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Abstract

Building high dynamic range (HDR) images by com-
bining photographs captured with different exposure times
present several drawbacks, such as the need for global
alignment and motion estimation in order to avoid ghost-
ing artifacts. The concept of spatially varying pixel expo-
sures (SVE) proposed by Nayar et al. enables to capture in
only one shot a very large range of exposures while avoid-
ing these limitations. In this paper, we propose a novel
approach to generate HDR images from a single shot ac-
quired with spatially varying pixel exposures. The proposed
method makes use of the assumption stating that the distri-
bution of patches in an image is well represented by a Gaus-
sian Mixture Model. Drawing on a precise modeling of the
camera acquisition noise, we extend the piecewise linear es-
timation strategy developed by Yu et al. for image restora-
tion. The proposed method permits to reconstruct an irra-
diance image by simultaneously estimating saturated and
under-exposed pixels and denoising existing ones, showing
significant improvements over existing approaches.

1. Introduction

The idea of using multiple differently exposed images
to capture high dynamic range (HDR) scenes can be traced
back to the middle of the 19th century, when the French
photographer Gustave Le Gray captured a high dynamic
range scene at the sea by combining two differently ex-
posed negatives. This idea was introduced in digital pho-
tography by Mann and Picard [9] in 1995. Several meth-
ods followed, proposing different ways to combine the im-
ages [4, 11, 13, 5].

In the case of a static scene and a static camera, the com-

bination of multiple images is a simple and efficient solu-
tion for the generation of HDR images. However, several
problems arise when either the camera or the elements in
the scene move. Global alignment techniques must be used
to align images acquired with a hand-held camera and de-
ghosting methods must be used to correct the artifacts due
to object motion. These kind of artifacts are particularly
annoying on the fused result.

An alternative to HDR imaging from multiple frames
was introduced by Nayar and Mitsunaga in [12]. They pro-
pose to perform HDR imaging from a single image using
spatially varying pixel exposures (SVE). An optical mask
with spatially varying transmittance (see Figure 2) is placed
adjacent to a conventional image sensor, thus controlling
the amount of light that reaches each pixel. This gives dif-
ferent exposure levels to the pixels according to the given
transmittance pattern, allowing a single shot to capture an
increased dynamic range compared to that of the conven-
tional sensor. In [7], Hirakawa and Simon argue that differ-
ent sensitivities are already implied by the different translu-
cencies of the three color filters in a regular Bayer Pattern.
They propose a clever demosaicking-inspired algorithm to
jointly perform demosaicking and HDR imaging from a sin-
gle shot, with specially taylored color-filter translucencies.

The greatest advantage of the SVE acquisition method is
that it allows HDR imaging from a single image, thus avoid-
ing the need for alignment and motion estimation, which is
the main drawback of the classical multi-image approach.
Another advantage is that the saturated pixels are not or-
ganized in large regions. Indeed, some recent multi-image
methods tackle the camera and objects motion problems by
taking a reference image and then estimating motion rela-
tive to this frame or by recovering information from other
frames through local comparison with the reference [17, 2].



Figure 1: Example of the acquisition of an HDR scene us-
ing spatially varying pixel exposures. Left: Tone mapped
HDR scene restored from the raw image. Right top: Raw
image with spatially varying exposure levels. Right bot-
tom: Mask of correctly exposed pixels (white) and under
or over exposed pixels (black).

A problem encountered by this approach is the need for in-
painting saturated and underexposed regions in the refer-
ence frame, since the information is completely lost in those
areas. The SVE acquisition strategy prevents from having
large saturated regions to inpaint. In general, all scene re-
gions are sampled by at least one of the exposures thus sim-
plifying the inpainting problem.

The main drawback of the SVE acquisition is that, un-
like the multi-image approach where all scene regions are
assumed to be correctly exposed in at least one of the in-
put images, for the brighter and darker regions of the scene
some exposure levels will be either too high or too low
and the corresponding pixels will be under or over exposed.
Hence, those pixels are unknown and need to be somehow
reconstructed. Figure 1 illustrates this problem. It shows
an example of an HDR scene and the mask of known and
unknown pixel values of a single shot of the scene using
SVE. Known pixels (white) are the correctly exposed ones
and unknown (black) pixels are those either under or over
exposed. Moreover, noise reduction is of particular impor-
tance in this kind of acquisition setup since the pixels of
the lower exposures tend to be quite noisy (mostly in dark
regions) thus producing images with high noise levels.

