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Abstract. The intersection number of a graph G is the minimum size of a ground set
S such that G is an intersection graph of some family of subsets F ⊆ 2S . The overlap
number of G is defined similarly, except that G is required to be an overlap graph of F .
In this paper we show two algorithmic aspects concerning both these graph invariants.
On the one hand, we show that the corresponding optimization problems associated
with these numbers are both APX-hard, where for the intersection number our results
hold even for biconnected graphs of maximum degree 7, strengthening the previously
known hardness result. On the other hand, we show that the recognition problem for
any specific intersection graph class (e.g. interval, unit disc, string, ...) is easy when
restricted to graphs of fixed bounded intersection or overlap number.

1 Introduction

An intersection graph is a graph that represents the pattern of intersections of a
family of sets. Any undirected graph G may be represented as an intersection graph:
For each vertex of G, form a set consisting of the edges incident to this vertex;
then two such sets have a nonempty intersection if and only if the corresponding
vertices share an edge []. Erdös, Goodman, and Pósa [5] provided a construction that
is more efficient in which the total number of set elements is at most n2/4, where
n is the number of vertices in the graph. Many important graph families can be
described as intersection graphs of more restricted types of set families, in particular
sets corresponding to geometric objects. Examples of such graph classes are interval
graphs (intersection graphs of intervals on the real line), circle graphs (intersection
graphs of chords in a circle), unit disc graphs (intersection graphs of unit discs in the
plane), and string graphs (intersection graphs of simple curves in the plane).

The intersection number of G, denoted i(G), is defined to be the minimum cardi-
nality of a (ground) set S such that G is an intersection graph of a family of subsets
F ⊆ 2S of S. In [5], it was shown that i(G) also equals the minimum number of
complete subgraphs needed to cover the edges of G. This latter number is known as
the edge-clique cover number of G, and is denoted θ(G). (The best general reference
is [14].) Computing θ(G) and i(G) is NP-hard [11,16], even when restricted to planar
graphs [3] or graphs with maximum degree 6 [9]. It is polynomial-time solvable for
chordal graphs [13], graphs with maximum degree 5 [9], line graphs [16], and circular-
arc graphs [10]. By way of contrast, it is not approximable within ratio nε for some
ε > 0 unless P = NP [12], and so far nothing better than a polynomial ratio of

O(n2 (log logn)2

(logn)3
) is known [2]. As for its parameterized complexity, computing θ(G)
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is fixed-parameter tractable under the standard parameterization [6]. Guillaume and
Latapy [7] argue that computing θ(G) is very widely applicable to discover underlying
structure in complex real-world networks, while [15] give a bioinformatic application
for this problem.

The overlap model for graph representations arose much later and is not as well
studied [4]. The overlap graph of a family of sets F = {S1, S2, . . . , Sn}, denoted O(F),
is the graph having F as vertex set with Si adjacent to Sj if and only if Si and Sj

intersect and neither set is contained in the other, i.e., Si ∩ Sj 6= ∅, Si \ Sj 6= ∅,
and Sj \ Si 6= ∅. Notice that some graph classes can play it both ways: A graph is
an intersection graph of chords in a circle (i.e. circle graph) iff it is has an overlap
representation using intervals on a line. The overlap number of a graph G, denoted
ϕ(G), is the minimum size of the ground set in any overlap representation of G. The
following upper bounds for the overlap number of a n-vertex graph are known [18,19]:
n+1 for trees, 2n for chordal graphs, 10

3 n− 6 for planar graphs, and
⌊

n2/4
⌋

+ n for
general graphs. It was also observed that the overlap number of Kn is the minimum
ℓ such that a ℓ-set contains n pairwise incomparable sets, that the overlap number
of Cn is n− 1, and that the overlap number of any caterpillar with at least 2 vertices
if the number of vertices in the longest path. In [4], it is shown among other results
that an optimal overlap representation of a tree can be produced in linear time, and
its size is the number of vertices in the largest subtree in which the neighbor of any
leaf has degree 2.

