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A convolution regression model with random design is considered. We investigate the estimation of the derivatives of an unknown function, element of the convolution product. We introduce new estimators based on wavelet methods and provide theoretical guaranties on their good performances.

Introduction

We consider the convolution regression model with random design described as follows. Let (Y 1 , X 1 ), . . . , (Y n , X n ) be n i.i.d. random variables defined on a probability space (Ω, A, P), where

Y v = (f g)(X v ) + ξ v , v = 1, . . . , n, (1.1) (f g)(x) = ∞ -∞ f ( 
t)g(x -t)dt, f : R → R is an unknown function, g : R → R is a known function, X 1 , . . . , X n are n i.i.d. random variables with common density h : R → [0, ∞), and ξ 1 , . . . , ξ n are n i.i.d. random variables such that E(ξ 1 ) = 0 and E(ξ 2 1 ) < ∞. Throughout this paper, we assume that f , g and h are compactly supported with supp(f ) = [a, b], supp(g) = [a , b ], supp(h) = [a * , b * ], (a, b, a , b ) ∈ R 4 , a < b, a < b , a * = a+a , b * = b+b , f is m times differentiable with m ∈ N, g is integrable and ordinary smooth (the precise definition is given by (K2) in Subsection 3.1), and X v and ξ v are independent for any v = 1, . . . , n. We aim to estimate the unknown function f and its m-th derivative, denoted by f (m) , from the sample (Y 1 , X 1 ), . . . , (Y n , X n ).

The motivation of this problem is the deconvolution of a signal f from f g perturbed by noise and randomly observed. The function g can represent a driving force that was applied to a physical system. Such situations naturally appear in various applied areas, as astronomy, optics, seismology and biology. The model (1.1) can also be viewed as a natural extension of some 1-periodic convolution regression models as those considered by, e.g., [START_REF] Cavalier | Sharp adaption for inverse problems with random noise[END_REF], [START_REF] Pensky | On convergence rates equivalency and sampling strategies in functional deconvolution models[END_REF] and [START_REF] Loubes | Adaptive estimation for an inverse regression model with unknown operator[END_REF]. In the form (1.1), it has been considered in [START_REF] Birke | Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators[END_REF] and [START_REF] Birke | Confidence bands for inverse regression models[END_REF] with a deterministic design, and in [START_REF] Hildebrandt | Additive inverse regression models with convolution-type operators[END_REF] with a random design. These last works focus on kernel methods and establish their asymptotic normality. The estimation of f (m) , more general to f = f (0) , is of interest to examine possible bumps and to study the convexity -concavity properties of f (see, for instance, Prakasa [START_REF] Rao | Nonparametric Functional Estimation[END_REF], for standard statistical models).

In this paper, we introduce new estimators for f (m) based on wavelet methods. Through the use of a multiresolution analysis, these methods enjoy local adaptivity against discontinuities and provide efficient estimators for a wide variety of unknown functions f (m) . Basics on wavelet estimation can be found in, e.g., [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF]. Results on the wavelet estimation of f (m) in other regression frameworks can be found in, e.g., [START_REF] Cai | On adaptive wavelet estimation of a derivative and other related linear inverse problems[END_REF], [START_REF] Petsa | On the estimation of the function and its derivatives in nonparametric regression: a Bayesian estimation approach[END_REF] and [START_REF] Chesneau | A note on wavelet estimation of the derivatives of a regression function in a random design setting[END_REF].

The first part of the study is devoted to the case where h, the common density of X 1 , . . . , X n , is known. We develop a linear wavelet estimator and an adaptive nonlinear wavelet estimator. The second one uses the double hard thresholding technique introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF]. It does not depend on the smoothness of f (m) in its construction ; it is adaptive. We exhibit their rates of convergence via the mean integrated squared error (MISE) and the assumption that f (m) belongs to Besov balls. The obtained rates of convergence coincide with existing results for the estimation of f (m) in the 1-periodic convolution regression models (see, for instance, Chesneau ( 2010))

The second part is devoted to the case where h is unknown. We construct a new linear wavelet estimator using a plug-in approach for the estimation of h. Its construction follows the idea of the "NES linear wavelet estimator" introduced by [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] in another regression context. Then we investigate its MISE properties when f (m) belongs to Besov balls, which naturally depend on the MISE of the considered estimator for h. Furthermore, let us mention that all our results are proved with only moments of order 2 on ξ 1 , which provides another theoretical contribution to the subject.

The remaining part of this paper is organized as follows. In Section 2 we describe some basics on wavelets, Besov balls and present our wavelet estimation methodology. Section 3 is devoted to our estimators and their performances. The proofs are carried out in Section 4.

