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1. Introduction

We consider the convolution regression model with random design described
as follows. Let (Y1, X1), . . . , (Yn, Xn) be n i.i.d. random variables defined on a
probability space (Ω,A,P), where

Yv = (f ⋆ g)(Xv) + ξv, v = 1, . . . , n, (1.1)

(f⋆g)(x) =
∫∞

−∞
f(t)g(x−t)dt, f : [a, b] → R is an unknown function, (a, b) ∈ R

2,
g : R → R is a known function, X1, . . . , Xn are n i.i.d. random variables with
common density h : R → [0,∞), and ξ1, . . . , ξn are n i.i.d. random variables such
that E(ξ1) = 0 and E(ξ21) <∞. Throughout this paper, we assume that f is m
times differentiable withm ∈ N, g is integrable and ordinary smooth (the precise
definition is given by (K2) in Subsection 3.1), and Xv and ξv are independent
for any v = 1, . . . , n. Thus, our goal is to estimate the unknown function f and
its m-th derivative, denoted by f (m), from the sample (Y1, X1), . . . , (Yn, Xn).

A direct application of this problem is the deconvolution of a signal perturbed
by noise and randomly observed. This random phenomena appears in various
applied areas, as astronomy and biology. The model (1.1) can also be viewed as a
natural ”real line” extension of some 1-periodic convolution regression models as
those considered by, e.g., Cavalier and Tsybakov (2002), Pensky and Sapatinas
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(2010) and Loubes and Marteau (2012). In the form (1.1), it has been considered
in Birke and Bissantz (2008) and Birke et al. (2010) with a deterministic design,
and in Hildebrandt et al. (2013) with a random design. These last works focus
on kernel methods and establish their asymptotic normality.

In this paper, we introduce new estimators for f (m) (not only for f = f (0))
based on wavelet methods. Through the use of a multiresolution analysis, these
methods enjoy local adaptivity against discontinuities and provide efficient es-
timators for a wide variety of unknown functions f (m). Basics on wavelet es-
timation can be found in, e.g., Antoniadis (1997), Härdle et al. (1998) and
Vidakovic (1999). Results on the wavelet estimation of f (m) in other regression
frameworks can be found in, e.g., Cai (2002), Petsa and Sapatinas (2011) and
Chesneau (2014).

The first part of the study is devoted to the case where h the Xi’s com-
mon density is known. We develop a linear wavelet estimator and an adaptive
nonlinear wavelet estimator. The second one uses the double hard thresholding
technique introduced by Delyon and Juditsky (1996). It does not depend on the
smoothness of f (m) in its construction ; it is adaptive. We exhibit their rates of
convergence via the mean integrated squared error (MISE) and the assumption
that f (m) belongs to Besov balls. The obtained rates of convergence coincide
with existing results for the estimation of f (m) in the 1-periodic convolution
regression models (see, for instance, Chesneau (2010))

The second part is devoted to the case where h the Xi’s common density is
unknown. We construct a new linear wavelet estimator using a plug-in approach
for the h estimation. Its construction follows the idea of the “NES linear wavelet
estimator” introduced by Pensky and Vidakovic (2001) in another regression
context. Then we investigate its MISE properties when f (m) belongs to Besov
balls, which naturally depend on the MISE of the considered estimator for h.
Furthurmore, let us mention that all our results are proved with only moments
of order 2 on ξ1, which provides another theoretical contribution to the subject.

The remaining part of this paper is organized as follows. In Section 2 we
describe some basics on wavelets, Besov balls and present our wavelet estimation
methodology. Section 3 is devoted to our estimators and their performances. The
proofs are carried out in Section 4.

2. Preliminaries

This section is devoted to the presentation of the considered wavelet basis, the
Besov balls and our wavelet estimation methodology.

2.1. Wavelet basis

Let us briefly present the wavelet basis on the interval [a, b], (a, b) ∈ R
2, intro-

duced by Cohen et al. (1993). Let φ and ψ be the initial wavelet functions of
the Daubechies wavelets family db2N with N ≥ 1 (see, e.g., Daubechies (1992)).
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These functions have the distinction of being compactly supported and belong
to the class Ca for N > 5a. For any j ≥ 0 and k ∈ Z, we set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With appropriated treatments at the boundaries, there exists an integer τ
and a set of consecutive integers Λj of cardinality proportional to 2j such that,
for any integer ℓ ≥ τ ,

B = {φℓ,k, k ∈ Λℓ; ψj,k; j ∈ N− {0, . . . , ℓ− 1}, k ∈ Λj}

forms an orthonormal basis of the space of squared integrable functions on [a, b],
i.e.,

L
2([a, b]) =







u : [a, b] → R;

(

∫ b

a

(u(x))2dx

)1/2

<∞







.