In the approach proposed by Nayar and Mitsunaga [12],
the varying exposures follow a regular pattern as shown in
Figure 2. Two methods are proposed to reconstruct the un-
der and over exposed pixels. The so called aggregation
approach consists in averaging the local irradiance values
produced by the correctly exposed pixels. The interpola-
tion approach consists in using a bi-cubic interpolation to
simultaneously retrieve the unknown pixels and denoise the
known ones. A generalization of this kind of pixel varying
acquisition, and its application to high dynamic range and
multi-spectral imaging is presented in [18].

Figure 2: Regular (left) and non-regular (right) optical
masks for an example of 4 different filters.

Motivated by the aliasing problems of regular sampling
patterns, Schöberl et al. [15] propose to use spatially vary-
ing exposures in a non-regular pattern. Figure 2 shows ex-
amples of both acquisition patterns. The reconstruction of
the irradiance image is then performed using a frequency se-
lective extrapolation algorithm [16] which iteratively gener-
ates a sparse model for each image patch as a weighted su-
perposition of the two-dimensional Fourier basis functions.
In [14], Schöberl et al. present a practical methodology for
the construction of a spatially varying exposures mask with
a non-regular pattern.

In this work, we propose a new method to reconstruct
the irradiance information of a scene from a single shot ac-
quired with spatially varying pixel exposures following a
random pattern. We take advantage of the Gaussian mixture
models (GMM), which have been proven accurate at rep-
resenting natural image patches [19, 8], to reconstruct the
unknown pixels and denoise the known ones. The proposed
reconstruction method is an extension to the SVE acquisi-
tion strategy of the general framework introduced by Yu et
al. [19] for the solution of image inverse problems. This
allows us to greatly improve the irradiance reconstruction
with respect to the previous approaches.

The paper is organized as follows. Section 2 presents
the SVE acquisition model. Section 3 introduces the irra-
diance reconstruction problem and the proposed solution.
A summary of the performed experiments is presented in
Section 4. Conclusions are presented in Section 5.

2. Spatially varying exposure acquisition
model

In this section we introduce a noise model for images
captured using the SVE acquisition strategy. This image
model is afterward used to develop the irradiance recon-
struction method.

As presented in [12, 18, 14], an optical mask with spa-
tially varying transmittance can be placed adjacent to a con-
ventional image sensor to give different exposure levels to
the pixels. This optical mask does not change the acqui-



sition process of the sensor, whether using a conventional
CCD or CMOS sensor. The main noise sources for this
kind of sensors are: the Poisson photon shot noise, which
can be approximated by a Gaussian distribution with equal
mean and variance; the thermally generated readout noise,
which is modeled as an additive Gaussian noise; the spa-
tially varying gain given by the photo response non unifor-
mity (PRNU); dark currents and quantization noise [1, 3].
Therefore, we consider the following noise model for the
non saturated nor under-exposed raw pixel value Zp at po-
sition p

Zp ∼ N (gopapτFp + µR, g
2opapτFp + σ2

R), (1)

where g is the camera gain, op is the variable gain due to
the optical mask, ap models the PRNU factor, τ is the ex-
posure time, Fp is the irradiance reaching pixel p, µR and
σ2
R are the readout noise mean and variance. Dark currents

and quantization noise are neglected. Some noise sources
not modeled in [3], such as blooming, might have a consid-
erable impact in the SVE acquisition strategy and should be
considered in a more accurate image modeling.

Two main aspects must be defined for the SVE acqui-
sition strategy. One is the number of different filters to be
used, i.e. the different exposure levels to capture. This is re-
lated to the problem of how many exposure times should be
used in the classical HDR acquisition strategy. The solution
to this problem depends on the scene. Since the acquisition
using SVE uses an a priori fixed optical mask, the number
of different exposures is fixed. In general, 2 to 4 images are
used for HDR imaging. An optical mask with 4 different
exposure levels appears a reasonable choice [12].