Preliminaries

This section is devoted to the presentation of the considered wavelet basis, the Besov balls and our wavelet estimation methodology.
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Wavelet basis

Let us briefly present the wavelet basis on the interval [a, b], (a, b) ∈ R 2 , introduced by [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. Let φ and ψ be the initial wavelet functions of the Daubechies wavelets family db2N with N ≥ 1 (see, e.g., [START_REF] Daubechies | Ten lectures on wavelets[END_REF]). These functions have the distinction of being compactly supported and belong to the class C a for N > 5a. For any j ≥ 0 and k ∈ Z, we set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
With appropriated treatments at the boundaries, there exists an integer τ and a set of consecutive integers Λ j of cardinality proportional to 2 j (both depending on a, b and N ) such that, for any integer ≥ τ ,

B = {φ ,k , k ∈ Λ ; ψ j,k ; j ∈ N -{0, . . . , -1}, k ∈ Λ j }
forms an orthonormal basis of the space of squared integrable functions on [a, b], i.e.,

L 2 ([a, b]) =    u : [a, b] → R; b a |u(x)| 2 dx 1/2 < ∞    .
For the case a = 0 and b = 1, τ is the smallest integer satisfying 2 τ ≥ 2N and Λ j = {0, . . . , 2 j -1}.

For any integer ≥ τ and u ∈ L 2 ([a, b]), we have the following wavelet expansion:

u(x) = k∈Λ c ,k φ ,k (x) + ∞ j= k∈Λj d j,k ψ j,k (x), x ∈ [a, b],
where

c j,k = b a u(x)φ j,k (x)dx, d j,k = b a u(x)ψ j,k (x)dx. (2.1)
An interesting feature of the wavelet basis is to provide a sparse representation of u ; only few wavelet coefficients d j,k caracterized by a high magnitude reveal the main details of u. See, e.g., [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Besov balls

We say that a function u ∈ L 2 ([a, b]) belongs to the Besov ball B s p,r (M ) with s > 0, p ≥ 1, r ≥ 1 and M > 0 if there exists a constant C > 0 such that c j,k and d j,k (2.1) satisfy with the usual modifications if p = ∞ or r = ∞.

2 τ (1/2-1/p) k∈Λτ |c τ,k | p 1/p +    ∞ j=τ   2 j(s+1/2-1/p)   k∈Λj |d j,k | p   1/p    r    1/r ≤ C,
The interest of Besov balls is to contain various kinds of homogeneous and inhomogeneous functions u. See, e.g., [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

Wavelet estimation

Let f be the unknown function in (1.1) and B the considered wavelet basis taken with N > 5m (to ensure that φ and ψ belongs to the class C m ). Suppose that

f (m) exists with f (m) ∈ L 2 ([a, b]).
The first step in the wavelet estimation consists in expanding f (m) on B as

f (m) (x) = k∈Λ c (m) ,k φ ,k (x) + ∞ j= k∈Λj d (m) j,k ψ j,k (x), x ∈ [a, b], (2.2)
where ≥ τ and

c (m) j,k = b a f (m) (x)φ j,k (x)dx, d (m) j,k = b a f (m) (x)ψ j,k (x)dx. (2.3)
The second step is the estimation of c

(m) j,k and d (m) j,k using (Y 1 , X 1 ), . . . , (Y n , X n ).
The idea of the third step is to exploit the sparse representation of f (m) by selecting the most interesting wavelet coefficients estimators. This selection can be of different natures (truncation, thresholding, . . . ). Finally, we reconstruct these wavelet coefficients estimators on B, providing an estimator f (m) for f (m) .

In this study, we evaluate the performance of f (m) by studying the asymptotic properties of its MISE under the assumption that f (m) ∈ B s p,r (M ). More precisely, we aim to determine the sharpest rate of convergence ω n such that

E b a | f (m) (x) -f (m) (x)| 2 dx ≤ Cω n ,
where C denotes a constant independent of n.

Rates of convergence

In this section, we list the assumptions on the model, present our wavelet estimators and determine their rates of convergence under the MISE over Besov balls.

Assumptions

Let us recall that f and g are the functions in (1.1) and h is the density of X 1 .

