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COMPETITION AND BOUNDARY FORMATION IN HETEROGENEOUS

MEDIA: APPLICATION TO NEURONAL DIFFERENTIATION

Benoit Perthame1 Cristobal Quiñinao1,2 Jonathan Touboul2,3

Abstract. We analyze an inhomogeneous system of coupled reaction-diffusion equations represent-
ing the dynamics of gene expression during differentiation of nerve cells. The outcome of this develop-
mental phase is the formation of distinct functional areas separated by sharp and smooth boundaries.
It proceeds through the competition between the expression of two genes whose expression is driven
by monotonic gradients of chemicals, and the products of gene expression undergo local diffusion and
drive gene expression in neighboring cells. The problem therefore falls in a more general setting of
species in competition within a non-homogeneous medium. We show that in the limit of arbitrarily
small diffusion, there exists a unique monotonic stationary solution, which splits the neural tissue

into two winner-take-all parts at a precise boundary point: on both sides of the boundary, different
neuronal types are present. In order to further characterize the location of this boundary, we use a
blow-up of the system and define a traveling wave problem parametrized by the position within the
monotonic gradient: the precise boundary location is given by the unique point in space at which the
speed of the wave vanishes.

Key-words: Morphogen gradients; Reaction-diffusion systems; Traveling waves; Asymptotic analysis;
Boundary formation

Mathematics Subject Classification: 35B25; 35B36; 35K57; 82C32; 92C15

1. Introduction

In this paper we undertake a rigorous mathematical analysis of the boundary formation in a model of
developing tissue. Our motivation can be traced back to the work of Alan Turing in the middle of last
century, that lead to his celebrated theory of instabilities [30]. In his paper, Turing proposed, before
substantial knowledge about the development and maturation of living systems was acquired, that the
determination of territories was the result of the competition between different chemical substances, he
called morphogens, that were reacting together and diffusing, in the presence of a third specie which
acts as a catalyst on the expression of both species. In a certain regime of diffusion, these equations
yield what we now call Turing patterns, that define a partition of the tissue into differentiated areas
(expressing one or the other chemical specie), whose exact shape and location are unpredictable and
depend on the initial condition.

In contrast to this indeterminacy of the boundary location in Turing’s model, morphogenesis in living
systems is an extremely reliable process. Actually, precision of the boundary location is crucial from
an evolutionary perspective, in that it ensures proper transmission of essential hereditary patterns.
Notwithstanding this qualitative distinction, several years after introduction of Turing’s model, bio-
logical experiments validated Turing’s intuition: transcription factors (called homeoproteins) expressed
in cells during development have been shown to have self-activating and reciprocal inhibitor properties
as in Turing’s theory, but moreover, where shown to have the property to exit the cellular nucleus and
membrane and enter the neighboring cells nucleus where it exerts its transcriptional properties [23, 19].
However, in contrast to the initial Turing model, the catalyst chemical specie show a specific spatial
organization: it forms one-dimensional monotonic gradients of concentration [7]. This arrangement of
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2 HOMEOPROTEIN DIFFUSION AND BOUNDARY STABILIZATION

catalysts along gradients lead to the development of the french flag model (FFM) [35]. This model
assumes no diffusion of genetic material, but only all-or-none response to specific thresholds of the
catalyst gradient, therefore yielding boundary at a specific location in space. However, this model is
relatively sensitive to noise and necessitates to introduce finer mechanisms in order to ensure robustness
and accuracy of the boundary location [22, 16].