For any integer ℓ ≥ τ and u ∈ L
2([a, b]), we have the following wavelet expansion:

u(x) =
∑

k∈Λℓ

cℓ,kφℓ,k(x) +

∞
∑

j=ℓ

∑

k∈Λj

dj,kψj,k(x), x ∈ [a, b],

where

cj,k =

∫ b

a

u(x)φj,k(x)dx, dj,k =

∫ b

a

u(x)ψj,k(x)dx. (2.1)

An interesting feature of the wavelet basis is to provide a sparse representation
of u ; only few wavelet coefficients dj,k caracterized by a high magnitude reveal
the main details of u. See, e.g., Cohen et al. (1993) and Mallat (2009).

2.2. Besov balls

We say that a function u ∈ L
2([a, b]) belongs to the Besov ball Bsp,r(M) with

s > 0, p ≥ 1, r ≥ 1 and M > 0 if there exists a constant C > 0 such that cj,k
and dj,k (2.1) satisfy

2τ(1/2−1/p)

(

∑

k∈Λτ

|cτ,k|p
)1/p

+







∞
∑

j=τ






2j(s+1/2−1/p)





∑

k∈Λj

|dj,k|p




1/p






r





1/r

≤ C,

with the usual modifications if p = ∞ or r = ∞.
The interest of Besov balls is to contain various kinds of homogeneous and

inhomogeneous functions u. See, e.g., Meyer (1992), Donoho et al. (1996) and
Härdle et al. (1998).
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2.3. Wavelet estimation

Let f be the unknown function in (1.1) and B the considered wavelet basis taken
with N > 5m (to ensure that φ and ψ belongs to the class Cm). Suppose that
f (m) exists with f (m) ∈ L

2([a, b]).
The first step in the wavelet estimation consists in expanding f (m) on B as

f (m)(x) =
∑

k∈Λℓ

c
(m)
ℓ,k φℓ,k(x) +

∞
∑

j=ℓ

∑

k∈Λj

d
(m)
j,k ψj,k(x), x ∈ [a, b], (2.2)

where ℓ ≥ τ and

c
(m)
j,k =

∫ b

a

f (m)(x)φj,k(x)dx, d
(m)
j,k =

∫ b

a

f (m)(x)ψj,k(x)dx. (2.3)

The second step is the estimation of c
(m)
j,k and d

(m)
j,k using (Y1, X1), . . . , (Yn, Xn).

The idea of the third step is to exploit the sparse representation of f (m) by se-
lecting the most interesting wavelet coefficients estimators. This selection can
be of different natures (truncation, thresholding, . . . ). Finally, we reconstruct

these wavelet coefficients estimators on B, providing an estimator f̂ (m) for f (m).
In this study, we evaluate the performance of f̂ (m) by studying the asymp-

totic properties of its MISE under the assumption that f (m) ∈ Bsp,r(M). More
precisely, we aim to determine the sharpest rate of convergence vn such that

E

(

∫ b

a

(f̂ (m)(x)− f (m)(x))2dx

)

≤ Cvn,

where C denotes a constant independent of n.

3. Rates of convergence

In this section, we list the assumptions on the model, present our wavelet es-
timators and determine their rates of convergence under the MISE over Besov
balls.

3.1. Assumptions

Let us recall that f and g are the functions in (1.1) and h is the density of X1.
We formulate the following assumptions:

(K1) We have f (q)(a) = f (q)(b) = 0 for any q ∈ {0, . . . ,m}, f (m) ∈ L
2([a, b])

and there exists a known constant C1 > 0 such that supx∈[a,b] |f(x)| ≤ C1.
(K2) First of all, let us define the Fourier transform of an integrable function u

by

F(u)(x) =

∫ ∞

−∞

u(y)e−ixydy, x ∈ R.
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The notation · will be used for the complex conjugate.
There exist two constants, c1 > 0 and δ > 1, such that

| F(g)(x)| ≥ c1
(1 + x2)δ/2

, x ∈ R. (3.1)

(K3) There exists a constant c2 > 0 such that

c2 ≤ inf
x∈R

h(x).

Note that assumptions (K1) and (K3) can be seen as restrictive but they are
relatively standard in a nonparametric regression framework (see, for instance,
Tsybakov (2004)). Remark that we do not need f(a) = f(b) = 0 for the estima-
tion of f = f (0). The assumption (K2) is the so-called ”ordinary smooth case”
on g. It is common for the deconcolution - estimation of densities (see, e.g., Fan
and Koo (2002) and Pensky and Vidakovic (1999))

3.2. When h the Xi’s common density is known

3.2.1. Linear wavelet estimator

We define the linear wavelet estimator f̂
(m)
1 by

f̂
(m)
1 (x) =

∑

k∈Λj0

ĉ
(m)
j0,k

φj0,k(x), x ∈ [a, b], (3.2)

where

ĉ
(m)
j,k =

1

n

n
∑

v=1

Yv
h(Xv)

1

2π

∫ ∞

−∞

(ix)m
F (φj,k)(x)

F(g)(x)
e−ixXvdx, (3.3)

and j0 is an integer chosen a posteriori.