We formulate the following assumptions:
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(K1) We have f (q) (a) = f (q) (b) = 0 for any q ∈ {0, . . . , m}, f (m) ∈ L 2 ([a, b])
and there exists a known constant

C 1 > 0 such that sup x∈[a,b] |f (x)| ≤ C 1 . (K2)
First of all, let us define the Fourier transform of an integrable function u by

F(u)(x) = ∞ -∞ u(y)e -ixy dy, x ∈ R.
The notation • will be used for the complex conjugate. We have g ∈ L 2 ([a , b ]) and there exist two constants, c 1 > 0 and δ ≥ 0, such that

| F(g)(x)| ≥ c 1 (1 + x 2 ) δ/2 , x ∈ R. (3.1) (K3) There exists a constant c 2 > 0 such that c 2 ≤ inf x∈[a * ,b * ] h(x).
The assumptions (K1) and (K3) are standard in a nonparametric regression framework (see, for instance, [START_REF] Tsybakov | Introduction à l'estimation nonparamétrique[END_REF]). Remark that we do not need

f (a) = f (b) = 0 for the estimation of f = f (0) .
The assumption (K2) is the so-called "ordinary smooth case" on g. It is common for the deconvolution -estimation of densities (see, e.g., [START_REF] Fan | Wavelet deconvolution[END_REF] and [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]). An example of compactly supported function g satisfying (K2)

is g(x) = 2 1 y max (1 -|x|/y, 0) dy. Then supp(g) = [-2, 2], g ∈ L 2 ([-2, 2]) and (K2) is satisfied with δ = 2 and c 1 = min(inf x∈[-2π,2π] | F(g)(x)|, 1/(4π 2 )) > 0.
3.2. When h the X i 's common density is known

Linear wavelet estimator

We define the linear wavelet estimator

f (m) 1 by f (m) 1 (x) = k∈Λj 0 ĉ(m) j0,k φ j0,k (x), x ∈ [a, b], (3.2) where ĉ(m) j,k = 1 n n v=1 Y v h(X v ) 1 2π ∞ -∞ (ix) m F (φ j,k )(x) F(g)(x) e -ixXv dx, (3.3) 
and j 0 is an integer chosen a posteriori. Proposition 3.1 presents an elementary property of ĉ(m) j,k . 

Proposition 3.1. Let ĉ(m) j,k be (3.3) and c (m) j,k be (2.3). Suppose that (K1) holds. Then we have E(ĉ (m) j,k ) = c (m) j,k .
(m) ∈ B s p,r (M ) with M > 0, p ≥ 1, r ≥ 1, s ∈ (max(1/p -1/2, 0), N ) and N > 5(m + δ + 1). Let f (m)
1 be defined by (3.2) with j 0 such that

2 j0 = [n 1/(2s * +2m+2δ+1) ],
(3.4)

s * = s + min(1/2 -1/p, 0) ([a] denotes the integer part of a).
Then there exists a constant C > 0 such that

E b a | f (m) 1 (x) -f (m) (x)| 2 dx ≤ Cn -2s * /(2s * +2m+2δ+1) .
Note that the rate of convergence n -2s * /(2s * +2m+2δ+1) corresponds to the one obtained in the estimation of f (m) in the 1-periodic white noise convolution model with an adapted linear wavelet estimator (see, e.g., [START_REF] Chesneau | Wavelet estimation of the derivatives of an unknown function from a convolution model[END_REF]).

The considered estimator f (m) 1 depends on s (the smoothness parameter of f (m) ) ; it is not adaptive. This aspect, as well as the rate of convergence n -2s * /(2s * +2m+2δ+1) can be improved with thresholding methods. The next paragraph is devoting to one of them : the hard thresholding method.

Hard thresholding wavelet estimator

Suppose that (K2) is satisfied. We define the hard thresholding wavelet estimator

f (m) 2 by f (m) 2 (x) = k∈Λτ ĉ(m) τ,k φ τ,k (x) + j1 j=τ k∈Λj d(m) j,k 1 | d(m) j,k |≥κλj ψ j,k (x), (3.5) x ∈ [a, b], where ĉ(m) j,k is defined by (3.3), d(m) j,k = 1 n n v=1 Y v h(X v ) 1 2π ∞ -∞ (ix) m F (ψ j,k )(x) F(g)(x) e -ixXv dx× 1    Yv h(Xv ) 1 2π ∞ -∞ (ix) m F ( ψ j,k ) (x) F (g)(x) e -ixXv dx ≤ςj    , (3.6)
1 is the indicator function, κ > 0 is a large enough constant, j 1 is the integer satisfying and