Combining both phenomena of non cell-autonomous activity (small diffusion of transcription factors,
acting as Turing morphogens) and graded expression of a catalyst (FFM-like model) lead to a recently
developed minimalistic model of boundary formation [24] reproducing in a parsimonious way both
reliability and accuracy of boundary location. This model is given by nonlinear parabolic equations
with spatially-dependent coefficients. Simulations indeed showed that in the absence of diffusion, there
is no clear separation in two regions, but even very small diffusions disambiguate the differentiation
process and lead to a clear definition of the boundary. The object of the paper is to rigorously
understand this stabilization in the regime of small diffusions. The mathematical problem we shall
be analyzing is actually much more general than the problem of neurodevelopment that motivates the
study. Indeed, systems characterized by the competition of two species that are self-activating and
reciprocal inhibitor are ubiquitous in life science, and extend to spatially extended population models,
large-scale systems of bacterias and social interactions. The particularity of the model we shall analyze,
and which may occur in different situations in the cited domains, is precisely the presence of the non-
spatially homogeneous catalyst, producing predictable and reproducible patterns.

Due to the ubiquity of such competing systems in life science, we shall propose here a general model
supporting reliable pattern formation, and relevant to biology. To this purpose, we complete this
introduction by briefly exposing details on neuronal differentiation, before introducing the model we
shall be investigating and summarizing our main mathematical results.

1.1. Biological motivation. Let us make more precise the model we have in mind in our develop-
ments. The central question we shall address the emergence of reliable boundaries in the developing
nervous system. The neural tube indeed develops into a complex functional and anatomical architec-
ture endowed with complex connectivity patterns [25]. The size and shape of functional areas in the
cortex is of primary importance: it conditions acquisition of functions, and disruptions are associated
to severe conditions, including neuropsychiatric and cognitive disorders [31, 15]. In the beginning of
this century, biologists analyzed developmental genes transcription factors, and showed that these are
endowed with non cell-autonomous activity (they belong the homeoprotein family), thanks to two
short peptidic sequences present in their DNA-binding domain [17]. These transcription factors have
the capability to exit the nucleus of the cells, leave the intracellular medium and penetrate the nucleus
of neighboring cells where they exert they transcriptional activity. This direct signaling was experi-
mentally demonstrated in vivo during development in the zebrafish [21, 34], or involved in plasticity of
adult networks [6, 29, 28, 7]. The spatial extension and rate of this process are very low: transcription
factors can diffuse and reach at most three cell ranks [20], and since the diffusion is passive, important
loss reduce the effective number of transcription factors involved. Notwithstanding, it was shown re-
cently [24] in an elementary model of neurodevelopment that even very low diffusion had major effects
on the outcome of the differentiation process. Indeed, in the absence of diffusion, there is an ambiguity
in the differentiation in a specific region of the neural tissue, which yield imprecise boundaries that are
not reproducible, and sensitively depend on initial condition and possible heterogeneity or noise, but in
the presence of small diffusion, the location of the boundary is highly reliable, and the differentiation
yields a smooth boundary.

Understanding this dramatic regularization is precisely the object of the present paper. This problem
falls in the frame of the competition of two diffusing species A and B that are reciprocal inhibitor
and self-activating, with saturation and spatially heterogeneous production rates HA(x,A,B) and
HB(x,A,B) (depending on the cell location x). In the neurodevelopment problem, transcription
factors expressed by two genes GA and GB constitute our two competing species, and the space
heterogeneity corresponds to the graded concentration of morphogens. For simplicity, we shall restrict
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here our analysis to a one-dimensional case4 in which the differentiating tissue is along the interval
[0, 1]. A schematic version of the model is plotted is Figure 1.
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Figure 1. Our model describes the dynamics of two species in competition (A, pink
and B, violet) responding to monotonic resource distributions (bottom line), with
reciprocally inhibitory activity and subject to local diffusion.

1.2. General model and main result. The above description naturally leads to the definition of
the following system of reaction-diffusion equations:

(1.1)







−εdA∆A = AHA(x,A,B), 0 < x < 1,

−εdB∆B = BHB(x,A,B),

with Robin type boundary conditions stated below.

Here HA and HB are maps from [0, 1] × R+ × R+ on R, assumed to be of class C2. Based on our
description of the phenomena, we assume that, for 0 < x < 1, A > 0, B > 0,

(1.2)







HA(x, 0, 0) > 0, HB(x, 0, 0) > 0,

∂xHA(x,A,B) < 0, ∂xHB(x,A,B) > 0,

∂BHA(x,A,B) < 0, ∂AHB(x,A,B) < 0,

which can be interpreted as follows: on the one hand, the morphogen gradients do not vanish and vary
monotically, on the other hand the system expresses competition between species A and B.