Proposition 3.1 presents an elementary property of ĉ
(m)
j,k .

Proposition 3.1. Let ĉ
(m)
j,k be (3.3) and c

(m)
j,k be (2.3). Suppose that (K1) holds.

Then we have
E(ĉ

(m)
j,k ) = c

(m)
j,k .

Theorem 3.1 below investigates the performance of f̂
(m)
1 in terms of rates of

convergence under the MISE over Besov balls.

Theorem 3.1. Suppose that (K1) - (K3) are satisfied and that f (m) ∈ Bsp,r(M)
with M > 0, p ≥ 1, r ≥ 1, s ∈ (max(1/p − 1/2, 0), N) and N > 5(m + δ + 1).

Let f̂
(m)
1 be defined by (3.2) with j0 such that

2j0 = [n1/(2s∗+2m+2δ+1)], (3.4)

s∗ = s+min(1/2− 1/p, 0) ([a] denotes the integer part of a).
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Then there exists a constant C > 0 such that

E

(

∫ b

a

(f̂
(m)
1 (x)− f (m)(x))2dx

)

≤ Cn−2s∗/(2s∗+2m+2δ+1).

Note that the rate of convergence n−2s∗/(2s∗+2m+2δ+1) corresponds to the
one obtained in the estimation of f (m) in the 1-periodic convolution regression
models (see, e.g., Chesneau (2010)).

3.2.2. Hard thresholding wavelet estimator

Suppose that (K2) is satisfied. We define the hard thresholding wavelet esti-

mator f̂
(m)
2 by

f̂
(m)
2 (x) =

∑

k∈Λτ

ĉ
(m)
τ,k φτ,k(x) +

j1
∑

j=τ

∑

k∈Λj

d̂
(m)
j,k 1{

|d̂
(m)
j,k

|≥κλj
}ψj,k(x), (3.5)

x ∈ [a, b], where ĉ
(m)
j,k is defined by (3.3),

d̂
(m)
j,k =

1

n

n
∑

v=1

Yv
h(Xv)

1

2π

∫ ∞

−∞

(ix)m
F (ψj,k)(x)

F(g)(x)
e−ixXvdx×

1





∣

∣

∣

∣

∣

∣

Yv
h(Xv)

1
2π

∫

∞

−∞
(ix)m

F(ψj,k)(x)
F(g)(x)

e−ixXvdx

∣

∣

∣

∣

∣

∣

≤ςj







, (3.6)

1 is the indicator function, κ > 0 is a large enough constant, j1 is the integer
satisfying

2j1 =
[

n1/(2m+2δ+1)
]

,

δ refers to (3.1),

ςj = θψ2
mj2δj

√

n

lnn
, λj = θψ2

mj2δj
√

lnn

n

and

θψ =

√

√

√

√

1

πc2c21

(

C2
1

(∫ ∞

−∞

|g(x)|dx
)2

+ E(ξ21)

)

∫ ∞

−∞

xm(1 + x2)δ|F(ψ)(x)|2dx.

The construction of f̂
(m)
2 uses the double hard thresholding technique intro-

duced by Delyon and Juditsky (1996) and recently improved by Chaubey et al.

(2014). The main interest of the thresholding using λj is to make f̂
(m)
2 adaptive;

the construction (and performance) of f̂
(m)
2 does not depend on the knowledge
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of the smoothness of f (m). The role of the thresholding using ςj in (3.6) is to
relax some usual restrictions on the model. To be more specific, it enables us
to only suppose that ξ1 admits finite moments of order 2, relaxing the standard
assumption E(|ξ1|k) <∞, for any k ∈ N.

Further details on the constructions of hard thresholding wavelet estimators
can be found in, e.g., Donoho and Johnstone (1994, 1995), Donoho et al. (1995,
1996), Delyon and Juditsky (1996) and Härdle et al. (1998).

Theorem 3.2 below investigates the performance of f̂
(m)
2 in terms of rates of

convergence under the MISE over Besov balls.

Theorem 3.2. Suppose that (K1) - (K3) are satisfied and that f (m) ∈ Bsp,r(M)
with M > 0, r ≥ 1, {p ≥ 2, s ∈ (0, N)} or {p ∈ [1, 2), s ∈ ((2m+2δ+1)/p,N)}
and N > 5(m+δ+1). Let f̂

(m)
2 be defined by (3.5). Then there exists a constant

C > 0 such that

E

(

∫ b

a

(f̂
(m)
2 (x)− f (m)(x))2dx

)

≤ C

(

lnn

n

)2s/(2s+2m+2δ+1)

.