2 j1 = n 1/(2m+2δ+1) , δ refers to (3.1), ς j = θ ψ 2 mj 2 δj n ln n , λ j = θ ψ 2 mj 2 δj ln n n imsart-
θ ψ = 1 πc 2 c 2 1 C 2 1 ∞ -∞ |g(x)|dx 2 + E(ξ 2 1 ) ∞ -∞ x m (1 + x 2 ) δ |F(ψ)(x)| 2 dx.
The construction of f (m) 2 uses the double hard thresholding technique introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] and recently improved by [START_REF] Chaubey | Adaptive wavelet estimation of a density from mixtures under multiplicative censoring[END_REF]. The main interest of the thresholding using λ j is to make f (m) 2 adaptive; the construction (and performance) of f (m) 2

does not depend on the knowledge of the smoothness of f (m) . The role of the thresholding using ς j in (3.6) is to relax some usual restrictions on the model. To be more specific, it enables us to only suppose that ξ 1 admits finite moments of order 2 (with known E(ξ 2 1 ) or a known upper bound of E(ξ 2 1 )), relaxing the standard assumption

E(|ξ 1 | k ) < ∞, for any k ∈ N.
Further details on the constructions of hard thresholding wavelet estimators can be found in, e.g., Donoho andJohnstone (1994, 1995), Donoho et al. (1995[START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], [START_REF] Delyon | On minimax wavelet estimators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

Theorem 3.2 below investigates the performance of f (m) 2 in terms of rates of convergence under the MISE over Besov balls.

Theorem 3.2. Suppose that (K1) -(K3) are satisfied and that f

(m) ∈ B s p,r (M ) with M > 0, r ≥ 1, {p ≥ 2, s ∈ (0, N )} or {p ∈ [1, 2), s ∈ ((2m + 2δ + 1)/p, N )} and N > 5(m + δ + 1). Let f (m) 2
be defined by (3.5). Then there exists a constant

C > 0 such that E b a | f (m) 2 (x) -f (m) (x)| 2 dx ≤ C ln n n 2s/(2s+2m+2δ+1)
.

The proof of Theorem 3.2 is an application of a general result established by (Chaubey et al., 2014, Theorem 6.1). Let us mention that (ln n/n) 2s/(2s+2m+2δ+1) corresponds to the rate of convergence obtained in the estimation of f (m) in the 1-periodic white noise convolution model with an adapted hard thresholding wavelet estimator (see, e.g., [START_REF] Chesneau | Wavelet estimation of the derivatives of an unknown function from a convolution model[END_REF]). In the case m = 0 and δ = 0, this rate of convergence becomes the optimal one in the minimax sense for the standard density -regression estimation problems (see [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

In comparison to Theorem 3.1, note that

• for the case p ≥ 2 corresponding to the homogeneous zone of Besov balls, (ln n/n) 2s/(2s+2m+2δ+1) is equal to the rate of convergence attained by f (m) 1 up to a logarithmic term, • for the case p ∈ [1, 2) corresponding to the inhomogeneous zone of Besov balls, it is significantly better in terms of power.

When h the X i 's common density is unknown

In the case where h is unknown, we propose a plug-in technique which consists in estimating h in the construction of f 

f (m) 3 (x) = k∈Λj 2 c(m) j2,k φ j2,k (x), x ∈ [a, b], (3.7) where c(m) j,k = 1 a n an v=1 Y v ĥ(X v ) 1 {| ĥ(Xv)|≥c2/2} 1 2π ∞ -∞ (ix) m F (φ j,k )(x) F(g)(x) e -ixXv dx, a n = [n/2]
, j 2 is an integer chosen a posteriori, c 2 refers to (K3) and ĥ is an estimator of h constructed from the random variables U n = (X an+1 , . . . , X n ).

There are numerous possibilities for the choice of ĥ. For instance, ĥ can be a kernel density estimator or a wavelet density estimator (see, e.g., [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and Juditsky and Lambert-Lacroix ( 2004)).

The estimator f (m) 3 is derived to the "NES linear wavelet estimator" introduced by [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] and recently revisited in a more simple form by [START_REF] Chesneau | A note on wavelet estimation of the derivatives of a regression function in a random design setting[END_REF].

Theorem 3.3 below determines an upper bound of the MISE of f (m)

3

.

Theorem 3.3. Suppose that (K1) -(K3) are satisfied, h ∈ L 2 ([a * , b * ]) and that f (m) ∈ B s p,r (M ) with M > 0, p ≥ 1, r ≥ 1, s ∈ (max(1/p -1/2, 0), N ) and N > 5(m + δ + 1). Let f (m)
3 be defined by (3.7) with j 2 such that 2 j2 ≤ n. Then there exists a constant C > 0 such that

E b a | f (m) 3 (x) -f (m) (x)| 2 dx ≤ C 2 (2m+2δ+1)j2 max E b * a * | ĥ(x) -h(x)| 2 dx , 1 n + 2 -2j2s * ,
with s * = s + min(1/2 -1/p, 0).