Because, we are interested in the limit ε = 0, the solutions of (1.1) in the absence of diffusion are
useful. We assume that there exists two solutions (FA(x) > 0, 0) and (0, FB(x) > 0)

(1.3) HA

(
x, FA(x), 0

)
= 0, HB

(
x, 0, FB(x)

)
= 0,

and that they are respectively stable for x ∈ (0, xa) and for x ∈ (xb, 1), with xa > xb, i.e., there
exists a bistable zone. It means that the linearized matrix at (FA(x), 0) have negative eigenvalues for
x ∈ (0, xa). The same holds at (0, FB(x)) for x ∈ (xb, 1). Moreover, we assume

(1.4) HB(x, FA(x), 0) > 0 for x > xa > xb, HA(x, 0, FB(x)) > 0 for x < xb < xa.

The first inequality, for instance, can be interpreted as follows: for x > xa, A loses stability because
resource concentration of B overcomes inhibition from A.

4Generalization to higher dimensions in situations where geometry of the space and the spatial variations along
gradients are sufficiently simple can be handled in the same manner. In [24], we propose a two-dimensional extension of
this property.
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Finally, we assume that there exists a unique additional solution (A∗(x) > 0, B∗(x) > 0) in the interval
(xb, xa) which is a saddle, i.e.

(1.5)







HA(x,A
∗(x), B∗(x)) = 0, for xb < x < xa,

∂AHA(x,A
∗, B∗)∂BHB(x,A

∗, B∗)− ∂BHA(x,A
∗, B∗)∂AHB(x,A

∗, B∗) < 0,

∂AHA(x,A
∗, B∗) < 0, ∂BHB(x,A

∗, B∗) < 0

that simply express the negativity of the determinant of the Jacobian matrix at this point:
∣
∣
∣
∣

A∗ ∂AHA(x,A
∗, B∗) A∗ ∂BHA(x,A

∗, B∗)
B∗ ∂AHB(x,A

∗, B∗) B∗ ∂BHB(x,A
∗, B∗)

∣
∣
∣
∣
< 0.

In order to complete the definition of our system (1.1), we need to specify the boundary conditions
considered. We are interested in solutions in which the system decomposes the domain into two
separate areas in which A or B dominate. In the limit where ε going to zero, it is therefore natural to
consider that the system is subject to Dirichlet boundary conditions, but as the diffusion coefficient
increases, loss of transcription factor through the boundary becomes increasingly prominent. These
mechanisms correspond to Robin (also called third type) boundary conditions:

(1.6)







A(0)−√
ε ∂

∂xA(0) = FA(0), A(1) +
√
ε ∂

∂xA(1) = 0,

B(0)−√
ε ∂

∂xB(0) = 0, B(1) +
√
ε ∂

∂xB(1) = FB(1).

At this level of generality, assumptions (1.2)–(1.5) may appear formal. These are actually very nat-
ural, and we refer to Section 5.1 for a basic example where they are satisfied. They formulate in a
general fashion the elements of our problem: the first assumption expresses the existence of two stable
differentiated states at both ends of the differentiating tissue in the absence of diffusion, whose domain
of stability may overlap. In other words, in the absence of diffusion, levels of concentration of mor-
phogen are sufficient to support differentiated states at the boundaries of the interval, and there exists
generically an overlap between these two regions. Within this overlap (in the bistable regime), a saddle
fixed point naturally emerges between the two solutions due to the properties of planar vector fields,
and in our system, at this fixed point, concentrations of A and B perfectly balance the concentrations
of morphogen.