The proof of Theorem 3.2 is an application of a general result established by
(Chaubey et al., 2014, Theorem 6.1).

In comparison to Theorem 3.1, note that

• for the case p ≥ 2 corresponding to the homogeneous zone of Besov balls,
(lnn/n)2s/(2s+2m+2δ+1) is equal to the rate of convergence attained by

f̂
(m)
1 up to a logarithmic term,

• for the case p ∈ [1, 2) corresponding to the inhomogeneous zone of Besov
balls, it is significantly better in terms of power.

3.3. When h the Xi’s common density is unknown

In the case where h is unknown, we propose a plug-in technique which consists

in estimating h in the construction of f̂
(m)
1 (3.2). This yields the linear wavelet

estimator f̂
(m)
3 defined by

f̂
(m)
3 (x) =

∑

k∈Λj2

c̃
(m)
j2,k

φj2,k(x), x ∈ [a, b], (3.7)

where

c̃
(m)
j,k =

1

an

an
∑

v=1

Yv

ĥ(Xv)
1{|ĥ(Xv)|≥c2/2}

1

2π

∫ ∞

−∞

(ix)m
F (φj,k)(x)

F(g)(x)
e−ixXvdx,

an = [n/2], j2 is an integer chosen a posteriori, c2 refers to (K3) and ĥ is an
estimator of h constructed from the random variables Un = (Xan+1, . . . , Xn).

There are numerous possibilities for the choice of ĥ. For instance, ĥ can be a
kernel density estimator or a wavelet density estimator on R, as the one proposed
by Juditsky and Lambert-Lacroix (2004).
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The estimator f̂
(m)
3 is derived to the “NES linear wavelet estimator” intro-

duced by Pensky and Vidakovic (2001) and recently revisited in a more simple
form by Chesneau (2014).

Theorem 3.3 below determines an upper bound of the MISE of f̂
(m)
3 .

Theorem 3.3. Suppose that (K1) - (K3) are satisfied and that f (m) ∈ Bsp,r(M)
with M > 0, p ≥ 1, r ≥ 1, s ∈ (max(1/p−1/2, 0), N) and N > 5(m+δ+1). Let

f̂
(m)
3 be defined by (3.7) with j2 such that 2j2 ≤ n. Then there exists a constant
C > 0 such that

E

(

∫ b

a

(f̂
(m)
3 (x)− f (m)(x))2dx

)

≤ C

(

2(2m+2δ+1)j2 max

(

E

(∫ ∞

−∞

(ĥ(x)− h(x))2dx

)

,
1

n

)

+ 2−2j2s∗

)

,

with s∗ = s+min(1/2− 1/p, 0).

The proof follows the idea of (Chesneau, 2014, Theorem 3) and uses technical
operations on Fourier transforms.

From Theorem 3.3,

• if we chose ĥ = h and j2 = j0 (3.4), we obtain Theorem 3.1,

• if ĥ and h satisfy : there exists υ ∈ [0, 1] and a constant C > 0 such that

E

(∫ ∞

−∞

(ĥ(x)− h(x))2dx

)

≤ Cn−υ,

then, the optimal integer j2 is such that 2j2 = [nυ/(2s∗+2m+2δ+1)] and we

obtain the following rate of convergence for f̂
(m)
3 :

E

(

∫ b

a

(f̂
(m)
3 (x)− f (m)(x))2dx

)

≤ Cn−2s∗υ/(2s∗+2m+2δ+1).

Naturally the estimation of h has a negative impact on the performance of f̂
(m)
3 .

However, f̂
(m)
3 remains an acceptable solution for the estimation of f (m) with

unknown h.

Conclusion. This study considers the estimation of f (m) from (1.1). Accord-
ing to the knowledge of h or not, we propose wavelet methods and prove that
they attain fast rates of convergence under the MISE over Besov balls.

4. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its
value may change from one term to another and may depend on φ or ψ.
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Proof of Proposition 3.1. By the independence betweenX1 and ξ1, E(ξ1) =
0 and F(f ⋆ g)(x) = F(f)(x)F(g)(x), we have

E

(

Y1
h(X1)

e−ixX1

)

= E

(

(f ⋆ g)(X1)

h(X1)
e−ixX1

)

+ E(ξ1)E

(

1

h(X1)
e−ixX1

)

= E

(

(f ⋆ g)(X1)

h(X1)
e−ixX1

)

=

∫ ∞

−∞

(f ⋆ g)(y)

h(y)
e−ixyh(y)dy

= F(f ⋆ g)(x) = F(f)(x)F(g)(x). (4.1)

