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Abstract. We show how to introduce the Value at Risk (VaR) concept in the

analysis of the adaptation of the shape of a soft bed to a flow knowing the Proba-

bility Density Function (PDF) of the responses of the shape to flow perturbations

(bed receptivity). Our aim is to quantify our confidence on simulation scenarios

by an available morphodynamic model for the shape. The approach permits to

perform this task at low complexity as it does not require any sampling of the bed

receptivity parameter space. The paper goes beyond stationarity for the variabil-

ity of the bed receptivity by linking its dynamics to the bottom morphodynamics

through an original transport equation for the local bed receptivity standard de-

viation. The approach has been applied to the analysis of bed morphodynamics

based on minimization principles. The results show the importance of includ-

ing uncertainty information during the coupling and not only eventually through

simple margins on the results.

Key words and phrases. Value at Risk, uncertainty, shape deformation, shape optimization, beach
morphodynamics, Saint Venant Equations, sensitivity analysis, worst-case analysis.
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1. Introduction

There is an increasing demand to account for data uncertainties in simulation

and design. We are interested by situations where a PDE based state equation is

involved as typically in a flow problem in a bounded domain. An important situation

is where the boundary of the domain, or some part of it (e.g. a shape in a flow),

evolves under the action of the flow. Examples of such interactions can be seen

in the thermal ablation of a shape or in the changes of a sandy bed of a river or

sea. Obviously, these boundary evolutions involve different sorts of materials, flow

constituants and physics but share a same global philosophy: they permit to dump

or dissipate some energy expression.

Consider the following simulation chain linking a control parameter ρ, its random

perturbation ε(ρ) known through a probability density function (PDF) (ρ̃ being then

the perturbed control parameter), a state variable u(ρ̃) and a cost function J :

(1) ρ→ ρ̃ = ρ+ ε(ρ) → u(ρ̃) → J(u(ρ̃)).

Without being exhaustive, to handle these perturbations one classical approach

is to propagate the randomness into the whole chain and get a noisy functional.

And then assimilate, in a least-square sense for instance, this functional by a low-

complexity model (e.g. a parametric representation of the functional) and later use

this reduced-order model instead of the original one. This approach is widely used in

robust engineering optimization and demands for a priori regularity hypothesis for

the reduced-order model and trust regions definition. Another possibility is to define

the momentum of our noisy functional in momenta-based optimization (e.g. mini-

mizing the mean while keeping the variance unchanged). This is also very much used

in practice if the number of control parameters is small and the complexity of each

simulation reasonable. These approaches receive different denominations following

the field of research they are issued from: learning in neural networks, fitting with

least squares in experimental plans or higher degrees polynomials, reduced-order
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modeling with proper orthogonal decomposition or other low-complexity modeling

[1, 2, 3, 4, 5, 27, 26].

Our motivation is somehow different. Indeed, relation (1) represents an important

situation in which where randomness appears is well identified. Indeed, if ε(ρ) = 0

the simulation is fully deterministic. We would like to keep it so and still take

into account these random perturbations through extreme scenarios derived by the

introduction of a priori information on ε(ρ) into the simulation chain. And, to keep

the complexity low, this should be achieved without any sampling of the control

space.

Extreme scenarios are interesting in environmental simulations as they provide an

easy tool for risk quantification. One application of the present contribution is to

permit the derivation of extreme scenarios for the evolution of the shape of soft beds

following previous contributions on the application of control theory to the evolution

of sandy sea beds [29, 30] which are useful, for instance, when designing defense

structures against beach erosion [9, 10, 11]. We model sea bed evolution through

fluid and structure coupling. The fundamental assumption in this interaction is

that the bed adapts to the flow by some sort of optimal sand transport in order

to minimize the flow energy or some other functional. The literature on coastal

morphodynamics is huge [12, 13, 14, 15, 16] and concerns phenomena with very

different time scales, as for instance, sediment transports using fluid-induced shear in

the sediment modelling, sea bed friction and the feedback of bed shapes on the flow,

dunes morphodynamics, global beach morphodynamics based on long and cross-

shore fluxes and beach lines morphodynamics. In our model, the time scales of

interest are rather small and recoveries between storms or seasonal and inter-annual

variabilities are out of scope.