The main result that we will be demonstrating in the present manuscript is the fact that in the presence
of small diffusion, a clear boundary between two differentiated domains exists and is unique, and may
be characterized univocally. In detail, we shall demonstrate the following:

Theorem 1.1. Under assumptions 1.2–1.5, there exists a classical stationary solution (Aε, Bε) of (1.1)
which satisfies

(1.7)
d

dx
Aε(x) < 0,

d

dx
Bε(x) > 0,

and is obtained as t → ∞ in the corresponding parabolic equation. Moreover

(i) As ε → 0, (Aε, Bε) converges a.e. towards a pair (A0, B0). These maps are discontinuous at
some point x∗ ∈ [xb, xa] and have disjoint supports

supp(A0) = [0, x∗] and supp(B0) = [x∗, 1].

(ii) The point x∗ is characterized by the relation c(x∗) = 0 where c(·) represents the speed of
propagation of a traveling wave problem parametrized by x (see equation (4.2)).

This qualitative result falls in the class of free boundary problems, a well developed asymptotic theory
in the frame of homogeneous elliptic or parabolic semilinear equations and systems [8, 14, 12, 3, 4, 27].
As reviewed in [9], these results generally rely on the definition and analysis of viscosity solutions of
the resulting Hamilton-Jacobi equation. The second point of the theorem involves a traveling wave
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with inhomogeneous speed. A vast literature, in particular in the domain of mathematical ecology of
competing populations, have been interested in related questions (see e.g. [33, 36]). Most applications of
this theory are related to front propagations and rules to compute their speeds and invasion properties
in homogeneous or heterogeneous environments [5]. Here, we ask a distinct question concerned with
the determination of the precise point where a transition between two stable states occurs.

Theorem 1.1 will therefore show the existence of monotonic solutions. The monotonicity is a con-
sequence of analogous properties of the equilibria in the absence of diffusion, which can be readily
proved under the current assumptions. Similarly, the monotonicity of equilibria A∗(x) and B∗(x) can
be characterized. This is the object of the following:

Lemma 1.2. Under assumption (1.2), the functions defined in (1.3) and (1.5) satisfy

(1.8)
d

dx
FA(x) < 0 for x ∈ [0, xa),

d

dx
FB(x) > 0 for ∈ (xb, 1],

(1.9)
d

dx
A∗(x) > 0 and

d

dx
B∗(x) < 0, xb < x < xa.

Proof. Since FA(x) is a fixed point of the system in the absence of diffusion, we have:

d

dx
HA(x, FA(x), 0) = ∂xHA(x, FA(x), 0) + ∂AHA(x, FA(x), 0)

d

dx
FA(x) = 0,

and therefore
d

dx
FA(x) = − ∂xHA(x, FA(x), 0)

∂AHA(x, FA(x), 0)
.

Assumption (1.4) ensures that ∂AHA(x, FA(x), 0) < 0 readily implies that d
dxFA(x) < 0 for x in [0, xa).

By a similar argument, d
dxFB(x) > 0 for any x in (xb, 1].

Hypotheses (1.2) and (1.5) also constrain the monotonicity of A∗ and B∗. Indeed, since the vector
function (HA, HB) is constant along the curve (x,A∗(x), B∗(x)), we have

d

dx
A∗(x) =

∂BHA ∂xHB − ∂xHA ∂BHB

∂AHA ∂BHB − ∂BHA ∂AHB
,

d

dx
B∗(x) =

∂xHA ∂AHB − ∂AHA ∂xHB

∂AHA ∂BHB − ∂BHA ∂AHB
.

Using the assumptions (1.2) and (1.5), we conclude the inequalities (1.9). �

The manuscript is devoted to the demonstration of Theorem 1.1, and to the development of an ap-
plication to a specific model of neuronal differentiation. We shall start by proving the existence of a
monotonic solution of the elliptic system (1.1), (1.6) by analyzing the long-time properties of the as-
sociated parabolic system. The proof of the existence of monotonic solutions and the characterization
of the boundary combines stability and monotonicity arguments, WKB asymptotics and a suitable
dilation of the spatial variable. The proof proceeds as follows: the limit where ε → 0 is investigated
in section 3 and we will show existence and uniqueness of the boundary point x∗ for small diffusions,
and in section 4, we characterize the boundary point x∗ as the value when a certain traveling wave
problem has zero speed, completing the proof of Theorem 1.1. Section 5 puts in good use this theory
on a simple model of neuronal differentiation.