It follows from (K1) and m integration by parts that (ix)mF(f)(x) =
F(f (m))(x). Using this equality, (4.1) and the Parseval identity, we obtain

E(ĉ
(m)
j,k ) = E

(

Y1
h(X1)

1

2π

∫ ∞

−∞

(ix)m
F (φj,k)(x)

F(g)(x)
e−ixX1dx

)

=
1

2π

∫ ∞

−∞

(ix)m
F (φj,k)(x)

F(g)(x)
E

(

Y1
h(X1)

e−ixX1

)

dx

=
1

2π

∫ ∞

−∞

(ix)m
F (φj,k)(x)

F(g)(x)
F(f)(x)F(g)(x)dx

=
1

2π

∫ ∞

−∞

(ix)mF(f)(x)F (φj,k)(x)dx

=
1

2π

∫ ∞

−∞

F(f (m))(x)F (φj,k)(x)dx =

∫ b

a

f (m)(x)φj,k(x)dx = c
(m)
j,k .

Proposition 3.1 is proved.

Proof of Theorem 3.1. We expand the function f (m) on B as (2.2) at the
level ℓ = j0. Since B forms an orthonormal basis of L2([a, b]), we get

E

(

∫ b

a

(f̂
(m)
1 (x)− f (m)(x))2dx

)

=
∑

k∈Λj0

E

(

|ĉ(m)
j0,k

− c
(m)
j0,k

|2
)

+

∞
∑

j=j0

∑

k∈Λj

(d
(m)
j,k )2.

(4.2)
Using Proposition 3.1, (Y1, X1), . . . , (Yn, Xn) are i.i.d., the inequalities : V(D) ≤
E(|D|2) for any random complex variableD and (a+b)2 ≤ 2(a2+b2), (a, b) ∈ R

2,
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and (K1) and (K3), we have

E

(

|ĉ(m)
j0,k

− c
(m)
j0,k

|2
)

= V

(

ĉ
(m)
j0,k

)

=
1

n
V

(

Y1
h(X1)

1

2π

∫ ∞

−∞

(ix)m
F (φj0,k)(x)

F(g)(x)
e−ixX1dx

)

≤ 1

(2π)2n
E





∣

∣

∣

∣

∣

Y1
h(X1)

∫ ∞

−∞

xm
F (φj0,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2




≤ 2

(2π)2n
E





((f ⋆ g)(X1))
2 + ξ21

(h(X1))2

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj0,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2




≤ 1

n

2

(2π)2c2

(

C2
1

(∫ ∞

−∞

|g(x)|dx
)2

+ E(ξ21)

)

×

E





1

h(X1)

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj0,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2


 . (4.3)

The Parseval identity yields

E





1

h(X1)

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj0,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2




=

∫ ∞

−∞

1

h(y)

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj0,k)(x)

F(g)(x)
e−ixydx

∣

∣

∣

∣

∣

2

h(y)dy

=

∫ ∞

−∞

∣

∣

∣

∣

∣

F
(

xm
F (φj0,k)(x)

F(g)(x)

)

(y)

∣

∣

∣

∣

∣

2

dy = 2π

∫ ∞

−∞

∣

∣

∣

∣

∣

xm
F (φj0,k)(x)

F(g)(x)

∣

∣

∣

∣

∣

2

dx.

(4.4)

Using (K2), |F (φj0,k) (x)| = 2−j0/2
∣

∣F (φ) (x/2j0)
∣

∣ and a change of variables,
we obtain

∫ ∞

−∞

∣

∣

∣

∣

∣

xm
F (φj0,k)(x)

F(g)(x)

∣

∣

∣

∣

∣

2

dx ≤ 1

c21

∫ ∞

−∞

x2m(1 + x2)δ |F (φj0,k) (x)|
2
dx

=
1

c21
2−j0

∫ ∞

−∞

x2m(1 + x2)δ
∣

∣F (φ) (x/2j0)
∣

∣

2
dx

=
1

c21

∫ ∞

−∞

22j0mx2m(1 + 22j0x2)δ |F (φ) (x)|2 dx

≤ 1

c21
2(2m+2δ)j0

∫ ∞

−∞

x2m(1 + x2)δ |F (φ) (x)|2 dx.

≤ C2(2m+2δ)j0 . (4.5)
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Putting (4.3), (4.4) and (4.5) together, we have

E

(

|ĉ(m)
j0,k

− c
(m)
j0,k

|2
)

≤ C2(2m+2δ)j0
1

n
.