The results in this paper are of twofold. In the first part of the paper, we consider
the Intersection Number and Overlap Number problems, the optimization
problems that ask to respectively determine the intersection and overlap number
of a given input graph. We show that both problems are APX-hard. While for
Intersection Number this was already known for general graphs [12], our result
proves this is the case also for graphs of maximum degree 7. Moreover, this result is
used to show the APX-hardness of Overlap Number. In the second part of the
paper, we show that for any intersection graph class G, i.e. any graph class defined by
specifying the allowed intersection model, the recognition problem associated with G
is linear-time solvable when restricted to graphs with bounded fixed intersection or
overlap number.

2 Notations

Let G be a graph. We write V(G) for the set of vertices and E(G) for the set of edges
of G. An adjacent vertex of a vertex u in a graph is a vertex that is connected to
u by an edge. The neighborhood of a vertex u, denoted NG(u) or (when the graph
is unambiguous) N(u), is the set of adjacent vertices to u. We let N [v] denote the
set {v} ∪ N(v). The degree of a vertex u ∈ V(G), denoted d(u), is the number of
vertices adjacent to u. The maximum degree of G, denoted by ∆(G), is the maximum
degree of its vertices. A biconnected graph is a connected graph that is not broken
into disconnected pieces by deleting any single vertex (and its incident edges). An
edge-clique cover of G is any family E = {Q1, Q2, . . . , Qk} of complete subgraphs
of G such that every edge of G is in at least one of Q1, Q2, . . . , Qk. The minimum
cardinality of an edge-clique cover of G is denoted θ(G), and we write Edge-Clique

Cover for the combinatorial problem of computing θ(G).
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The Cartesian product G × H of graphs G and H is the graph such that the
vertex set of G × H is the Cartesian product V(G) × V(H), and any two vertices
(u, u′) and (v, v′) are adjacent in G×H if and only if either u = v and u′ is adjacent
with v′ in H, or u′ = v′ and u is adjacent with v in G. A column of G × H is the
set of vertices {(u, u′) : u ∈ V(G)} for some vertex u′ ∈ V(H), and a row of G×H
is the set of vertices {(u, u′) : u′ ∈ V(H)} for some vertex u ∈ V(G). Observe that
each row induces a copy of H, and each column induces a copy of G (see Figure 1).
This terminology is consistent with a representation of G × H by the points of the
|V(G)| × |V(H)| grid. (See Figure 1 for an illustration.)

� =

Fig. 1. The cartesian products of two graphs.

3 Hardness of approximating i(G)

Since i(G) = θ(G) [5], we prove hardness of approximation for bounded degree graphs
in terms of edge-clique covers. Notice that this result will be the main ingredient of
upcoming Proposition 2.

Proposition 1. Edge-Clique Cover is APX-hard for biconnected graphs with
maximum degree 7.

Proof. The reduction is from Vertex Cover in cubic graphs, which is known to be
APX-hard [17,1]. Let G be a cubic n-vertex graph. We construct a new graph H as
follows. We represent each vertex u ∈ V(G) by a triangle Tu with vertices u0, u1 and
u2 in the new graph H. These n triangles are all vertex disjoint in H, and each of
them can offer a different edge for three connections. Let us be more specific. For each
vertex u ∈ V(G) with incident edges eu[0], eu[1] and eu[2] (the order is arbitrary), the
edge {ui, ui+1 (mod 3)} ∈ Tu, 0 ≤ i ≤ 2, is devoted to the edge eu[i] ∈ E(G). Now, to
represent an edge {u, v} ∈ E(G) in H, where {ui, ui+1 (mod 3)}, 0 ≤ i ≤ 2, is the edge
of the triangle Tu devoted to representing {u, v}, and {vj , vj+1 (mod 3)}, 0 ≤ j ≤ 2,
is the edge of the triangle Tv devoted to representing {u, v}, we introduce two new
vertices Au,v and Bu,v and the 6 edges {Au,v, ui}, {Au,v, vj}, {Bu,v, ui+1 (mod 3)},
{Bu,v, vj+1 (mod 3)}, and {ui, vj}. What is left is to add m non-incident edges to H
(one additional edge for each edge of G): For each edge {u, v} ∈ E(G) in H, where
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Fig. 2. The three edge-gadgets used in the proof of Proposition 1 for vertex u ∈ V(G) with edges
eu[0] = {u, v}, eu[1] = {u,w}, and eu[2] = {u, x}.

