluate the impact of gradient approximations using principal
angles between subspaces.

Let us briefly link our shape optimization procedure to the direct dependency chain (7) linking
independent variables (α,x) to geometry and state dependent variables (q, U) and to the cost
function j and constraints Ci, i = 1, ..., nc.
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8.1 Shape parameterization and other independent variables

In our dependency chain x denotes a CAD-free parameterization [15] which does not require a
priori local regularity assumptions on the shape as it is implicitly the case in CAD-based shape
definitions. More precisely, x represents shape deformations along the normal to the triangular
faces of the surface mesh as shown in figure 2. This search space has a dimension N ∼ 5000. This
parameterization receives different denominations and belongs to the same class as node-based or
free-form shape definitions. In all these approaches the regularity of the deformation needs to be
controlled [21,10]. This is because, unlike with a CAD definition, the shape ∂Ω of an object Ω
and a gradient-based deformation do not belong to the same function space in terms of regularity
and, actually, the second is always less regular. Let us illustrate this on a simple example with
J(x) = ‖Ax − b‖2 taking x ∈ H1(∂Ω), Ax and b in L2(∂Ω). The gradient J ′x = 2AT (Ax − b)
belongs to H−1(∂Ω). Therefore, any variation along J ′x will have less regularity than x: δx =
−ρJ ′x = −ρ(2(Ax − b)A) ∈ H−1(∂Ω). We therefore need to project (or filter or smooth) into
H1(∂Ω). But, why it is not the case with a CAD parameterization? Suppose the shape is described
in a finite dimensional parameter space, as for instance with a polynomial definition of a surface
(this is like a CAD parameterization). When we consider as control parameters the coefficients of
the polynomial, changes in those do not change the regularity as the new shape will always belong
to the same polynomial space. Sobolev inclusions give the key for the choice of the regularity
operator with the CAD-free parameterization [10]. In our case, because we are using a piecewise
linear discretization, a second-order elliptic system is sufficient. This operator will also be used
below to enforces some of the geometrical constraints.

The parameter α is the sideslip angle inducing fully 3D effects on the flow around the plane
making the consideration of a full aircraft necessary during the design. However, because the
airplane geometry is symmetric spanwise, it is not necessary to consider a symmetric range for the
transverse wind. We consider the sideslip angle α in I = [0, 10o]. In our multi-point analysis, we
consider a uniform sampling Im of [0, 10o] with m = 30 points. The other flow conditions are given
by a Mach number of 0.8 and an inflow incidence of zero degrees. Together with the sideslip angle
these parameters fully describe a 3D inviscid flow around the aircraft.

Figure 2 shows the initial shape and a view of the initial triangular surface mesh. This corre-
spondence is given by Φ−1 (described in section 7) while Φ permits to construct the corresponding
optimized shape from this mesh and the shape deformation over it.

8.2 Geometric and state dependent variables

Let q(x) denotes the auxiliary unstructured mesh related geometrical quantities. When the shape
is modified, this change must be propagated through the mesh keeping it admissible and we need to
recalculate all related geometrical quantities. Admissible and positive mesh defirmation is achieved
by a 3D torsional spring analogy method [24].

U(q(x), α) denotes flow variables depending also on the extra parameter α not part of those
involved in the definition of the shape. More precisely, U(q(x), α) = (ρ, ρu, ρE)t represents the
conservative flow variables solution of the Euler equations in conservation form. Our flow solver is
based on a finite volume Galerkin method on unstructured tetrahedral meshes. The Roe [22] flux
is used for the approximation of the advection operator together with MUSCL reconstruction with
Van Albada limiters [23] in presence of shocks. We target steady solutions and use time marching to
reach these. The time integration procedure is explicit and is based on a low-storage Runge-Kutta
scheme (RK4). The details of this implementation are available in [10]. Of course, these are not
the only choices possible and the literature on numerical methods for compressible flows is huge.

8.3 Cost function and constraints

We consider a classical aerodynamic shape optimization which aims at minimizing the drag co-
efficient j = Cd given by formula (11). This minimization is usually performed under equality
constraints on the lift and volume of the aircraft. Let us denote these by C1 = Cl − C0

l = 0 and
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C2 = V − V 0 = 0 where superscript 0 indicates the corresponding values for the initial shape. The
volume of an object Ω (here the aircraft) is expressed through the boundary integral formula:

V =

∫
Ω

1 =

∫
Ω

1

3
∇.(X) =

∫
∂Ω

X.n,

where X = (x1, x2, x3)t is the local coordinate. In addition to these, we consider some extra purely
geometric constraints. Minimum surface regularity is prescribed for the wings leading edges. This is
enforced through the CAD-free parameterization regularity operator. Other examples are the wings
by-section thicknesses and the wings plan-form which are requested to remain unchanged. The latter
does not introduce any difficulty but the by-section thickness is less obvious to enforce a posteriori.
We define a by-section (figure 3) definition of the shape where the number of sections ns is free
(here ns = 100) and depends on the complexity of the geometry. Each node in the parameterization
is associated to a section Σi, and for each section, we define the maximum thickness ∆i. This last
operation requires a projective analysis based on the projection of the upper-surface nodes over the
lower surface for each section. This constaint can therefore be expressed as: C3 =

∑ns

i=1 |∆i −∆0
i |.