For the integer j0 satisfying (3.4), it holds

∑

k∈Λj0

E

(

|ĉ(m)
j0,k

− c
(m)
j0,k

|2
)

≤ C2(2m+2δ+1)j0
1

n
≤ Cn−2s∗/(2s∗+2m+2δ+1). (4.6)

Let us now bound the last term in (4.2). Since f (m) ∈ Bsp,r(M) ⊆ Bs∗2,∞(M) [see
Härdle et al. (1998), Corollary 9.2], we obtain

∞
∑

j=j0

∑

k∈Λj

(d
(m)
j,k )2 ≤ C2−2j0s∗ ≤ Cn−2s∗/(2s∗+2m+2δ+1). (4.7)

Owing to (4.2), (4.6) and (4.7), we have

E

(

∫ b

a

(f̂
(m)
1 (x)− f (m)(x))2dx

)

≤ Cn−2s∗/(2s∗+2m+2δ+1).

Theorem 3.1 is proved.

Proof of Theorem 3.2. Observe that, for γ ∈ {φ, ψ}, any integer j ≥ τ
and k ∈ Λj ,

(a1) using arguments similar to those in Proposition 3.1, we obtain

E

(

1

n

n
∑

v=1

Yv
h(Xv)

1

2π

∫ ∞

−∞

(ix)m
F (γj,k)(x)

F(g)(x)
e−ixXvdx

)

=

∫ b

a

f (m)(x)γj,k(x)dx.

(a2) using (4.3), (4.4) and (4.5) with γ instead of φ, we have

n
∑

v=1

E





∣

∣

∣

∣

∣

Yv
h(Xv)

1

2π

∫ ∞

−∞

(ix)m
F (γj,k)(x)

F(g)(x)
e−ixXvdx

∣

∣

∣

∣

∣

2




= nE





∣

∣

∣

∣

∣

Y1
h(X1)

1

2π

∫ ∞

−∞

xm
F (γj,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2


 ≤ C2
∗n2

(2m+2δ)j ,

with C2
∗ = (1/(πc2c

2
1))(C

2
1 (
∫∞

−∞
|g(x)|dx)2+E(ξ21))

∫∞

−∞
xm(1+x2)δ|F(γ)(x)|2dx.

Thanks to (a1) and (a2), we can apply (Chaubey et al., 2014, Theorem 6.1)
(see Appendix) with µn = υn = n, σ = m+ δ, θγ = C∗, Wv = (Yv, Xv),

qv(γ, (y, z)) =
y

h(z)

1

2π

∫ ∞

−∞

(ix)m
F (γj,k)(x)

F(g)(x)
e−ixzdx
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and f (m) ∈ Bsp,r(M) with M > 0, r ≥ 1, either {p ≥ 2 and s ∈ (0, N)} or
{p ∈ [1, 2) and s ∈ (1/p,N)}, we prove the existence of a constant C > 0 such
that

E

(

∫ b

a

(f̂
(m)
2 (x)− f (m)(x))2dx

)

≤ C

(

lnn

n

)2s/(2s+2m+2δ+1)

.

Theorem 3.2 is proved.

Proof of Theorem 3.3. We expand the function f (m) on B as (2.2) at the
level ℓ = j2. Since B forms an orthonormal basis of L2([a, b]), we get

E

(

∫ b

a

(f̂
(m)
3 (x)− f (m)(x))2dx

)

=
∑

k∈Λj2

E

(

|c̃(m)
j2,k

− c
(m)
j2,k

|2
)

+

∞
∑

j=j2

∑

k∈Λj

(d
(m)
j,k )2.

(4.8)
Using f (m) ∈ Bsp,r(M) ⊆ Bs∗2,∞(M) [see Härdle et al. (1998), Corollary 9.2], we
have

∞
∑

j=j2

∑

k∈Λj

(d
(m)
j,k )2 ≤ C2−2j2s∗ . (4.9)

Let ĉ
(m)
j2,k

be (3.3) with n = an and j = j2. The elementary inequality: (a+ b)2 ≤
2(a2 + b2), (a, b) ∈ R

2, yields

∑

k∈Λj2

E

(

|c̃(m)
j2,k

− c
(m)
j2,k

|2
)

≤ 2(S1 + S2), (4.10)

where

S1 =
∑

k∈Λj2

E

(

|c̃(m)
j2,k

− ĉ
(m)
j2,k

|2
)

, S2 =
∑

k∈Λj2

E

(

|ĉ(m)
j2,k

− c
(m)
j2,k

|2
)

.