Several quantities can be considered as uncertain in the bed definition (e.g. bed

receptivity to flow perturbation) as well as in the flow characteristics (e.g. wave

amplitudes, frequencies and directions). In this work we consider variabilities on

the bed receptivity (ρ > 0) we would like to account for in the evolution of the bed



4

through two extreme scenarios. Each scenario is based on a local threshold value for

the bed receptivity defined for a given probability level through VaR±

α∈[0,1[
. Hence,

we can give information such as: following our knowledge of the uncertainties on the

bed (PDF) and based on the physics encapsulated in the models, there is α× 100%

chances for the evolution of the bed to take place between these two scenarios.

We consider Gaussian PDF, but the approach is not limited to those. Gaussian

PDFs are interesting as they permit to easily express the VaR from the standard

deviation. Usually the variability on an uncertain parameter is assumed stationary.

One originality in this paper is the introduction of a transport equation for the

standard deviation following the evolution of the bed. The stationary variance case

can then be treated as a particular situation.

The paper starts with the concept of the Value at Risk. Then a model problem is

proposed to illustrate the different ingredients in the coupling between a soft shape

and a flow based on the minimization of some energy quantity. The variability of

the shape characteristics is then accounted for in the minimization and it is shown

how to introduce an equation to model the dynamics of this variability following the

shape deformation. The approach is made more realistic with the introduction of

the Saint Venant flow model for shallow waters. The paper also shows several sim-

ulations with quantitative extreme scenarios. The simulations show the importance

of including VaR information all along the coupling and not only eventually through

security margins as often in engineering approaches. Indeed, we see that the devi-

ations between the simulations are not necessarily correlated with the uncertainty

distributions.

2. Value at Risk (VaR)

In financial engineering, the Value at Risk (VaR) is a widely used risk measure

of the risk of loss on a given asset [25]. It defines, for a given probability level

(0 < α < 1) and time horizon (typically one day), a threshold value for the loss X
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on the asset:

VaRα = inf{l ∈ IR : P (X > l) 6 1− α}.

This is illustrated in figure 1 where the areas filled worth α. We would like to use

this concept during our simulation knowing the PDF of the uncertainties on the

bed receptivity. Hence, during our fluid-structure coupling the bed receptivity ρ

represents, with a confidence level of α, the interval [max(0, ρ + VaR−

α ), ρ + VaR+
α ]

around ρ the value one would have used for the bed receptivity in a deterministic

simulation and VaR−

α 6 0 6 VaR+
α . One expresses then possible deviations from ρ

via two PDF and the corresponding values at risk. One can make the hypothesis

that the upper and lower bounds of the variations are symmetric, in which case

VaR−

α = −VaR+
α . This is typically the case when uncertainties on a parameter follow

a Gaussian distribution. We will introduce a dynamic model for the variability to

address the time issue and the fact that the VaR may also be time dependent. This

makes sense as, indeed, when the bed changes its local receptivity might change as

well. In this case the stationary situation is treated as a particular case.

In the context of Gaussian probability density functions values at risk are explic-

itly known: VaR0.99 = 2.33 and VaR0.95 = 1.65 for N(0, 1) and VaR
α
(N(0, σ)) =

σVaR
α
(N(0, 1)). We suppose Gaussian PDF for the bed receptivity ρ and its VaR

is therefore known.

The choice for a positive ρ has two reasons. ρ should be linked with the bed

porosity (η > 0) in bed transport models such as equation (17) and we would like

to use it in a minimization procedure. In other words, we make the assumption that

the bed will take the steps which will decrease the functional (see sections 3 and 4).