2. Analysis of the parabolic problem

We start with the parabolic problem associated with (1.1)

(2.1)







∂tA− εdA∆A = AHA(x,A,B), 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = BHB(x,A,B),

completed again with the Robin boundary conditions (1.6).
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We show that for a well chosen pair of initial conditions, solutions to the parabolic problem (2.1)-(1.6)
are monotonic in time. Since all coefficients are regular, solutions are classical and therefore bounded.
From here, the existence of steady states is granted.

Because FB is an increasing function in (xb, 1] we can expect that any non-negative solution for the
second equation of (2.1) is upper bounded by FB(1). Under the change of variables B = FB(1) − B,
system (2.1) becomes

(2.2)







∂tA− εdA∆A = AHA

(
x,A, FB(1)− B

)
, 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = −(FB(1)− B)HB

(
x,A, FB(1)− B

)
,

with the respective boundary conditions

(2.3)







A(0)−√
ε ∂

∂xA(0) = FA(0), A(1) +
√
ε ∂

∂xA(1) = 0,

B(0)−√
ε ∂

∂xB(0) = FB(1), B(1) +√
ε ∂

∂xB(1) = 0.

hypothesis 1.2, 1.3 and 1.4 imply that the pair (0, 0) (respectively (FA(0), FB(1))) is a sub-solution
(resp. super-solution) of the steady state problem related to (2.2)-(2.3). Therefore, taking (0, FB(1))
as initial condition in (2.1) we have the existence of a regular solution (Aε(t, x), Bε(t, x)) such that:

(2.4) 0 ≤ Aε(t, x) ≤ FA(0) and 0 ≤ Bε(t, x) ≤ FB(1), t ≥ 0, 1 ≤ x ≤ 1.

Lemma 2.1. Then for all t ≥ 0 and x ∈ [0, 1], we have ∂tAε(t, x) ≥ 0 and ∂tBε(t, x) ≤ 0.

Proof. Defining u := ∂tAε and v := ∂tBε, we have

∂tu− dAε∆u = uHA +A ∂AHAu+A ∂BHAv,

∂tv − dBε∆v = vHB +B ∂AHBu+B ∂BHBv,

multiplying the first equation by u− := min{0, u}, the second one by v+ := max{0, v} and integrating
over [0, 1] we get

1

2

d

dt

∫

u2
− + dAε

∫

|∂xu−|2 − dAεu− ∂xu−

∣
∣
1

0
=

∫

u2
−

(
HA +A ∂AHA

)
+

∫

A ∂BHAu−v,

1

2

d

dt

∫

v2+ + dBε

∫

|∂xv+|2 − dBεv+ ∂xv+
∣
∣
1

0
=

∫

v2+
(
HB +B ∂BHB

)
+

∫

B ∂AHBv+u.

Time continuity of (Aε(t, x), Bε(t, x)) together with initial conditions imply that for any x:

u−(0, x) = 0 and v+(0, x) = 0.

Thus, there exists C > 0 such that

d

dt

∫

(u2
− + v2+) ≤ C

∫

(u2
− + v2+),

with zero initial condition. We conclude using Grönwall’s lemma. �

2.1. Monotonicity in space. We have shown that the monotonicity property of the maps HA and
HB in space implies monotonicity of FA(x) and FB(x), solutions of the zero diffusion problem at
location x. This is also true of the maps (Aε, Bε) solutions of the parabolic equation (2.1). In detail,
we show that monotonic initial conditions ensure monotonic solutions (Aε, Bε) in space for all times.
This property has two remarkable implications: time dependent solutions belong to the bounded
variation class and also their respective steady states.