The proof follows the idea of (Chesneau, 2014, Theorem 3) and uses technical operations on Fourier transforms.

From Theorem 3.3,

• if we chose ĥ = h and j 2 = j 0 (3.4), we obtain Theorem 3.1,

• if ĥ and h satisfy : there exists υ ∈ [0, 1] and a constant C > 0 such that

E b * a * | ĥ(x) -h(x)| 2 dx ≤ Cn -υ ,
then, the optimal integer j 2 is such that 2 j2 = [n υ/(2s * +2m+2δ+1) ] and we obtain the following rate of convergence for f (m)

3

: Naturally the estimation of h has a negative impact on the performance of f (m)

E b a | f (m) 3 (x) -f (m) (x)| 2 dx ≤ Cn -2s * υ/(2s * +2m+2δ+1

3

. In particular, if h ∈ B s p ,r (M ), then the standard density linear wavelet estimator ĥ attains the rate of convergence n -υ with υ = 2s • /(2s • + 1), s • = s + min(1/2 -1/p , 0) (and it is optimal in the minimax sense for p ≥ 2, see [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]). With this choice, the rate of convergence for f (m) 3 becomes n -4s * s•/(2s•+1)(2s * +2m+2δ+1) . Let us mention that f (m) 3

is not adaptive since it depends of s. However, f (m) 3 remains an acceptable first approach for the estimation of f (m) with unknown h.

Conclusion and perspectives.

This study considers the estimation of f (m) from (1.1). According to the knowledge of h or not, we propose wavelet methods and prove that they attain fast rates of convergence under the MISE over Besov balls. Among the perspectives of this work, we retain :

• The relaxation of the assumption (K2), perhaps by considering : (K2') :

There exist four constants, C 1 > 0, ω ∈ N, η > 0 and δ ≥ 0, such that

| F(g)(x)| -1 ≤ C 1 | sin πx η | -ω (1 + |x|) δ , x ∈ R.
This condition was first introduced by [START_REF] Delaigle | Nonparametric function estimation under Fourier-oscillating noise[END_REF] in a context of deconvolution -estimation of function. It implies (K2) and has the advantage to consider some functions g having zeros in Fourier transform domain as numerous kinds of compactly supported functions.

• The construction of an adaptive version of f (m)

3 through the use of a thresholding method.

• The extension of our results to the L p risk with p ≥ 1.

All these aspects need further investigations that we leave for future works.

Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depend on φ or ψ.

Proof of Proposition 3.1. By the independence between X 1 and ξ It follows from (K1) and m integration by parts that (ix) m F(f )(x) = F(f (m) )(x). Using this equality, (4.1) and the Parseval identity, we obtain

1 , E(ξ 1 ) = 0, sup(f g) = supp(h) = [a * , b * ] and F(f g)(x) = F(f )(x)F(g)(x), we have E Y 1 h(X 1 ) e -ixX1 = E (f g)(X 1 ) h(X 1 ) e -ixX1 + E(ξ 1 )E 1 h(X 1 ) e -ixX1 = E (f g)(X 1 ) h(X 1 ) e -ixX1 = b * a * (f g)(y) h(y) e -ixy h(y)dy = ∞ -∞ (f g)(y)e -ixy dy = F(f g)(x) = F(f )(x)F(g)(x). ( 4 
E(ĉ (m) j,k ) = E Y 1 h(X 1 ) 1 2π ∞ -∞ (ix) m F (φ j,k )(x) F(g)(x) e -ixX1 dx = 1 2π ∞ -∞ (ix) m F (φ j,k )(x) F(g)(x) E Y 1 h(X 1 ) e -ixX1 dx = 1 2π ∞ -∞ (ix) m F (φ j,k )(x) F(g)(x) F(f )(x)F(g)(x)dx = 1 2π ∞ -∞ (ix) m F(f )(x)F (φ j,k )(x)dx = 1 2π ∞ -∞ F(f (m) )(x)F (φ j,k )(x)dx = b a f (m) (x)φ j,k (x)dx = c (m) j,k .
Proposition 3.1 is proved.