3. A simple illustrative model

Let us illustrate our purpose on a model problem based on an analytical expression

for the variations of a surface h. Consider a domain with a bed defined as a function

ψ(t, x) : IR+ × [−100m,−20m] → IR+. We want to model the changes in this bed

with time due to elevations h(t, x). With the notations of the chain (1) u = (ψ, h).
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Let us start with the following simple expression for h:

h(t, x) = h0 + β sin(ωx(h0 − ψ(t, x))),

where h0 indicates the level at rest, β and ω are given such that 0 6 β < 1 and

ω > 0. This is a monochromatic wave, but one could consider superimposed waves

as in section 6. We consider h0 = 1.3m, ω = 1Hz and β = 0.1m. The bed is

supposed initially flat ψ(0, x) = 1m. To close this model, we need to provide a

model for ψ(t, x) and ρ(t, x). We suppose that ψ will adapt to the flow elevation in

order to reduce a functional J(h) given by the L2 norm of h in space:

(2) J(h) =
1

2h20

∫

−20

−100

h2(t, x)dx.

The scaling coefficient is chosen in order for ∇ψJ to be dimensionless. The choice

of the functional is not central in our discussion.

An example of evolution model from time t to time t+ δt for this system can be:

(3)
ψ(t+ δt, x) = ψ(t, x)− δtρ(t, x)∇ψJ(ψ(t, x), h(t, x)),

h(t, x) = h0 + β sin(ωx(h0 − ψ(t+ δt, x))).

ρ(t, x)(m/s) > 0 models the receptivity of the bed and depends on both time and

space as the bed is usually non uniform. If ρ is assumed stationary in time one simply

has ρ(t, x) = ρ0(x) given. Variability on the bed receptivity can be introduced and

accounted for during the simulation through VaR information. For instance, if we

assume Gaussian PDF for the bed receptivity with its standard deviation σ(x) known

and VaR±

0.95
(N(0, σ(x))) = ±1.65σ(x). Two scenarios can be considered therefore

with ρ0(x) + VaR±

0.95
(N(0, σ(x))).

One way to go beyond the stationarity hypothesis for ρ is to consider σ being also

a function in time and introduce an extra transport equation for σ(t, x). This is, for

instance, useful if the variability changes with the motion of the bed. Let us rewrite
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the evolution for ψ above as governed by a transport equation:

(4)
ψ(t+ δt, x) = ψ(t, x)− δtρ(t, x)∇ψJ(ψ(t, x), h(t, x))

= ψ(t, x)− δtV (t, x)∂xψ(t, x).

Eq. (4) permits to define V (t, x) = ρ(t, x)∇ψJ/∂xψ as the ’equivalent’ local speed

of the motion of the bed (see figure 2 for snapshots of V ).

Now the evolution of local variability can be linked to V by:

(5) σ(t+ δt, x) = σ(t, x)− δtV (t, x)∂xσ, σ(t = 0, x) = σ0(x).

This transport equation is completed by characteritics boundary conditions following

the sign of V at each of the boundaries.

This model suggests that the bed velocity increases when the bed is or gets flat.

In other words, flat beds appear being unstable which is something one observes in

nature. Another way to write the dynamic of σ is by the introduction of variable

time scales for the bed following its slope (see also section 4):

(6) σ(t+ δt, x) = σ(t, x)− δ̃tρ(t, x)∇ψJ ∂xσ, σ(t = 0, x) = σ0(x),

with δ̃t = δt/∂xψ → ∞ when the bed gets flat which suggests one should look for

the steady solution of (6) in such regions where iso-σ appears parallel to the variation

of the shape. In realistic situations, one should not dissociate the sensitivity of the

functional with respect to the bed ∇ψJ from the local bed slope ∂xψ. Indeed, we will

see in section 4 with the Saint Venant shallow water equations [6] as state equations

that the bed slope is actually accounted for in the state equations and therefore in

their linearization leading to ∇ψJ .