The second choice is whether the spatial distribution of
the different filters is done randomly or with a regular pat-
tern. This determines the way the scene irradiance is sam-
pled. Figure 2 shows examples of the two sampling strate-
gies. This point is important in the acquisition strategy
since, due to unknown under and over exposed pixels, some
regions of the image will almost certainly be sub-sampled
and some kind of interpolation will be needed to retrieve
these pixels values. If the sampling pattern is regular, alias-
ing artifacts will appear due to the characteristics of the
spectrum of the pattern (delta functions at the sampling fre-
quencies). On the contrary, the spectrum of a random pat-
tern is concentrated in a single delta and has negligible val-
ues for the rest of the frequencies, thus avoiding aliasing.
This fact led us to choose a random pattern to perform the
acquisition.

3. Irradiance reconstruction
In order to reconstruct the dynamic range of the scene

we need to solve an inverse problem, that is, to find the ir-
radiance values from the input pixel values. Several widely

known methods solve image inverse problems decomposing
the image into patches so as to take advantage of accurate
models developed to represent patches. These models as-
sume that the patches are redundant in the image and that all
patches can be represented by a limited number of classes.
In particular, Yu et al. [19] introduced a general framework
to solve this kind of problems using piecewise linear esti-
mators (PLE). They propose to decompose the image into
patches and model these patches using a GMM. Then an
expectation-maximization-like iterative procedure is intro-
duced to alternately reconstruct the patches and update the
GMM parameters. In this work we propose to use an exten-
sion of the work by Yu et al. [19], also based on a GMM for
image patches, which is adapted to the acquisition model
with variable exposure.

3.1. An inverse problem

The problem we want to solve is that of estimating the
irradiance image F from the input image Z, knowing the
exposure levels and the camera parameters. Let us consider
Yp the normalization of the input pixel Zp to the irradiance
domain

Yp =
Zp − µR

gopapτ
. (2)

We take into account the effect of saturation and under-
exposure by introducing the exposure degradation factor Up

given by

Up =

{
1 if µR < Zp < zsat,
0 otherwise (3)

with zsat equal to the pixel saturation value. From (1), Yp

can be modeled as

Yp ∼ N
(
UpFp,

g2opapτUpFp + σ2
R

(gopapτ)2

)
, (4)

Notice that (4) is the distribution of Yp for a given Up, since
Up is itself a random variable that depends on Zp. The ex-
posure degradation factor must be included in (4) since the
variance of the over or under exposed pixels no longer de-
pends on the irradiance Fp but is only due to the readout
noise σ2

R.
Then the problem of irradiance estimation can be stated

as retrieving F from the image Y, which implies denoising
the known Yp pixel values (Up = 1) and estimating the
completely unknown ones (Up = 0).

3.2. Piecewise linear estimators for noise with vari-
able variance

In order to reconstruct F from Y we extend the general
framework proposed by Yu et al. [19], by adapting it to the
noise present in the raw irradiance values given by (4).



Patch model Based on [19], we decompose the irradiance
image Y into overlapping patches yi of size

√
N ×

√
N ,

i = 1, . . . , I with I the number of patches in the image.
From (4), each patch yi taken as a column vector of size
N × 1 can be modeled according to

yi = Uif i + Σ1/2
wi

wi, (5)

where the degradation operator Ui is a N × N diagonal
matrix with the diagonal elements equal to the degradation
image U restricted to the patch i, f i is the patch on the irra-
diance image we seek to estimate, Σwi is aN×N diagonal
matrix with the j-th diagonal element given by

(Σwi)j =
g2ojajτ(Uif i)j + σ2

R

(gojajτ)2
, (6)

where (Uif i)j is the j-th element of vector Uif i and wi

is a Gaussian noise with zero mean and identity covariance
matrix.

A GMM is chosen to describe image patches with K
Gaussian distributions N (µk,Σk)1≤k≤K parametrized by
their means µk and covariance matrices Σk. Each patch
f is assumed to be drawn independently from one of these
Gaussians, whose probability density functions are given by

p(f) =
1

(2π)N/2|Σk|1/2
exp

(
−1

2
(f − µk)

TΣ−1k (f − µk)

)
.

(7)

To simplify notation, we consider in the following µk = 0
∀k = 1, . . . ,K since we can always center the patches with
respect to their means.