Proof of Theorem 3.1. We expand the function f (m) on B as (2.2) at the level = j 0 . Since B forms an orthonormal basis of L 2 ([a, b]), we get

E b a | f (m) 1 (x) -f (m) (x)| 2 dx = k∈Λj 0 E |ĉ (m) j0,k -c (m) j0,k | 2 + ∞ j=j0 k∈Λj (d (m) j,k ) 2 . 
(4.2) Using Proposition 3.1, (Y 1 , X 1 ), . . . , (Y n , X n ) are i.i.d., the inequalities : V(D) ≤ E(|D| 2 ) for any random complex variable D and (x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , and (K1) and (K3), we have The Parseval identity yields

E |ĉ (m) j0,k -c (m) j0,k | 2 = V ĉ(m) j0,k = 1 n V Y 1 h(X 1 ) 1 2π ∞ -∞ (ix) m F (φ j0,k )(x) F(g)(x) e -ixX1 dx ≤ 1 (2π) 2 n E   Y 1 h(X 1 ) ∞ -∞ x m F (φ j0,k )(x) F(g)(x) e -ixX1 dx 2   ≤ 2 (2π) 2 n E   ((f g)(X 1 )) 2 + ξ 2 1 (h(X 1 )) 2 ∞ -∞ x m F (φ j0,k )(x) F(g)(x) e -ixX1 dx 2   ≤ 1 n 2 (2π) 2 c 2 C 2 1 ∞ -∞ |g(x)|dx 2 + E(ξ 2 1 ) × E   1 h(X 1 ) ∞ -∞ x m F (φ j0,k )(x) F(g)(x) e -ixX1 dx 2   . ( 4 
E   1 h(X 1 ) ∞ -∞ x m F (φ j0,k )(x) F(g)(x) e -ixX1 dx 2   = b * a * 1 h(y) ∞ -∞ x m F (φ j0,k )(x) F(g)(x) e -ixy dx 2 h(y)dy ≤ ∞ -∞ F x m F (φ j0,k )(x) F(g)(x) (y) 2 dy = 2π ∞ -∞ x m F (φ j0,k )(x) F(g)(x) 2 dx.
(4.4)

Using (K2), |F (φ j0,k ) (x)| = 2 -j0/2 F (φ) (x/2 j0
) and a change of variables, we obtain

∞ -∞ x m F (φ j0,k )(x) F(g)(x) 2 dx ≤ 1 c 2 1 ∞ -∞ x 2m (1 + x 2 ) δ |F (φ j0,k ) (x)| 2 dx = 1 c 2 1 2 -j0 ∞ -∞ x 2m (1 + x 2 ) δ F (φ) (x/2 j0 ) 2 dx = 1 c 2 1 ∞ -∞ 2 2j0m x 2m (1 + 2 2j0 x 2 ) δ |F (φ) (x)| 2 dx ≤ 1 c 2 1 2 (2m+2δ)j0 ∞ -∞ x 2m (1 + x 2 ) δ |F (φ) (x)| 2 dx. ≤ C2 (2m+2δ)j0 . (4.5) (Let us mention that ∞ -∞ x 2m (1 + x 2 ) δ |F (φ) (x)| 2 dx is finite thanks to N > 5(m + δ + 1)).
Putting (4.3), (4.4) and (4.5) together, we have

E |ĉ (m) j0,k -c (m) j0,k | 2 ≤ C2 (2m+2δ)j0 1 n .
For the integer j 0 satisfying (3.4), it holds

k∈Λj 0 E |ĉ (m) j0,k -c (m) j0,k | 2 ≤ C2 (2m+2δ+1)j0 1 n ≤ Cn -2s * /(2s * +2m+2δ+1) . (4.6)
Let us now bound the last term in (4.2). Since f (m) ∈ B s p,r (M ) ⊆ B s * 2,∞ (M ) (see (Härdle et al., 1998, Corollary 9.2)), we obtain

∞ j=j0 k∈Λj (d (m) j,k ) 2 ≤ C2 -2j0s * ≤ Cn -2s * /(2s * +2m+2δ+1) .
(4.7)

Owing to (4.2), (4.6) and (4.7), we have Theorem 3.1 is proved.

E b a | f (m) 1 (x) -f (m) (x)| 2 dx ≤ Cn -2s * /(2s * +2m+2δ+1
Proof of Theorem 3.2. Observe that, for γ ∈ {φ, ψ}, any integer j ≥ τ and k ∈ Λ j , (a1) using arguments similar to those in Proposition 3.1, we obtain

E 1 n n v=1 Y v h(X v ) 1 2π ∞ -∞ (ix) m F (γ j,k )(x) F(g)(x) e -ixXv dx = b a f (m) (x)γ j,k (x)dx.
(a2) using (4.3), (4.4) and (4.5) with γ instead of φ, we have

n v=1 E   Y v h(X v ) 1 2π ∞ -∞ (ix) m F (γ j,k )(x) F(g)(x) e -ixXv dx 2   = nE   Y 1 h(X 1 ) 1 2π ∞ -∞ x m F (γ j,k )(x) F(g)(x) e -ixX1 dx 2   ≤ C 2 * n2 (2m+2δ)j , with C 2 * = (1/(πc 2 c 2 1 ))(C 2 1 ( ∞ -∞ |g(x)|dx) 2 +E(ξ 2 1 )) ∞ -∞ x m (1+x 2 ) δ |F(γ)(x)| 2 dx.
Thanks to (a1) and (a2), we can apply (Chaubey et al., 2014, Theorem 6