{ui, ui+1 (mod 3)}, 0 ≤ i ≤ 2, is the edge of the triangle Tu devoted to representing
{u, v}, and {vj , vj+1 (mod 3)}, 0 ≤ j ≤ 2, is the edge of the triangle Tv devoted to
representing {u, v}, we add the edge {ui, vj+1 (mod 3)} or {ui+1 (mod 3), vj} (the choice
is made so that these m additional edges form a matching). We refer the reader to
Figure 2 for an illustration. Clearly |V(H)| = 9

2n and |E(H)| = 27
2 n. Moreover, it

follows from the construction that H is a biconnected graph with maximum degree
7.

We claim that G has a vertex cover of size k if and only if θ(H) ≤ k+3m, where
m = 3

2n is the number of edges of G.

Suppose G has a vertex cover V ′ ⊆ V(G) of size k. Construct an edge-clique cover
E of H as follows. For each u ∈ V ′, add Tu to E . For each edge {u, v} ∈ E(G), let
{ui, ui+1 (mod 3)}, i ∈ {0, 1, 2}, be the edge of triangle Tu devoted to representing edge
{u, v}, and {vj , vj+1 (mod 3)}, j ∈ {0, 1, 2}, be the edge of triangle Tv devoted to repre-
senting edge {u, v}. Without loss of generality, assume {ui, vj+1 (mod 3)} ∈ E(H). Add
the two cliques {ui, vj , Au,v} and {ui+1 (mod 3), vj+1 (mod 3), Bu,v} to E . Furthermore,
if u ∈ V ′, add the clique {ui, vj , vj+1 (mod 3)} to E , and {ui, ui+1 (mod 3), vj+1 (mod 3)}
otherwise. Since V ′ is a vertex cover of G, it follows that E is an edge-clique cover of
H of cardinality k + 3m.

For the reverse direction, let E be an edge-clique cover of H. Let {u, v} be any
edge of G, and let {ui, ui+1 (mod 3)}, i ∈ {0, 1, 2}, be the edge of triangle Tu de-
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voted to representing edge {u, v}, and {vj , vj+1 (mod 3)}, j ∈ {0, 1, 2}, be the edge of
triangle Tv devoted to representing edge {u, v}. Without loss of generality, assume
{ui, vj+1 (mod 3)} ∈ E(H). If we let Hu,v stand for be the subgraph of H induced
by the subset {ui, ui+1 (mod 3), Au,v, Bu,v, vj , vj+1 (mod 3)}, we make the easy observa-
tions (see Figure 2) that (i) 4 cliques are needed to cover the edges of Hu,v, and (ii) 3
cliques are needed to cover the edges of Hu,v if {ui, ui+1 (mod 3)} or {vj , vj+1 (mod 3)}
(possibly both) is removed. Therefore, |E| = 3m + k for some non-negative integer
k ≤ m. But each triangle Tw, w ∈ V(G), can be covered by 1 clique, and hence there
is no loss of generality in assuming k ≤ n. Furthermore, there is no loss go generality
in assuming that E satisfies the following property: for every edge {u, v} ∈ E(G), ei-
ther Tu or Tv (possibly both) is in E . Let V ′ ⊆ V(G) be the subset defined as follows:
u ∈ V ′ if Tu ∈ E . According to the above, if |E| = 3m + k for some non-negative
integer k ≤ n, then |V ′| = k is a vertex cover of G. ⊓⊔

4 Hardness of approximating ϕ(G)

This section is devoted to proving that there exists a constant c > 1 such that
computing the overlap number of a graph is hard to approximate to within c.

Proposition 2. Overlap Number is APX-hard.