Upper bound for S2. Proceeding as in (4.6), we get

S2 ≤ C2(2m+2δ+1)j2
1

an
≤ C2(2m+2δ+1)j2

1

n
. (4.11)

Upper bound for S1. The triangular inequality gives

∣

∣

∣c̃
(m)
j2,k

− ĉ
(m)
j2,k

∣

∣

∣

≤ 1

(2π)an

an
∑

v=1

|Yv|
∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixXvdx

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

1

ĥ(Xv)
1{|ĥ(Xv)|≥c2/2} − 1

h(Xv)

∣

∣

∣

∣

∣

.
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Owing to the triangular inequality, the indicator function, (K3),
{

|ĥ(Xv)| < c2/2
}

⊆
{

|ĥ(Xv)− h(Xv)| > c2/2
}

and the Markov inequality, we have

∣

∣

∣

∣

∣

1

ĥ(Xv)
1{|ĥ(Xv)|≥c2/2} − 1

h(Xv)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

h(Xv)

((

h(Xv)− ĥ(Xv)

ĥ(Xv)

)

1{|ĥ(Xv)|≥c2/2} − 1{|ĥ(Xv)|<c2/2}

)∣

∣

∣

∣

∣

≤ 1

h(Xv)

(

2

c2

∣

∣

∣ĥ(Xv)− h(Xv)
∣

∣

∣+ 1{|ĥ(Xv)−h(Xv)|>c2/2}
)

≤ 4

c2

∣

∣

∣ĥ(Xv)− h(Xv)
∣

∣

∣

h(Xv)
.

Therefore
∣

∣

∣c̃
(m)
j2,k

− ĉ
(m)
j2,k

∣

∣

∣ ≤ CAj2,k,n,

where

Aj,k,n =
1

an

an
∑

v=1

|Yv|
∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixXvdx

∣

∣

∣

∣

∣

∣

∣

∣ĥ(Xv)− h(Xv)
∣

∣

∣

h(Xv)
.

Let us now consider Un = (Xan+1, . . . , Xn). For any complex random variable
D, we have the equality:

E(D2) = E(E(D2|Un)) = E(V(D|Un)) + E((E(D|Un))2),

where E(D|Un) denotes the expectation of D conditionally to Un and V(D|Un),
the variance of D conditionally to Un. Therefore

S1 ≤ C
∑

k∈Λj2

E(A2
j2,k,n) = C(Wj2,n + Zj2,n), (4.12)

where

Wj2,n =
∑

k∈Λj2

E (V (Aj2,k,n|Un)) , Zj2,n =
∑

k∈Λj2

E

(

(E (Aj2,k,n|Un))
2
)

.

Let us now observe that, owing to the independence of (Y1, X1), . . . , (Yn, Xn),

the random variables |Y1|
∣

∣

∣

∣

∫∞

−∞
xm

F(φj2,k)(x)
F(g)(x) e−ixX1dx

∣

∣

∣

∣

∣

∣

∣
ĥ(X1)− h(X1)

∣

∣

∣
/h(X1), . . . ,

|Yan |
∣

∣

∣

∣

∫∞

−∞
xm

F(φj2,k)(x)
F(g)(x) e−ixXandx

∣

∣

∣

∣

∣

∣

∣ĥ(Xan)− h(Xan)
∣

∣

∣ /h(Xan) conditionally

to Un are independent. Using this property with the inequalities: V(D|Un) ≤
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E(D2|Un) for any complex random variable D and (a + b)2 ≤ 2(a2 + b2),
(a, b) ∈ R

2, the independence between X1 and ξ1, (K1) and (K3), we get

V (Aj2,k,n|Un) =
1

an
V



|Y1|
∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

∣

∣

∣ĥ(X1)− h(X1)
∣

∣

∣

h(X1)

∣

∣

∣

∣

∣

∣

Un





≤ 1

an
E



Y 2
1

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2(

ĥ(X1)− h(X1)

h(X1)

)2
∣

∣

∣

∣

∣

∣

Un





≤ 1

an

2

c2

(

C2
1

(∫ ∞

−∞

|g(x)|dx
)2

+ E(ξ21)

)

×

E







∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2
(

ĥ(X1)− h(X1)
)2

h(X1)

∣

∣

∣

∣

∣

∣

∣

Un







=
2

c2

(

C2
1

(∫ ∞

−∞

|g(x)|dx
)2

+ E(ξ21)

)

×

1

an

∫ ∞

−∞

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixydx

∣

∣

∣

∣

∣

2
(

ĥ(y)− h(y)
)2

h(y)
h(y)dy

≤ C
1

n

∫ ∞

−∞

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixydx

∣

∣

∣

∣

∣

2
(

ĥ(y)− h(y)
)2

dy.

Owing to (K2), |F (φj2,k) (x)| = 2−j2/2
∣

∣F (φ) (x/2j2)
∣

∣ and a change of vari-
ables, we obtain

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixydx

∣

∣

∣

∣

∣

≤
∫ ∞

−∞

|x|m |F (φj2,k) (x)|
|F(g)(x)| dx

≤ 1

c1

∫ ∞

−∞

|x|m(1 + x2)δ/2 |F (φj2,k) (x)| dx

=
1

c1
2−j2/2

∫ ∞

−∞

|x|m(1 + x2)δ/2
∣

∣F (φ) (x/2j2)
∣

∣ dx

=
1

c1
2j2/2

∫ ∞

−∞

2j2m|x|m(1 + 22j2x2)δ/2 |F (φ) (x)| dx

≤ 1

c1
2(m+δ+1/2)j2

∫ ∞

−∞

|x|m(1 + x2)δ/2 |F (φ) (x)| dx.