Patch reconstruction Assuming that the class k and the
corresponding Gaussian parameters µk and Σk are known,
we propose to estimate the patch f̃ i as the linear estimator
W̃yi that minimizes the Bayesian mean squared error

W̃ = argmin
W

E[(Wyi − f i)
2]. (8)

Notice that since f i is a random variable (following
Model (7)), the expectation operator is with respect to the
joint probability density function p(yi, f i).

The linear estimator Wyi that minimizes the Bayes
quadratic risk must satisfy

E[(Wyi − f i)y
T
i ] = 0, (9)

thus (see Appendix A)

W̃ = E[f iyT
i ]E[yiy

T
i ]
−1 (10)

= ΣkUT
i (UiΣkUT

i + Σwi
)−1. (11)

Hence we propose to estimate f̃ i as

f̃
k

i = Wk,iyi, (12)

where Wk,i is the Wiener filter

Wk,i = ΣkUT
i (UiΣkUT

i + Σwi
)−1. (13)

Notice that the same estimator is obtained if we compute the
maximum of the posterior probability p(f i|yi,Σk) ignoring
the dependence of Σwi on f i.

In the original framework studied by Yu et al. [19],
the noise is assumed to have constant variance (σ2, i.e.
Σwi

= σ2Id). In this simpler case, the linear estimator (13)
fully corresponds to the MAP estimator and can be shown
to minimize the Bayesian quadratic risk and not only the
risk among linear estimators.

As defined in (6), the noise covariance matrix Σwi
de-

pends on the irradiance f i. An iterative procedure could be
used to alternatively compute f i and Σwi

from (12). We
opt here to compute Σwi directly from the input samples,
i.e., taking f i = yi, since this approximation of the noise
variance was proved robust in previous irradiance estima-
tors [5, 3].

Class selection and update In the previous step, follow-
ing (12), the class k and its parameters µk and Σk are sup-
posed to be known. In practice, they must be determined.

The best model k̃i is selected as the one maximizing the
posterior probability p(f |yi,Σk) over k assuming f = f̃

k

i

k̃i = argmax
k

(
log p(yi|f̃

k

i ,Σk) + log p(f̃
k

i ,Σk)
)

(14)

= argmin
k

(
(yi −Uif̃

k

i )
TΣ−1wi

(yi −Uif̃
k

i ) (15)

+ (f̃
k

i )
TΣ−1k f̃

k

i + log |Σk|
)
. (16)

Given that the Gaussian parameters µk and Σk are un-
known, and following [19], an iterative procedure is pro-
posed to alternately compute (f̃

k

i , k̃i) and update the GMM
parameters. The Gaussian parameters for the K classes are
first initialized from synthetic images (see [19] for a de-
tailed explanation of the initialization procedure). At the
estimation step, f̃ i and k̃i are computed according to equa-
tions (12) and (16) respectively. At the model estimation
step, the classes parameters µk and Σk are updated by com-
puting the corresponding maximum likelihood estimators
from the patches assigned to each class (the k̃i assigned at
the previous step),

µ̃k =
1

|Ck|
∑
i∈Ck

f̃ i, Σ̃k =
1

|Ck|
∑
i∈Ck

(f̃ i− µ̃k)(f̃ i− µ̃k)
T ,

(17)



with Ck the set of all patches assigned to class k and |Ck|
its cardinality.

The covariance matrix Σ̃k may not be well conditioned
as a result, for example, of a small number of patches in
the class. For this reason a regularization term ε is added
to ensure the correct inversion of the matrix [19] (Σ̃k =
Σ̃k + εId).

At convergence, the proposed method determines a
GMM that represents the set of image patches, it assigns
each patch to its corresponding class and restores it accord-
ingly.

The final step of the method consists in combining all the
restored patches to reconstruct the image. As it is classical
with patch-based methods, the value of each pixel in the
final image is the average of the values the pixel takes in all
the restored patches that contain it.