Proof. According to Proposition 1, there exists a constant c > 0 such that θ(G)
cannot be approximated to within c (unless P = NP). We shall prove that a

√
c-

approximation algorithm for Overlap Number would yield a c-approximation al-
gorithm for Edge-Clique Cover

Let G be a n-vertex graph for which we are asked to c-approximate θ(G). Without
loss of generality, we assume that G has no isolated vertices and is biconnected (see
Proposition 1). Let m be the smallest integer such that m ≥ n and m

m−1 < c, and
let Km be the complete graph on m vertices. Let H = Km × G be the cartesian
product of Km by G. For the sake of simplicity, write V(Km) = {u1, u2, . . . , um} and
V(G) = {v1, v2, . . . , vn}. We have divided the proof into a sequence of claims.

Claim 1. ϕ(H) ≤ n+mθ(G).

Proof (Of Claim 1). Let k = θ(G) and let E = {Q1, Q2, . . . , Qk} be a size-k edge-
clique cover of G. To every node (ui, vj) ∈ V(H), we associate the set S(ui,vj) defined
as follows:

S(ui,vj) = {vj} ∪ {(ui, p) : vj ∈ Qp}.
Consider the family F = {S(ui,vj) : (ui, vj) ∈ V(H)} defined over the ground set

X =
⋃

(ui,vj)∈V(H)

S(ui,vj) = V(G) ∪ (V(Km)× [k]),

where [k] is the set of the first k integers {1, 2, . . . , k}. Notice that |X| = n+ km. We
prove that O(F) and H are isomorphic graphs, thereby proving the claim. Indeed,
let S(ui,vj) and S(ur,vs) be two subsets of F . We need to consider 3 cases.

– If ui 6= ur and vj 6= vs, then (ui, vj) and (ur, vs) are not adjacent vertices in H.
It can be easily verified that S(ui,vj) and S(ur,vs) are disjoint subsets, and hence
S(ui,vj) and S(ur,vs) are not adjacent vertices in O(F).
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– If ui 6= ur and vj = vs, then (ui, vj) and (ur, vs) are adjacent vertices in H since
Km is a clique. Firstly, vj ∈ S(ui,vj) and vj ∈ S(ur,vs) since vj = vs, and hence
S(ui,vj)∩S(ur,vs) 6= ∅. Secondly, both vj ∈ S(ui,vj)\S(ur,vs) and vs ∈ S(ur,vs)\S(ui,vj)

are non-empty (i.e., the two sets have some private element) since ui 6= ur and vj
is not an isolated vertex of G. Therefore, S(ui,vj) and S(ur,vs) overlap, and hence
S(ui,vj) and S(ur,vs) are adjacent vertices in O(F).

– If ui = ur and vj 6= vs, then (ui, vj) and (ur, vs) are adjacent vertices in H if and
only if {vi, vj} ∈ E(G). We have vj ∈ S(ui,vj) \ S(ur,vs) and vs ∈ S(ur,vs) \ S(ui,vj)

(i.e., the two sets have some private element) Therefore, the two sets overlap if
and only if vj and vj belong to a same Qp for some 1 ≤ p ≤ k, which amounts to
saying that {vi, vj} ∈ E(G). Hence, S(ui,vj) and S(ur,vs) are adjacent vertices in
O(F) if and only if {vi, vj} ∈ E(G).

⊓⊔

For the reverse direction, we need the following technical claim that deals with
containment in overlap representations of H.

Claim 2. Let (F = {S(ui,vj) : (ui, vj) ∈ V(H)}, X) be an overlap representation ofH.
If S(ur,vs) ⊂ S(ui,vj) for some vertices (ui, vj) and (ur, vs) of H, then S(up,vq) ⊂ S(ui,vj)

for every vertex (up, vq) of H which is not adjacent to vertex (ui, vj).