≤ C2(m+δ+1/2)j2 .
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Therefore, using Card(Λj2) ≤ C2j2 and 2j2 ≤ n, we obtain

Wj2,n ≤ C2(2m+2δ+1)j22j2
1

n
E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

≤ C2(2m+2δ+1)j2E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

. (4.13)

Now, by the Hölder inequality for conditional expectations, arguments similar
to (4.3), (4.4) and (4.5), we get

E (Aj2,k,n|Un) = E



|Y1|
∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

∣

∣

∣ĥ(X1)− h(X1)
∣

∣

∣

h(X1)

∣

∣

∣

∣

∣

∣

Un





≤



E





Y 2
1

h(X1)

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

Un









1/2

×






E







(

ĥ(X1)− h(X1)
)2

h(X1)

∣

∣

∣

∣

∣

∣

∣

Un













1/2

=



E





Y 2
1

h(X1)

∣

∣

∣

∣

∣

∫ ∞

−∞

xm
F (φj2,k)(x)

F(g)(x)
e−ixX1dx

∣

∣

∣

∣

∣

2








1/2

×







∫ ∞

−∞

(

ĥ(y)− h(y)
)2

h(y)
h(y)dy







1/2

≤ C2(m+δ)j2

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)1/2

.

Hence

Zj2,n ≤ C2(2m+2δ+1)j2E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

. (4.14)

It follows from (4.12), (4.13) and (4.14) that

S1 ≤ C2(2m+2δ+1)j2E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

. (4.15)

Putting (4.10), (4.11) and (4.15) together, we get

∑

k∈Λj2

E

(

|c̃(m)
j2,k

− c
(m)
j2,k

|2
)

≤ C2(2m+2δ+1)j2 max

(

E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

,
1

n

)

. (4.16)
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Combining (4.8), (4.9) and (4.16), we obtain the desired result, i.e.,

E

(

∫ b

a

(f̂
(m)
3 (x)− f (m)(x))2dx

)

≤ C

(

2(2m+2δ+1)j2 max

(

E

(∫ ∞

−∞

(

ĥ(y)− h(y)
)2

dy

)

,
1

n

)

+ 2−2j2s∗

)

.

Theorem 3.3 is proved.
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Appendix

Let us now present in details the general result of (Chaubey et al., 2014, Theorem
6.1) used in the proof of Theorem 3.2.

We consider the wavelet basis presented in Section 2 and a general form of the
hard thresholding wavelet estimator denoted by f̂H for estimating an unknown
function f ∈ L

2([a, b]) from n independent random variables W1, . . . ,Wn:

f̂H(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +

j1
∑

j=τ

∑

k∈Λj

β̂j,k1{|β̂j,k|≥κϑj}ψj,k(x), (4.17)

where

α̂j,k =
1

υn

n
∑

i=1

qi(φj,k,Wi),

β̂j,k =
1

υn

n
∑

i=1

qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj},

ςj = θψ2
σj υn√

µn lnµn
, ϑj = θψ2

σj

√

lnµn
µn

,

κ ≥ 2 + 8/3 + 2
√

4 + 16/9 and j1 is the integer satisfying

2j1 = [µ1/(2σ+1)
n ].

Here, we suppose that there exist

• n functions q1, . . . , qn with qi : L
2([a, b]) × Wi(Ω) → C for any i ∈

{1, . . . , n},
• two sequences of real numbers (υn)n∈N and (µn)n∈N satisfying limn→∞ υn =
∞ and limn→∞ µn = ∞

such that, for γ ∈ {φ, ψ},
(A1) any integer j ≥ τ and any k ∈ Λj,

E

(

1

υn

n
∑

i=1

qi(γj,k,Wi)

)

=

∫ b

a

f(x)γj,k(x)dx.

(A2) there exist two constants, θγ > 0 and σ ≥ 0, such that, for any integer
j ≥ τ and any k ∈ Λj,

n
∑

i=1

E

(

|qi(γj,k,Wi)|2
)

≤ θ2γ2
2σj υ

2
n

µn
.
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Let f̂H be (4.17) under (A1) and (A2). Suppose that f ∈ Bsp,r(M) with r ≥ 1,
{p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2σ + 1)/p,N)}. Then there
exists a constant C > 0 such that

E

(

∫ b

a

(f̂H(x)− f(x))2dx

)

≤ C

(

lnµn
µn

)2s/(2s+2σ+1)

.

�
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