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Summary of the proposed method

Compute the irradiance image Y from the input image1

Z using (2).
Compute the degradation mask U from the input2

image Z using (3).
Decompose Y and U into overlapping patches.3

Initialize the K Gaussian parameters µk and Σk as4

in [19].
for it=1 to max its do5

for all patches do6

Compute f̃ i using (12).7

Compute k̃i using (16) assuming f = f̃
k

i .8

end9

Update µk and Σk using (17).10

Combine all restored patches to generate the11

reconstructed image.
end12

Important algorithm precisions Following [19], the in-
put image is decomposed into regions of size 128×128 and
the proposed approach is applied to each region separately.
Regions are half-overlapping to avoid boundary effects. Be-
cause the image content is more coherent semi-locally than
globally, this treatment allows for a better reconstruction
with a fixed number of classes K. This semi-local treat-
ment is especially important in the case of HDR images,
where the considered dynamic range may be very high and
the number of classes needed to represent the image treated
as a whole would be very large. In [19], the authors show
that 20 classes gives a good trade-off between performance
and computational cost. We used K = 20 in all our ex-
periments. The algorithm is found to converge in 3 to 4
iterations.

4. Experiments

The proposed reconstruction method was thoroughly
tested in several synthetic and real data examples. A sum-
mary of the results is presented in this section.

4.1. Synthetic data

Experiments using synthetic data are carried out in or-
der to be able to compare the reconstruction obtained by
the proposed method and previous ones from the literature
against a ground-truth. This is not possible (or highly prone
to errors) using real data. For this purpose, sample images
are generated according to Model (1) using the HDR im-
ages in Figures 3 and 4 as ground-truth. Both a random and
a regular pattern with four equiprobable exposure levels are
simulated. For the lamp example (Figure 3), the exposure
levels are set to o = {1, 2, 5, 10}, and the exposure time
is set to τ = 1/250 seconds. For the bridge example (Fig-
ure 4), the exposure levels are set to o = {1, 10, 20, 40}, and
the exposure time is set to τ = 1/500 seconds. For both ex-
amples, the camera parameters are those of a Canon 400D
camera set to ISO 200 [3] (g = 0.66, σ2

R = 17, µR = 256,
zsat = 4057). A patch size of 8 × 8 is used for the lamp
example and a size of 6× 6 for the bridge example. In both
cases the parameter ε is set to 5.

Figure 3 shows the results obtained by the proposed
method and by Schöberl et al. [15] for the random pattern,
as well as the results obtained by the bi-cubic interpola-
tion proposed by Nayar et Mitsunaga [12] using the reg-
ular pattern for the lamp example. Three extracts of the
image are shown together with their corresponding masks
of known (white) and unknown (black) pixels. The per-
centage of unknown pixels for the first extract is 65% (it is
nearly the same for both the regular and non-regular pat-
tern). For the other two extracts most of the pixels are
known (99%) so that the proposed method mostly performs
denoising in these extracts. Table 1 shows the PSNR val-
ues obtained in each extract by each method. The proposed
method manages to correctly reconstruct the irradiance in-
formation from the input samples. Moreover, its denoising
performance is much better than both those of Schöberl et
al. and Nayar and Mitsunaga, giving a similar reconstruc-
tion quality on the unknown areas.

Figure 4 shows on the right the result obtained by the
proposed method for the full test image. On the left, it
shows extracts of the results obtained by the proposed ap-
proach and by Schöberl et al. [15] for the random pattern
as well as the results obtained by the bi-cubic interpola-
tion proposed by Nayar et Mitsunaga [12] using the regular
pattern for the bridge example. Table 1 shows the PSNR
values obtained in each extract by each method. This ex-
ample shows a quite extreme case in terms of noise. The
extracts shown in the second and third rows correspond to



Figure 3: Synthetic data. First column (top to bottom): Ground-truth with indicated extracts, full image result obtained
by the proposed approach, full image result by Schöberl et al. [15] Second to fifth column (left to right): Extracts of the
ground-truth, result by the proposed approach, Schöberl et al. [15], Nayar and Mitsunaga [12]. Sixth column: Random (top)
and regular (bottom) mask for each extract. Black represents unknown and white known pixels. The percentage of unknown
pixels for the first extract is 65% (it is nearly the same for both the regular and non-regular pattern). For the other two extract
most pixels are known (99%) so that the proposed method mostly performs denoising in these extracts.