Proof (Of claim 2). First, if S(ur,vs) ⊂ S(ui,vj) then vertices (ur, vs) and (ui, vj) are
not adjacent in H since (F , X) is an overlap representation of H. Now, let (up, vq)
be any vertex of H distinct from (ur, vs) that is not adjacent to (ui, vj). Also, let H

′

be the graph obtained from H by deleting every vertex in the close neighborhood of
vertex (ui, vj). Notice that, since (ur, vs) and (up, vq) are not adjacent to (ui, vj) in
H, they are both vertices of H ′. We claim that there exists a path between vertices
(ur, vs) and (up, vq) in H ′. Indeed, since G is biconnected there exists a path in G
between vertices vs and vq that does not go through vertex vj , and hence there exists a
path in H ′ between vertices (ur, vs) and (ur, vq). If ur = up we are done. Otherwise,
since each column of H ′ is a clique then the two vertices (ur, vq) and (up, vq) are
connected by an edge in H ′.

To prove the claim it is now enough to show that S(up,vq) ⊂ S(ui,vj) for any vertex
(up, vq) of H that is adjacent to (ur, vs) but not to (ui, vj). The proof follows from
an easy contradiction. Suppose S(up,vq) 6⊂ S(ui,vj). Since S(up,vq) 6= ∅ (H does not
contain any isolated vertex), then there exists x ∈ X such that x ∈ S(up,vq) and
x /∈ S(ui,vj), and hence S(up,vq) \ S(ui,vj) 6= ∅. Furthermore, (up, vq) and (ur, vs) are
adjacent vertices in H, and hence (since S(up,vq) and S(ur,vs) have to overlap) there
exist x′, x′′ ∈ X such that (i) x′ ∈ S(up,vq) and x′ ∈ S(ur,vs), and (ii) x′′ /∈ S(up,vq) and
x′′ ∈ S(ur,vs). But S(ur,vs) ⊂ S(ui,vj), and hence x′ ∈ S(ui,vj) and x′′ ∈ S(ui,vj). Then
it follows that S(ui,vj) \ S(up,vq) 6= ∅ and S(up,vq) ∩ S(ui,vj) 6= ∅, and hence S(up,vq) and
S(ui,vj) overlap. This is the sought contradiction since this would result in (up, vq)
and (ui, vj) being adjacent in H. ⊓⊔

We are now ready for the reverse direction of the reduction.

Claim 3. θ(G) ≤ ϕ(H)− n− 1

m− 1
+ 7.
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Proof (Of claim 3). Let (F = {S(ui,vj) : (ui, vj) ∈ V(H)}, X) be an overlap rep-
resentation of H. Suppose that there exists some subset S(ui,vj) ∈ F that strictly
contains at least one set of F . Then, according to Claim 2, S(ui,vj) contains all sub-
sets S(ur,vs) ∈ F such that ui 6= ur and vj 6= vs (i.e., S(ui,vj) contains all those subsets
of F that are associated to vertices of H that are not in the same row nor column of
vertex (ui, vj)). Furthermore, if there exist subsets S(ur,vs), S(up,vq) ∈ F distinct from
S(ui,vj) such that S(ur,vs) ⊂ S(up,vq), then ui = up or vj = vq (i.e., vertex (up, vq) is
on the same row or on the same column of vertex (ui, uj)). Indeed, assuming ui 6= up
and vj 6= vq, Claim 2 would yield to S(ui,vj) ⊂ S(up,vq) and S(ui,vj) ⊂ S(up,vq), a con-
tradiction. Now, let H ′ be the graph obtained from H by deleting all vertices (ur, vs)
such that ur = ui or vs = vj (i.e., deleting all vertices that are in the same row or
column of vertex (ui, vj)). Also, let F ′ ⊆ F be those subsets of F that correspond to
vertices of H ′, and X ′ ⊆ X be the union of the subsets in F ′ (X ′ is the ground set of
F ′). Notice that F ′ is an overlap representation of H ′ where no subset being a subset
of another, and that |X ′| ≤ |S(ui,vj)| since every subset of F ′ is strictly contained
in S(ui,vj). Moreover, if we let G′ stand for the graph obtained from G by deleting

vertex vj we have H ′ = Km−1 × G′. We now claim that θ(G′) ≤ |X|−n−1
m−1 . Indeed,