.1) (see Appendix) with µ n = υ n = n, σ = m + δ, θ γ = C * , W v = (Y v , X v ), q v (γ, (y, z)) = y h(z) 1 2π ∞ -∞ (ix) m F (γ j,k )(x) F(g)(x) e -ixz dx
and f (m) ∈ B s p,r (M ) with M > 0, r ≥ 1, either {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (1/p, N )}, we prove the existence of a constant C > 0 such that

E b a | f (m) 2 (x) -f (m) (x)| 2 dx ≤ C ln n n 2s/(2s+2m+2δ+1)
.

Theorem 3.2 is proved.

Proof of Theorem 3.3. We expand the function f (m) on B as (2.2) at the level = j 2 . Since B forms an orthonormal basis of L 2 ([a, b]), we get (Härdle et al., 1998, Corollary 9.2)), we have

E b a | f (m) 3 (x) -f (m) (x)| 2 dx = k∈Λj 2 E |c (m) j2,k -c (m) j2,k | 2 + ∞ j=j2 k∈Λj (d (m) j,k ) 2 . (4.8) Using f (m) ∈ B s p,r (M ) ⊆ B s * 2,∞ (M ) (see
∞ j=j2 k∈Λj (d (m) j,k ) 2 ≤ C2 -2j2s * .
(4.9) Let ĉ(m) j2,k be (3.3) with n = a n and j = j 2 . The elementary inequality: (x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , yields

k∈Λj 2 E |c (m) j2,k -c (m) j2,k | 2 ≤ 2(S 1 + S 2 ), (4.10) 
where

S 1 = k∈Λj 2 E |c (m) j2,k - ĉ(m) j2,k | 2 , S 2 = k∈Λj 2 E |ĉ (m) j2,k -c (m) j2,k | 2 .
Upper bound for S 2 . Proceeding as in (4.6), we get

S 2 ≤ C2 (2m+2δ+1)j2 1 a n ≤ C2 (2m+2δ+1)j2 1 n . (4.11)
Upper bound for S 1 . The triangular inequality gives

c(m) j2,k - ĉ(m) j2,k ≤ 1 (2π)a n an v=1 |Y v | ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixXv dx × 1 ĥ(X v ) 1 {| ĥ(Xv)|≥c2/2} - 1 h(X v )
.

Owing to the triangular inequality, the indicator function, (K3), | ĥ(

X v )| < c 2 /2 ⊆ | ĥ(X v ) -h(X v )| > c 2 /2 and the Markov inequality, we have 1 ĥ(X v ) 1 {| ĥ(Xv)|≥c2/2} - 1 h(X v ) = 1 h(X v ) h(X v ) -ĥ(X v ) ĥ(X v ) 1 {| ĥ(Xv)|≥c2/2} -1 {| ĥ(Xv)|<c2/2} ≤ 1 h(X v ) 2 c 2 | ĥ(X v ) -h(X v )| + 1 {| ĥ(Xv)-h(Xv)|>c2/2} ≤ 4 c 2 | ĥ(X v ) -h(X v )| h(X v ) . Therefore c(m) j2,k - ĉ(m) j2,k ≤ CA j2,k,n ,
where Let us now consider U n = (X an+1 , . . . , X n ). For any complex random variable D, we have the equality:

A j,k,n = 1 a n an v=1 |Y v | ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixXv dx | ĥ(X v ) -h(X v )| h(X v ) .
E(D 2 ) = E(E(D 2 |U n )) = E(V(D|U n )) + E((E(D|U n )) 2 ),
where E(D|U n ) denotes the expectation of D conditionally to U n and V(D|U n ), the variance of D conditionally to U n . Therefore