Now let us account for this variability in a numerical simulation. We assume

Gaussian PDF for the bed receptivity with its initial standard deviation increasing

linearly through the domain and VaR±

0.95
(N(0, σ)) = ±1.65 × 10−3|x+100

100
| as shown

in figure 2. The figure also shows the evolutions of the bottom shapes and water

elevations with 70 iterations of (3) with δt = 2s on a 500 points mesh when the bed
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receptivity follows the two extreme scenarios mentioned. The evolution of the bed

receptivity variability following (5) is also shown in the picture. One can see that

in both extreme cases the bottom has adapted in order to reduce surface elevations.

The deviation between the two solutions increases with the variability. Obviously,

the elevation reduction is less efficient when the bed receptivity is lower. One will

see in section 6 that these informations are not necessary correlated. This approach

permits therefore to link data variability to the solution of a model and exhibit

solution ranges with a quantifiable statistical theoretical background.

4. Interactions between the flow and its bed

Now, we consider two dimensional situations with a realistic flow model in shallow

domains. The sea bed ψ changes with time following the changes in the state given

by the flow variables U. We use a bed parameterization based on the bathymetry

given at all the nodes of the fluid mesh.

The model for the sea bed evolution is based on the minimization of a time

dependent functional J(ψ, {U(ψ(τ, x), τ, x), τ ∈ [t − T, t], x = (x1, x2) ∈ Ω ⊂ IR2})

involving the state evolution in time, solution of a state equation.

We consider the Saint Venant shallow water equations as state equations for the

fluid with U = t(h, hu) where u = t(u, v) is the depth-averaged velocity with u and

v the scalar components in the horizontal directions and h the local water depth:

∂tU+ F (U, ψ) = 0, with initial and boundary conditions,

where

(7) F (U, ψ) =





∇.(hu)

∇.(hu⊗ u) + gh∇(h+ ψ)



 ,

where g(m.s−2 is acceleration due to gravity.
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As in our illustrative problem of section 3, J is minimized looking for the evolution

in time of ψ following:

(8) ∂tψ = −ρ(t, x)∇ψJ, ψ(t = 0, x) = ψ0(x) = given,

where ρ(t, x) is a positive parameter which depends on the local porosity of the

bed and quantify its receptivity to flow perturbations. This can also be linked to

transport models for the bed such as the Exner equation described in section 4.4.

The physical time scales for the fluid and structure (bed motion) are quite different.

Indeed, flows have time scales of the order of seconds and the sea bed motion takes

place over hours as we will see in section 6.

4.1. Cost function . The cost function involves the state evolution as, for instance,

in:

(9) J(ψ) = K

∫ t

t−T

j(ψ,U(ψ, τ))dτ,

where T indicates a time dependency window and also permits to introduce a dif-

ference in time scales between sea bed and flow motions. The scaling K is to make

∇ψJ dimensionless. One looks for the bed acting as a flexible structure and adapt-

ing to the flow conditions in order to minimize some energy-based functional. In

[29, 30] one considers a functional made of the L2 norm of the deviation of the

wave elevation from a low frequency component evaluated using a time interval T :

η(x, t) = h(x, t)− 1
T

∫ t

t−T
h(x, τ)dτ and involving a constraint on sand displacements

requiring minimal topobathymetry changes from the bathymetry ψ(t − T ) at the

beginning of a time interval of influence [t− T, t]:

(10) J(ψ) =
1

|Ω|Th0

∫ t

t−T

∫

Ω

(

η2 + (ψ(τ)− ψ(t− T ))2
)

dτdΩ,

where Ω is the observation domain and h0 is the water level at rest. Alternatively,

in this work we give examples of simulations (see section 6) with another functional

which aims at minimizing water elevations and their spatial gradients on a given
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time interval T :

(11) J(ψ) =
1

|Ω|T

∫ t

t−T

∫

Ω

|η|‖∇xη‖ dτdΩ.