consider the “edge-multi-coloring” procedure of H ′ defined by assigning to every edge
e = {(ur, vs), (up, vq)} of H ′ the “colors” col(e) = S(ur,vs) ∩ S(up,vq). Since F ′ is an
overlap representation of H ′, it follows that at least one color is assigned to every edge
of H ′. Furthermore, since no subset being a subset of another in F ′, it follows that
for every color c, {e ∈ E(H ′) : c ∈ col(e)} induces a clique in G′, and hence H ′ can be
covered with at most |X| cliques. But the maximal cliques of H ′ are either columns
(there are n− 1 of these and at least n− 1 vertical edges must have received a differ-
ent color), or are contained in a single row and correspond to maximal clique of G.
Therefore, m−1 disjoint copies of G′ can be covered with at most |X|−n−1 cliques.

This proves θ(G′) ≤ |X|−n−1
m−1 . What is left is to prove θ(G) ≤ ϕ(H)− n− 1

m− 1
+7. This

follows from θ(G′) ≤ |X|−n−1
m−1 and θ(G) ≤ θ(G′) +∆(G). ⊓⊔

Suppose, aiming at a contradiction, that there exists a
√
c-approximation algo-

rithm B for Edge-Clique Cover. Then, we have B(H) ≤ √
c ϕ(H). Combining this

inequality with Claim 1 yield B(H) ≤ √
c (n+mθ(G)). We now apply the constructive

proof of Claim 3 to obtain an approximate A(G) of θ(G). We have

A(G) ≤ B(H)− n− 1

m− 1
+ 7

=
B(H)

m− 1
− n+ 1

m− 1
+ 7

≤
√
c (n+mθ(G))

m− 1
− n+ 1

m− 1
+ 7

≤ n
√
c

m− 1
+

(
√
c )2 θ(G)

m− 1
− n+ 1

m− 1
+ 7

≤ (
√
c )2 θ(G) +

n
√
c

m− 1
− n+ 1

m− 1
+ 7

= c θ(G) +O(1).

The constant makes no problem since θ(G) is bound to grow with n since we assume
∆(G) is bounded. ⊓⊔
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5 Recognizing graphs with fixed intersection or overlap number

A central algorithmic problem corresponding to an intersection (resp. overlap) graph
class G is the so called G-Recognition problem: Given a graph G, is G ∈ G? In
this section, we show that this problem is linear-time solvable for graphs with fixed
intersection or overlap numbers.

Proposition 3. Let G be any intersection (resp. overlap) graph class, and let k ∈ N.
The G-Recognition problem can be solved in linear-time when restricted to graphs
with intersection (resp. overlap) number at most k.

For ease of presentation, we will prove this result for graphs with small intersection
numbers. The proof for overlap numbers is along the same lines.

The proof of proposition 3 heavily relies on the notion of well quasi orders. A
quasi order (i.e., a binary reflexive transitive relation) is a well quasi order (or wqo
for short) if it does not contain infinitely descending sequences nor infinite antichains.
For example, the standard order ≤ of the natural numbers N is a well quasi order.
Another less obvious example is given by considering vectors in Nd. For two vectors
−→x ∈ NK1 and −→y ∈ NK2 , let us write −→x ≤ −→y if K1 ≤ K2 and xi ≤ yi for all
i ∈ {1, . . . ,K1}. The following lemma follows directly from a classical result known
in the literature as Higman’s Lemma [8].

Lemma 1. The set NK is well quasi ordered by ≤ for any fixed K ∈ N.

A characteristic vector of a graph G is a vector −→c ∈ NK such that there exists
a partitioning {V1, V 2, . . . , Vk} of V(G) satisfying the two following properties for
each i ∈ {1, 2, . . . ,K}: (i) |Vi| = ci , and (ii) N [u] = N [v] for all u, v ∈ Vi. Define the
dimension of a graphG to be the minimum numberK such thatG has a characteristic
vector of dimension K.

Lemma 2. A graph G with i(G) ≤ k has dimension at most K = 2k.