PSNR (dB)

Lamp extract 1 (green) extract 2 (blue) extract 3 (red)

Proposed method 35.8 50.1 41.9
Schöberl et al. 34.6 43.2 37.0

Nayar and Mitsunaga 35.9 43.9 35.4

Bridge extract 1 (green) extract 2 (blue) extract 3 (red)

Proposed method 30.6 29.1 41.0
Schöberl et al. 25.1 22.5 34.4

Nayar and Mitsunaga 31.3 18.5 31.4

Table 1: PSNR values for the extracts in Figures 3 and 4.

quite dark regions where the signal to noise ratio of the sam-
ples is very low, specially for the lower exposure levels. In
this extreme conditions, the reconstruction capacity of the
proposed method clearly outperforms that of the compared
methods.

We observed that for synthetic scenes with a very high
dynamic range (e.g. 17 stops), the reconstructed HDR im-

ages could present some artifacts. This limitation never oc-
curred in the experiments using real data that we conducted.
We suspect that the Gaussian mixture model used in the
PLE approach is not fully adapted when the dynamic range
of image patches is too large. We are currently working on
a refinement of the stochastic model taking into account this
specificity.

4.2. Real data

The feasibility of the SVE random pattern has been
shown in [14] and that of the SVE regular pattern in [18].
Nevertheless, these acquisition systems are still not avail-
able for general usage. However, as stated in Section 2, the
only variation between the classical and the SVE acquisi-
tion is the optical filter, i.e. the amount of light reaching
each pixel. Hence, the noise at a pixel p captured using
SVE with an optical gain factor op and exposure time τ/op
and a pixel captured with a classical camera using expo-
sure time τ should be very close. We take advantage of this



Figure 4: Synthetic data. Left: Result obtained by the proposed method for the full test image with indicated extracts. Right
(left to right): Ground-truth, result by the proposed approach, Schöberl et al. [15], Nayar and Mitsunaga [12]. The extracts
shown in the second and third rows correspond to quite dark regions where the signal to noise ratio of the samples is very
low, specially for the lower exposure levels. In this extreme conditions, the reconstruction capacity of the proposed method
clearly outperforms that of the compared methods.

fact in order to evaluate the reconstruction performance of
the proposed approach using real data. For this purpose we
generate an SVE image drawing pixels at random from four
raw images acquired with different exposure times. The
four different exposure times simulate the different filters
of the SVE optical mask. The images are acquired using a
remotely controlled camera and a tripod so as to be perfectly
aligned. Otherwise, artifacts may appear from the random
sampling of the four images to composite the SVE frame.
Notice that the SVE image thus obtained is very similar to
the one obtained if such an optical filter was placed adjacent
to the sensor.

This protocol does not allow us to take scenes with mov-
ing objects. Let us emphasize, however, that using a real
SVE device, this, as well as the treatment of moving cam-
era, would of course not be an issue.

Given the procedure we use to generate the SVE image
form the input raw images, the Bayer pattern of the latter is
kept in the generated SVE image. The proposed irradiance
reconstruction method is thus applied to the raw SVE image
with an overlap of

√
N − 2 between patches (i.e. a shift of

two pixels) in order to compare pixels of the corresponding
color channels. A patch size of 6×6 is used for the examples
in Figures 6 and 7, and a patch size of 8×8 for the example
in Figure 5. The ε parameter is set to 5 for all experiments.
The demosaicking method by Adams and Hamilton [6] is

then used to obtain a color image from the reconstructed
irradiance. To display the results we use the tone mapping
technique by Mantiuk et al. [10].

A comparison against the methods by Nayar and Mit-
sunaga and Schöberl et al. is not presented since they do
not precise in their works how to treat raw images with a
Bayer pattern (how to treat color) and therefore an adapta-
tion of their methods should be made in order to process our
data.

Figures 5 to 7 show the results obtained in three real
scenes, together with the input raw images and the mask
of known (white) and unknown (black) pixels1. Recall that
among the unknown pixels, some of them correspond to
saturated pixels and some of them to under exposed pix-
els. The proposed method manages to correctly reconstruct
the unknown pixels even in extreme conditions where more
than 70% of the pixels are missing.

These examples show the capacity of the proposed ap-
proach to reconstruct the irradiance information in both
very dark and bright regions simultaneously. See for in-
stance the example in Figure 6, where the dark interior of
the building (which can be seen through the windows) and
the highly illuminated part of another building are both cor-

1A reduced version of the images is included in the pdf due to
file size restrictions. Originals are available at http://perso.
telecom-paristech.fr/˜gousseau/single_shot_hdr



Figure 5: Real data. Left: Tone mapped HDR image obtained by the proposed approach (11.4 stops). Middle top: Raw
image with spatially varying exposure levels. Middle bottom: Mask of unknown (black) and known (white) pixels. In the
regions with unknown pixels, the percentage of missing pixels varies between 25% to 40%. Right: Extracts of the scene

rectly reconstructed (please consult the pdf version of this
article for better visualization).