8.4 Gradient of the functional and constraints

As we saw in algorithms given in sections 3 and 6, to built the multi-point descent direction,
we need m evaluations of the state and functional and constraints sensitivities with respect to
the shape. All the sensitivities are computed by automatic differentiation in reverse mode using
tapenade [17].

Of course, the constraints can be accounted for by introducing a penalty term in the cost
function: J = j +

∑
i=1,3 aiCi, ai ∈ IR+. But this should be avoided when possible. Also, one

classical technique to recover the lift during optimization is to change the flow incidence taking
advantage of the linear relationship between the incidence and lift away from stall conditions.
Suppose we do not want to use either penalty or such an approximation. An alternative would be to
consider a locally admissible gradient orthogonal to Π = Span(∇xCi, i = 1, 2, 3) with dim(Π) ≤ 3.
Let us denote by π an orthonormal basis of this subspace obtained by the Gram-Schmidt procedure
applied to the gradients of the constraints. The admissible gradient will be used in algorithms 3
and 6 and is given by:

∇xj(x, α)← ∇xj− < ∇xj, π > π,

where <,> indicates the scalar product over subspace Π. We need, therefore, to provide ∇xCi, i =
1, 2, 3 which require ∇xCl, ∇xV and ∇x∆i. ∇xj = ∇xCd and ∇xCl receive a same treatment and
we take advantage of the capability for multi-right-hand-side adjoint calculation of tapenade in
reverse mode to acces these two gradients without necessitating the solution of two separate adjoint
problems. Both also enter the validity domain of incomplete sensitivities as presented in section
8.5. Our direct Euler code uses time marching to the steady solution with local time steps. The
corresponding reverse (or adjoint) code can be used easily to produce the incomplete sensitivity
by setting to one the number of reverse time iterations for the steady direct state variables. This
is interesting as it permits to implement this approximation in existing adjoint based optimization
platform with no extra coding. Another optimization of the reverse mode code comes from the fact
that, our situations of interest being stationary in time, there is no interest in storing the forward
states for backward integration. [25,10].

Figure 4 shows the contours of a multi-point descent direction based on sensitivities evaluated
on a fine and a coarse meshes using the state evaluated on the fine mesh and restricted on the coarse
mesh. Below we compare the impact on the multi-point search space of gradient approximations
using either the incomplete sensitivity concept or a two-level evaluation of the complete sensitivity.

8.5 Exact vs. incomplete sensitivities

Let us start with the evaluation of the impact on the multi-point search space for our shape
optimization problem of a model reduction using the Hadamard incomplete sensitivity concept
described in section 8.5. We think this approximation is valid because the cost function and the
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constraints are either purely geometric or enter the validity domain of Hadamard incomplete sen-
sitivity as they can be written as a boundary integral over the shape for a product of geometry
by state functions. One interest of incomplete sensitivity as presented in section is that there is
no need for field variable linearization as everything is defined on the shape. This locality issue is
very important in parallel computing where data locality is aimed as much as possible to reduce
the communications.

To evaluate the pertinence of this gradient approximation in robust parametric optimization we
follow the algorithm given in section 6. In particular, at each iteration of optimization, we identify
the size of the free subspaces generated by the exact and incomplete sensitivities. This is achieved
using algorithm (6) and is done for a given tolerance level TOL.

Figure 5 shows the dimension of the maximal free search subspace found by the incomplete
Gram-Schmidt orthonormalization algorithm (6) for the original shape for different values of the
tolerance level TOL. Small values of this parameter lead to large dimension search spaces. But
these do not necessarily contain pertinent physical information and are partly related to numerical
artifacts and noises. One considers TOL = 10−4 which gives a dimension of the search subspace
less than 10. This choice appears also a posteriori pertinent from figure 7 where one sees that the
dimensions of the maximal free search subspaces decrease during optimization to 4.

This analysis is enforced by figure 6 where one follows dim(Span(∇xj(x, αk), αk ∈ I30)) with
TOL = 10−4, TOL = 10−6 and TOL = 10−7 during optimization iterations where the descent
directions have been built in the maximal free search subspaces obtained for TOL = 10−4. We
see that in all cases the dimension of the maximal free search subspace remains below 25 making
30 a safe choice for the sampling. Again, we consider that the dimensions above 10 are related to
numerical artifacts and that these search directions should be avoided.