Proof. Since i(G) ≤ k, G has a representation F with |⋃F | ≤ k, which implies that
there are at most 2k distinct sets in F . Since vertices of G corresponding to identical
sets in F have identical neighborhoods, the lemma follows. ⊓⊔

According to the above definition, a graph G of dimension K may have several
characteristic vectors −→c ∈ NK . However, all of these must be isomorphic. We say

that two characteristic vectors −→c ,−→d ∈ NK are isomorphic if there is a permutation
π ∈ SK such that ci = dπ(i) for all i ∈ {1, 2, . . . ,K}. It is not difficult to see that two
graphs are isomorphic if and only if they both have the same dimension K, and any
pair of characteristic vectors of dimensions K for these graphs are isomorphic. The
immediately implies the following lemma whose proof is omitted.

Lemma 3. A graph H is an induced subgraph of a graph G if and only if H has a
characteristic vector −→c (H) with −→c (H) ≤ −→c (G) for some characteristic vector −→c (G)
of G.

We next show two applications of Lemma 3. The first application allows us to
show that graphs of bounded intersection number are wqo by the induced subgraph
order.



9

Lemma 4. Let k ∈ N. The set of all graphs G with i(G) ≤ k is wqo by the induced
subgraph order.

Proof. Let G denote the set of all finite graphs G with i(G) ≤ k. Clearly there are no
infinite descending sequences in G w.r.t. the induced subgraph order, and so to prove
the lemma it suffices to show that there are also no infinite antichains in G. Consider
a infinite subset of graphs G′ ⊆ G, and let

−→
C (G′) denote a set of characteristic vectors

of minimum dimension for each graph in G′. By Lemma 2 all vectors in
−→
C (G′) have

dimension at most K = 2k, and so Lemma 1 implies that
−→
C (G′) is wqo by ≤. But

then G′ cannot be an antichain w.r.t. to the induced subgraph order according to
Lemma 3. ⊓⊔

Induced Subgraph problem asks to determine given a pair of input graph H
and G whether H is an induced subgraph of G. The second application of Lemma 3
is that Induced Subgraph can be solved in linear-time when restricted to graphs
of bounded intersection number.

Lemma 5. Let k ∈ N. There is a linear time algorithm for Induced Subgraph

when restricted to graphs H and G with intersection number at most k.

Proof. Let NH and NG denote the total number of vertices and edges in H and
G, respectively, and let KH and KG respectively denote the dimensions of H and
G. By Lemma 2 we have KH ,KG ≤ 2k. We first compute a characteristic vector
−→c (H) ∈ NKH for H, and a characteristic vector −→c (G) ∈ NKG for H. This can be
done in O(KH ·NH+KG ·NG) time by a simple linear scan of the neighborhoods in H
and G. Next we check for each permutation f : {1, . . . ,KH} → {1, . . . ,KH}, whether
−→c f (H) ≤ −→c (G), where −→c f (H) is the vector −→c (H) whose entries are permutated by
f . By Lemma 3 this check suffices to determine whether H is an induced subgraph
of G. Since this check requires O(KH !) time, the lemma follows. ⊓⊔

We are now ready to give the proof of Proposition 3.

Proof (of proposition 3). Let G any intersection graph class, and let G denote the set
of all finite graphs not in G. Also, let H denote the set of all minimal graphs in G
w.r.t. the induced subgraph order. That is,

H := {H ∈ G : ∄H ′ ∈ G such that H is an induced subgraph of H}.

Observe that G is closed under induced subgraphs (i.e., H ∈ G whenever H is an
induced subgraph of some graph G ∈ G). This implies that a graph G belongs to G
if and only if no graph H ∈ H is an induced subgraph of G.

Now by Lemma 4, the set H is finite, and its size depends only on G. Thus our
recognition algorithm for G has the set of graphs H “hard-wired” into it, and on
given input graph G, it simply checks whether any H ∈ H is an induced subgraph of
G, determining that G /∈ G if and only if any of these checks turns out positive. The
running-time of this algorithm is linear by Lemma 5, and since the number and sizes
of graphs in H is constant w.r.t. the size of G. ⊓⊔
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