4.2. Variability dynamics. Proceeding as in our model problem, we introduce the

bed speed and rewrite

(12) ρ∇ψJ = V (t, x)∇xψ(t, x) = v1∂x1ψ + v2∂x2ψ,

which permits, after multiplying by ∂x1ψ∂x2ψ, to introduce a transport equation for

σ(t, x) characterizing the dynamics of the variability of ρ(t, x):

(13) |∂x1ψ∂x2ψ| ∂tσ + Sρ∇ψJ (∂x2ψ∂x1σ + ∂x1ψ∂x2σ) = 0,

with an initial condition σ(t = 0, x) = σ0(x) and S = sgn(∂x1ψ∂x2ψ). This transport

equation is completed by either symmetry or characteristic boundary conditions

(denote n = (n1, n2) the local outward normal to the boundary):

∇xσ.n = 0 or σ(t, x) = given if Sρ∇ψJ (∂x2ψ n1 + ∂x1ψ n2) < 0.

This model suggests that the time scale is locally modified following the local geom-

etry of the bed expressed through |∂x1ψ∂x2ψ|. For instance if this quantity vanishes

(i.e. the bed is flat in some direction) one should consider stationary solution of (13)

(see figure 3 for an example). This is therefore a very stiff equation to solve. Figure

4 shows an example of ρ0(x) + σ0(x) and ρ(t, x) + σ(t, x).

4.3. Conservation . If the simulation takes place in a closed domain Ω′ the amount

of the material making the bed must be conserved:

(14)

∫

Ω′

∂tψdω = 0 or

∫

Ω′

ψdω = C = constant.

In conservation form the analysis above makes looking for V such that:

(15) ρ∇ψJ = ∇x · (ψ(t, x)V (t, x)) = ∂x1(ψv1) + ∂x2(ψv2),
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which gives in integral form a constraint on the field V :

∫

Ω′

∇x · (ψV )dω =

∫

∂Ω′

ψ(V.n)dγ

=

∫

Ω′

ρ∇ψJdω = 0.

Expressing V = (ρ∇ψJ/∂x1ψ, ρ∇ψJ/∂x2ψ) and n = (n1, n2) one has:

∫

Ω′

∂x1(
ψρ∇ψJ

∂x1ψ
) + ∂x2(

ψρ∇ψJ

∂x2ψ
)dω =

∫

∂Ω′

ψρ∇ψJ(
n1

∂x1ψ
+

n2

∂x2ψ
)dγ

(16) =

∫

Ω′

ρ∇ψJdω = 0.

For ∇ψJ to be compatible with this constraint on V , the cost function (9) must be

augmented by a penalty term (e.g. |
∫

Ω′ ψdω − C|/|Ω′|) enforcing constraint (14).

Let us analyze expression (16) supposing ψ > 0 and ρ > 0. The condition on ρ

means that the bed is receptive to perturbations everywhere and has no solid parts

(ρ = 0). In all cases, it is difficult in practice to enforce a no bed motion just

along the boundaries in an experiment with a sandy bed. One way to be sure for

the last expression to vanish for all cost functions J is to have n1∂x2ψ = −n2∂x1ψ

which is difficult to realize. Indeed, consider Ω′ to be square as in figure 4. The

unit normals along the boundaries of this domain are either (±1, 0) or (0,±1). The

only shape for which this condition is surely realized is a flat bed (ψ = cste) which

we saw is an unstable shape. So the best way to make sure that the conservation

constraint on V is realized is for ∇ψJ to vanish along the boundaries. This means

that the observation domain Ω used in the definition of the cost function should

be small compared to the domain Ω′. However, for experiences taking place over a

long period of time, it is impossible to remove the influences of the boundaries of Ω′

on what is happening in Ω. This brings therefore the question of the pertinence of

extending conclusions on a bed long-term evolution obtained from an experiment in

a basin to open seas (see section 6 for an example).
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4.4. Application with the Exner equation. The present analysis of extreme

scenarios using the VaR concept can be applied to other models of bed motion

available in the literature as, for instance, the Exner equation [20] which models the

conservation of mass between ’in the bed’ and ’transported’ sediments:

(17) ψt = −
1

1− λp(t, x)
∇.q, ψ(t = 0, x) = given,

where λp ∈ [0, 1[ is the porosity of the bed or void fraction (i.e. a fraction of the

volume of voids over the total volume). This coefficient plays the role of ρ in the

minimization equation (8): bed receptivity increases with λp. q is a function of the

flow variables. In [29, 30] one shows that equation (8) is a particular Exner equation

with a non local flux similar to one in a model given by Fowler [22]. At this point,

if the PDF of the variability in λp is known, it can be accounted for, in the same

way than for ρ, through its VaR. This permits using a solution solver for the Exner

equation to generate extreme scenarios of bed evolution.

5. Sensitivity evaluation

Sensitivity evaluation in large dimension needs an adjoint variable approach to

make the cost of the evaluation independent from the size of the control space. In

time dependent problems, this implies storage of all intermediate states which can be

optimized by check-pointing technics [8, 31]. In this section, we briefly describe the

adjoint method with a time dependent state equation (the Saint Venant equations

in our case).

Let us consider the following formal dependency chain:

ψ → {U(ψ, τ), τ ∈ [0, T ]} → J(ψ, T ).

Here, ψ is the independent variable and U and J are the dependent ones. U(ψ, τ)

are solutions in time of

(18) ∂tU+ F (U, ψ) = 0, U(0) = U0(ψ).
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To be accurate, one should have also to consider the independent physical parameters

such as those describing the waves. But, this would have introduced unnecessary

complications into notations.

Now consider a functional involving an integral over time like those we are inter-

ested in:

J(ψ, T ) =

∫

(0,T )

j(ψ,U(ψ, t)).

Linearizing J one has:

J
ψ
(ψ, T ) =

∫

(0,T )

(j
ψ
+ j

U
U

ψ
).

In this expression only U
ψ
is costly to get as it requires the linearization of the

shallow water equations.

The linearized state equation:

(19) ∂t(Uψ
) + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
= 0, U

ψ
(0) = U′

0(ψ),

permits to write for all function V (where V has the same structure than U):

0 =

∫

(0,T )×Ω

(∂t(Uψ
) + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
) V.

Introducing the adjoint operator F ∗

U
, it gives:

0 =

∫

(0,T )×Ω

(−∂tV + F ∗

U
(U, ψ) V)U

ψ
+

∫

Ω

[VU
ψ
]T0 +

∫

(0,T )×Ω

VF
ψ
(U, ψ).

Let us introduce a backward adjoint problem:

(20) ∂tV + F ∗

U
(U, ψ) = j

U
, V(T ) = 0.

Therefore, with V solution of the backward adjoint equation (20) with the chosen

final condition one has:

∫

(0,T )×Ω

j
U
U

ψ
=

∫

Ω

V(0)U′

0(ψ)−

∫

(0,T )×Ω

VF
ψ
(U, ψ).
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If there is no direct dependency between the initial condition U(0) and ψ the first

term in the right-hand-side vanishes. Also, for the Saint Venant equations the direct

dependency in ψ is in gh∇ψ in the equations for hu, see (7). Denoting V = (v1,v2)
t

with v2 the adjoint variable associated to u, one has in weak form:

∫

(0,T )×Ω

VF
ψ
(U, ψ) = −

∫

(0,T )×Ω

g∇.(hv2).

We have used either slip or Dirichlet boundary conditions for the velocity which

give for the corresponding adjoint variable slip or homogeneous Dirichlet conditions

removing the boundary term in weak form. An important point here is that, unlike

with the linearized equation, with ψ of any dimension V is computed only once. One

remarks however that states U are needed in reverse order because the backward

integration in (20).