S 1 ≤ C k∈Λj 2 E(A 2 j2,k,n ) = C(W j2,n + Z j2,n ), (4.12)
where

W j2,n = k∈Λj 2 E (V (A j2,k,n |U n )) , Z j2,n = k∈Λj 2 E (E (A j2,k,n |U n )) 2 .
Let us now observe that, owing to the independence of (Y 1 , X 1 ), . . . , (Y n , X n ),

the random variables |Y 1 | ∞ -∞ x m F (φj 2 ,k )(x) F (g)(x) e -ixX1 dx | ĥ(X 1 )-h(X 1 )|/h(X 1 ), . . . , |Y an | ∞ -∞ x m F (φj 2 ,k )(x) F (g)(x)
e -ixXa n dx | ĥ(X an ) -h(X an )|/h(X an ) conditionally to U n are independent. Using this property with the inequalities: V(D|U n ) ≤ E(D 2 |U n ) for any complex random variable D and (x+y) 2 ≤ 2(x 2 +y 2 ), (x, y) ∈ R 2 , the independence between X 1 and ξ 1 , (K1) and (K3), we get Owing to (K2), |F (φ j2,k ) (x)| = 2 -j2/2 F (φ) (x/2 j2 ) and a change of variables, we obtain ∞ -∞

V (A j2,k,n |U n ) = 1 a n V |Y 1 | ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixX1 dx | ĥ(X 1 ) -h(X 1 )| h(X 1 ) U n ≤ 1 a n E   Y 2 1 ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixX1 dx 2 ĥ(X 1 ) -h(X 1 ) h(X 1 ) 2 U n   ≤ 1 a n 2 c 2 C 2 1 ∞ -∞ |g(x)|dx 2 + E(ξ 2 1 ) × E   ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixX1 dx 2 | ĥ(X 1 ) -h(X 1 )| 2 h(X 1 ) U n   = 2 c 2 C 2 1 ∞ -∞ |g(x)|dx 2 + E(ξ 2 1 ) × 1 a n b * a * ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixy dx 2 | ĥ(y) -h(y)| 2 h(y) h(y)dy ≤ C 1 n b * a * ∞ -∞ x m F (φ j2,k )(x)
x m F (φ j2,k )(x)

F(g)(x) e -ixy dx ≤ ∞ -∞ |x| m |F (φ j2,k ) (x)| |F(g)(x)| dx ≤ 1 c 1 ∞ -∞ |x| m (1 + x 2 ) δ/2 |F (φ j2,k ) (x)| dx = 1 c 1 2 -j2/2 ∞ -∞ |x| m (1 + x 2 ) δ/2 F (φ) (x/2 j2 ) dx = 1 c 1 2 j2/2 ∞ -∞ 2 j2m |x| m (1 + 2 2j2 x 2 ) δ/2 |F (φ) (x)| dx ≤ 1 c 1 2 (m+δ+1/2)j2 ∞ -∞ |x| m (1 + x 2 ) δ/2 |F (φ) (x)| dx.
≤ C2 (m+δ+1/2)j2 .

Therefore, using Card(Λ j2 ) ≤ C2 j2 and 2 j2 ≤ n, we obtain Now, by the Hölder inequality for conditional expectations, arguments similar to (4.3), (4.4) and (4.5), we get

E (A j2,k,n |U n ) = E |Y 1 | ∞ -∞
x m F (φ j2,k )(x) F(g)(x) e -ixX1 dx | ĥ(X 1 ) -h(X 1 )| h(X 1 ) Let fH be (4.17) under (A1) and (A2). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ ((2σ + 1)/p, N )}. Then there exists a constant C > 0 such that .

U n ≤   E   Y 2 1 h(X 1 ) ∞ -∞ x m F (φ j2,k )(x) F(g)(x) e -ixX1 dx 2 U n     1/2 × E | ĥ(X 1 ) -h(X 1 )| 2 h(X 1 ) U n 1/2 =   E   Y 2 1 h(X 1 ) ∞ -∞ x m F (φ j2,k )(x) F ( 
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Appendix

Let us now present in details the general result of (Chaubey et al., 2014, Theorem 6.1) used in the proof of Theorem 3.2.

We consider the wavelet basis presented in Section 2 and a general form of the hard thresholding wavelet estimator denoted by fH for estimating an unknown function f ∈ L 2 ([a, b]) from n independent random variables W 1 , . . . , W n :

where

κ ≥ 2 + 8/3 + 2 4 + 16/9 and j 1 is the integer satisfying

Here, we suppose that there exist

• n functions q 1 , . . . , q n with q i : L 2 ([a, b]) × W i (Ω) → C for any i ∈ {1, . . . , n}, • two sequences of real numbers (υ n ) n∈N and (µ n ) n∈N satisfying lim n→∞ υ n = ∞ and lim n→∞ µ n = ∞ such that, for γ ∈ {φ, ψ}, (A1) any integer j ≥ τ and any k ∈ Λ j ,

(A2) there exist two constants, θ γ > 0 and σ ≥ 0, such that, for any integer j ≥ τ and any k ∈ Λ j ,
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