Figure 7 also shows the impact of gradient approximations on the dimension of the maximal free
search subspaces during optimization. The evolution of the principal angles between the subspaces
generated by the exact and the incomplete sensitivities shows a maximum angular deviation of
around 30 degrees but with always some collinear directions between the subspaces. Most important
the pertinence of the gradient approximation in the context of optimization is established following
indicator (13) showing a deviation of about 15 degrees. This suggests, and this is surprising and
non-intuitive, that descent methods will be less sensitive to modelling inacurracy. Convergence
histories for the first and second momentum of the functional over the 10 degrees sideslip angle
range demonstrate that the minimization problem is properly addressed and that the choice of the
descent direction d by (12) is both pertinent and robust validating the analysis presented in section
3.

8.6 Sensitivity evaluation on coarser meshes

The next complexity reduction approach is, as described in section 7.1.2, when using different
discretizations of meshes for the state and sensitivity evaluations. One could simply use a direct
solver on a fine mesh h, restrict the state Uh to a coarser mesh using operator UH = Ψ−1Uh =
RHh Uh, use the adjoint solver to access the gradient GH on this coarse mesh and interpolate back
to the initial mesh with Gh = ΨGH = IhHGH . Practical meshing and geometry handling issues are
not of importance here and any method, based either on structured or unstructured meshes, can
be considered.

Figure 8 shows the histories of Gram-Schmidt orthonormalizations during optimization to find
the size of the maximal free search subspaces with the exact gradient on the two meshes. The
principal angles between these subspaces during optimization show a larger deviation than when
using the incomplete sensitivity evaluation on the same fine mesh in figure 7. This somehow recov-
ers what is expected from the incomplete sensitivity theory: it is better to perform an incomplete
evaluation of the sensitivity on a fine mesh avoiding any state approximation than an exact evalu-
ation of the sensitivity on a coarse mesh, even with a state restricted from a fine mesh [10]. This
can be seen as an a posteriori validation of the dominant importance of the geometric part in
these sensitivities over the state dependency. This analysis is also confirmed by the histories of
the the mean and variance during an optimization based on the gradients on the coarse mesh,
which appear less regular than in figure 7. Comparison of the evolution of indicator (13) in the two
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optimizations also confirms sometimes a larger deviation between the exact and approximate (12)
descent directions in the present optimization. The descent direction is however eventually better
for the second approach.

This evolution can be explained a posteriori as in both optimizations, the principal angles
between the subspaces based on the exact and approximate gradients decrease during optimization
(see the middle pictures in figures 7 and 8). But, this is even more visible for the second case where
we eventually also have more common directions between the two maximal free search subspaces
shown by vanishing principal angles. This means that the second approximate models eventually
better coincides with the exact model and therefore explains why the optimization performances
have been recovered (lower-left picture in figure 8).

→
−1φ

 

 

←φ

  

Initial shape 
Initial mesh 

Shape 

deformation 
Reconstructed 

optimal shape 

Fig. 2 Initial shape and a view of the initial triangular surface mesh. This correspondence is given by Φ−1 while Φ
permits to construct the corresponding optimized shape from this mesh and the shape deformation over it.

9 Concluding remarks

The impact of different gradient approximations by reduced order models has been evaluated
in the context of robust shape design by multi-point optimization. In particular, the deviations
between the multi-point search spaces based on the exact evaluation of the gradients and these
approximations have been analyzed using the concept of principal angles between subspaces. It
has been shown how this can be seen as a singular value decomposition problem which can be
reduced in our situation to an eigenvalue evaluation problem for a symmetric matrix of small size.
The reduction in size has been made through the extraction of the pertinent information in the
multi-point vector search space. This approach can therefore be seen as a tool to validate reduced
order models in the context of robust optimization. Indeed, what is important is to make sure that
model reduction does not introduce any major perturbation in the free search subspace. Finally,
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Fig. 3 An example of the spanwise slices of an aircraft used to enforce the by-section maximum thickness constraint.

   

Multi-point descent 

direction based on the 

complete sensitivity - fine 

mesh 

Multi-point descent 

direction based on the 

incomplete sensitivity – 

fine mesh 

Multi-point descent direction 

based on the complete 

sensitivity - coarse mesh & 

interpolated on the fine. 

Fig. 4 Iso-contours of a multi-point descent direction based on the complete and incomplete sensitivities on the
fine and coarse levels. The sensitivity on the coarse level has been evaluated using the state restricted from the fine
to the coarse level with operator Ψ−1 = RH

h and the sensitivity transfered back to the fine level using interpolation

operator Ψ = IhH .

it has been shown that the situation can be more favorable when using a descent minimization
algorithm as the reduced order model gradients need then to verify a less constraining criteria.

Beyond the examples presented, the approach provides a valuable tool to a posteriori measure
the ’distance’ between models. In particular, this could be used with adaptive models. Indeed, in
practice the high-fidelity model is not available or too expensive and one would like to be able
to identify the ’right’ level of complexity for the model to be used during design. This concerns
both the continuous model and its discretizations. In that sense, we showed examples of the impact
of grid refinements on the deviation between the search spaces generated by the sensitivities for
the different meshes. Hence, the approach permits to quantify the pertinence of an increase in the
modelling complexity through the deviation between the search spaces.
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EADS-IW and Cerfacs for their feedbacks.
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