The previous analysis has been implemented by automatic differentiation [31, 7,

28] applied to a solver for the shallow water equations. In this code the equations

are discretized by a finite volume formulation. Our finite volume implementation

preserves steady state solutions on non flat sea beds in the absence of perturbations

[17, 18]. Four boundary conditions are needed at slip, inlet, shoreline and outlet

boundaries. The slip boundary condition (u.n = 0) is naturally taken into account

in a finite volume formulation. The outlet condition is a transmissive boundary

condition. Values at boundary cells are obtained by second order extrapolations

normal to the boundary from the values inside the domain. To describe incoming

waves we use an absorbing/generating inlet boundary condition where the values

of water depth are prescribed. In subcritical regimes, characteristic curves and

Riemann invariants provide normal velocity. In open sea we allow for reflected

waves to freely exit the domain [19]. Time integration is explicit for the flow. Due

to what we said on the difference of time scales between fluid motion and changes

in sea beds, several time steps will be taken (typically 100) in the flow solver before

a new time step by the bed model described by the minimization iterations. In the

examples in section 6 where flow comes from superposition of waves with a smallest
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period of 2.5s, 100 flow iterations imply at least 5 interactions between the fluid and

the bed models in one period as the flow time step is around 0.005s which gives a

coupling time scale T of 0.5s. Details on the solver are given in [29]. As this is not

central in the paper we avoid extensive details on the solution procedures for the

Saint Venant equations.

6. Examples of shape adaptations following VaR-based extreme

scenarios

We consider a flat soft bed interacting with a flow governed by the shallow water

equations. The way the bed responds to flow perturbations is defined in section

4. We would like to show the impact of the variability in the bed receptivity ρ

for which we assume Gaussian PDF around a constant value of 0.002m/s with

VaR±

0.95
(N(0, σ)) = ±f(x) linearly increasing cross-shore as in our simple model of

section 3 and shown in figure 2.

The initial bed is flat and waves are produced on the left boundary of the domain

Ω representing a square wave basin de side 30 m. To simulate sea conditions, the

water wave elevation at the inlet is represented by the addition of N monochromatic

waves:

h(t) = h0 + 2A
∑

i=1,..,N−1

sin

(

ωi + ωi+1

2
t

)

cos

(

ωi − ωi+1

2
t

)

.

A = 0.12m is the water wave amplitude at inlet, h0 = 0.765 m the water height at

rest and ωi = 2π/Ti are wave pulses. With two modes, typical values of periods Ti

we consider are 3.5s and 2.5s. More realistic conditions can be applied following a

Jonswap distribution [24, 23].

As specified in section 4.1, the functional we consider for this coupling aims at

minimizing water elevations and their spatial gradients on a given time interval

T = 0.5s. Figure 5 shows two scenarios for the bed after 400 minutes of interaction

with the flow minimizing (11). The scenarios differ in the bed receptivity levels (ρ =

0.0002m/s and ρ = 0.002m/s). Three-dimensional structures appear in the higher

receptivity case (with light sand) despite that the incoming wave is mono-directional.
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These disappear when the bed is made of materials with lower receptivity (with

more heavy sand). The longshore variability of the bed shows the ratio between the

large longshore structures and these 3D smaller ones. One sees that the global bed

organization is faster in the high receptivity situation but there are small fluctuations

in the time history of the functional corresponding to the oscillations of the small

structures. These are better shown in the enlargement of the time history in figure

6. These oscillations do not exist in the heavy sand configuration. The reduction in

the functional is visible comparing these histories to the evolution of the functional

on a flat bed not adapting to the flow.