5. Conclusions

In this work, we have proposed a novel approach for the
generation of HDR images from a single shot using spatially
varying pixel exposures. The SVE acquisition strategy al-
lows the creation of HDR images without the drawbacks of
multi-image approaches, such as the need for global align-
ment and motion estimation to avoid ghosting problems.
Nevertheless, existing restoration methods from HDR SVE
images lacked a mechanism for jointly denoising and inter-
polating the image effectively. The proposed method fol-
lows a recent and popular trend in image restoration, mod-
eling patch distributions by Gaussian Mixture Models. We
make use of the piecewise linear estimators proposed by
Yu et al. [19], and we extend the approach to the case of a
complete camera noise model, where noise variance is both
variable and dependent on the signal.

The proposed method could also be applied to recon-
struct the irradiance map when using the acquisition tech-
nique proposed by Hirakawa and Simon [7]. This strategy
can be seen as a very practical implementation of SVE, with
certain constraints on the optical filters.

The resulting method manages to simultaneously de-
noise and reconstruct the missing pixels, even in the pres-
ence of (possibly complex) motions, improving the results
obtained by existing methods. Examples with real data ac-
quired in very similar conditions to those of the SVE acqui-
sition show the high capabilities of the proposed approach.
The presence of artifacts was noted in the HDR reconstruc-
tion of synthetic scenes with a very high dynamic range.

This limitation never occurred in the experiments using real
data that we have conducted. We suspect that the Gaus-
sian mixture model used in the PLE approach is not fully
adapted when the dynamic range of image patches is too
large and we are currently working on a refinement of the
stochastic model taking into account this specificity. More
precisely, we are currently developing a famework gener-
ating the PLE strategy in the spirit of the recent state-of-
the-art denoising method [8], but allowing the treatment of
missing data.

Let us conclude by observing that, in the proposed ap-
proach, both saturated and under-exposed pixels are equally
treated as missing pixels. However, valuable information
exists in the fact that a pixel is either saturated or under-
exposed [3]. Hence, future work should explore the possi-
bility of different treatments for each of these two kind of
pixels. It would not be surprising that this strategy, if well
implemented, may improve current results.

A. Appendix
We look for the linear estimator Wyi that minimizes

the Bayes quadratic risk. Thus W must satisfy E[(Wyi −
f i)y

T
i ] = 0 and we have (the dependence on the patch po-

sition i is avoided to simplify notation)

W = E[fyT ]E[yyT ]−1. (18)

From the patch model (5), the (p, q) element of matrix
E[fyT ] is given by

E[fyT ]p,q = E[fp(Uf)Tq + fp(Σ
1/2
w w)Tq ] (19)

= (ΣkUT )p,q, (20)



Figure 6: Real data. Left: Tone mapped HDR image obtained by the proposed approach (15.6 stops). Right top: Extracts
of the scene. Right bottom: Mask of unknown (black) and known (white) pixels. In the brightest part of the building 73%
of the pixels are unknown. Despite this fact, the reconstructed HDR image does not exhibit any visible artifact.

Figure 7: Real data. Left: Tone mapped HDR image obtained by the proposed approach (13.4 stops). Right top: Raw
image with spatially varying exposure levels. Right bottom: Mask of unknown (black) and known (white) pixels. In the
lamp area 70% percent of the pixels are unknown.

since wq is independent of fp and has zero mean. From
the patch model (5), the (p, q) element of matrix E[yyT ] is
given by

E[yyT ]p,q = E[(Uf)p(fU)Tq + (Uf)p(Σ
1/2
w w)Tq (21)

+ (Σ1/2
w w)p(Uf)Tq + (Σ1/2

w w)p(Σ
1/2
w w)Tq ]

(22)

= (UΣkUT )p,q + (Σw)p,q. (23)

Hence we have,

W = ΣkUT (UΣkUT + Σw)
−1. (24)
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