In the sequel, one only considers the higher receptivity setup (i.e. lighter sand

with ρ = 0.002m/s) and aims at discussing the variability issues analysis by the

ingredients presented in the paper. Figure 6 shows the evolution of the local vari-

ability defined by σ(t, x) and its evolution by equation (13). It also shows the time

histories of the functional (11) without the variability accounted for and for the two

extreme scenarios defined by VaR±

0.95
(N(0, σ(t, x))).

Figure 7 shows the differences between the two final shapes and bed receptivity

variabilities for the two extreme scenarios based on VaR±

0.95
(N(0, σ(t, x))). σ(t, x) is

governed by equation (13). One sees the importance of accounting for the uncer-

tainty in the simulation and not only at the end through simple security margins as

there is not necessary a simple spatial correlation between the shapes deviation and

the spatial distribution of the uncertainty in the bed receptivity. Surprisingly, and

unlike in the illustrative model problem of section 3, larger deviations between the

two shapes do not take place where the bed receptivity features larger variability.

Figure 8 shows a snapshot of the bed velocity V = (ρ∇ψ/∂x1ψ, ρ∇ψ/∂x2ψ). This

field is evaluated by a postprocessing step from equation (12) and is never used

in any calculation. The figure also shows the evolution in time of ‖V ‖L2(Ω). The

shape never rests and continues to vary in time around structures organized in two

different regions (x 6 20 and x > 20). The shape is flat in average in the region

x > 20 as shown in figure 5.
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Figure 9 illustrates the impact of the conservation constraint discussed in section

4.3 on the two extreme scenarios shown in figures 6 and 7. One sees that, as the

simulation time is long, one should pay attention to the fact that a closed basin is

necessary different than an open sea domain. The deviation between the two beds

increases with time. It is interesting that in the absence of the conservation con-

straint (i.e. open sea condition) the two scenarios predict opposite behaviors for the

total sand volume over the domain. This is quite counter intuitive as one would have

not expected such an impact from the variability on the bed receptivity. In addi-

tion, the total sand volume increases with the scenario using VaR−

0.95
(N(0, σ(t, x)))

and decreases with VaR+
0.95

(N(0, σ(t, x))). This approach is therefore also useful to

analyze the pertinence of an experimental setup.

7. CONCLUDING REMARKS

The Value at Risk concept has been introduced to define extreme scenarios for the

motion of a soft bed under the action of a flow described by the Saint Venant shallow

water equations. The approach, which enters the domain of shape optimization for

unsteady fluids with one application being worst-case analysis in coastal erosion, is

generic and applicable with other flow or bottom models. It permits to quantify

our confidence on the bed evolution without any sampling of the bed characteristics

parameter space, and one remains in the deterministic framework with supposed

sufficient regularity where the gradient of the functionals can be defined. To go

beyond the stationary case for the variance, the bed motion and its local variability

have been linked through an original transport equation. It has been shown that

one should account for the bed variability during the coupling between the fluid

and bed motion models and not only eventually by the introduction of margins on

the final results of a single deterministic simulation. A discussion on the impact of

bed variability on sand conservation has shown a non intuitive impact of the former



18

on the later. Also, an indicator has been provided to measure the pertinence of

extending to open seas the conclusions of experiments performed in a basin.

Acknowledgments: The adjoint Saint Venant solver has been obtained using

Tapenade AD tool developed at INRIA-Sophia Antipolis by L. Hascoet and his team

Tropics.
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Figure 1. Value at risk for a general PDF. The grey area worths α.
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Figure 2. Upper: surface elevation h and bed ψ evolutions for the
illustrative problem of section 3 subject to bed receptivity variability.
Middle-left: reduction of the wave energy in time due to bed motion
for the two extreme scenarios given by VaR±

0.95
(N(0, σ)). Middle-right:

VaR based bounds for the bed receptivity and their evolution follow-
ing 5. Lower: snapshots of V (t, x) = ρ(t, x)∇ψJ/∂xψ the ’equivalent’
speed of the motion of the bed during the coupling between the bed
and elevation models (3).
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