Lemma 2.2. For any ε > 0 fixed, let us consider any solution (Aε, Bε) of (2.1)-(1.6) with initial
conditions A(0, x) decreasing and B(0, x) increasing. Under assumption (2.4), we have for all t ≥ 0

∂

∂x
Aε(t, x) ≤ 0 and

∂

∂x
Bε(t, x) ≥ 0, 0 ≤ x ≤ 1.
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Proof. The proof proceeds as that of Lemma 2.1: we define u := ∂xAε and v := ∂xBε, we have

∂tu− dAε∆u = uHA +A ∂xHA +A ∂AHAu+A ∂BHAv,

∂tv − dBε∆v = vHB +B ∂xHB +B ∂AHBu+B ∂BHBv,

multiplying the first equation by u+ and the second one by v−, integrating over [0, 1] and using that
boundary conditions (1.6) and (2.4), we get

1

2

d

dt

∫

u2
+ + dAε

∫

|∂xu+|2 − dAεu+ ∂xu+

∣
∣
1

0
=

∫

u2
+

(
HA +A ∂AHA

)
+

∫

A ∂BHAu+v +

∫

A ∂xHAu+ ≤ C

∫

u2
+ − C

∫

u+v−,

1

2

d

dt

∫

v2− + dBε

∫

|∂xv−|2 − dBεv− ∂xv−
∣
∣
1

0
=

∫

v2−
(
HB +B ∂BHB

)
+

∫

B ∂AHBv−u+

∫

B ∂xHBv− ≤ C

∫

v2− − C

∫

u+v−,

where we have also used that ∂xHA ≤ 0 and ∂xHB ≥ 0. It is then easy to see that there exists C > 0
such that:

d

dt

∫

(u2
+ + v2−) ≤ C

∫

(u2
+ + v2−),

with zero initial condition, and to conclude the proof using Grönwall’s lemma. �

We have therefore constructed a pair (Aε(t, x), Bε(t, x)) such that (2.4) is satisfied. We can ap-
ply Lemma 2.2 and find that for any time Aε(t, x) is decreasing and Bε(t, x) increasing. Moreover,
Lemma 2.1 together with (2.4) imply that pointwise in space Aε(t, x) (resp. Bε(t, x)) converges to
Aε(x) (reps. Bε(x)) solution to (1.1), together with the boundary condition (1.6), in the weak sense.
Bootstrap method allows us to conclude that Aε(x), Bε(x) ∈ C2(0, 1)∩C0([0, 1]) which proves the first
part of Theorem 1.1 and (1.7).

2.2. Positivity of the solutions. We now consider the pair (Aε, Bε) solution of the stationary prob-
lem (2.1)-(1.6) for ε > 0 fixed. We now provide finer estimates of sub-solutions in order to control
Aε(0) and Bε(1) away from zero.

Proposition 2.3. There exists ε0 > 0 such that for any ε < ε0, Aε is strictly positive and Aε(0) is,
uniformly in ε, larger than some δA > 0. The same holds for Bε and Bε(1).

Proof. The proof consists in finding a strictly positive sub-solution for

(2.5) − εdA
d2

dx2
φA = HA

(
x, φA(x), Bε(x)

)
φA,

i.e., the equation for Aε when Bε is fixed. To this purpose, we analyze a completely solvable linear
problem related to (2.5), whose solution constitutes a sub-solution of (2.5) and is defined and strictly
positive up to the boundary. This solution can thus be used to find a lower bound for Aε(0).

Consider the following linear equation

(2.6) − εdA
d2

dx2
φA =

[

min
0≤s≤FA(0)

HA

(
1, s, FB(1)

)
]

φA

with boundary conditions inherited from (1.6):

(2.7) φA(0)−
√
ε

d

dx
φA(0) = FA(0), φA(1) +

√
ε

d

dx
φA(1) = 0.

Clearly, the solution takes the form

φA(x) = αε e
x
√

µ/ε + βε e
−x

√
µ/ε, with dAµ = −

[
min

0≤s≤FA(0)
HA

(
1, s, FB(1)

)]
> 0.
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Using (2.7), one can find the exact values of αε and βε as a function of the system parameters

αε

βε
=

(
√
µ− 1)

(
√
µ+ 1)

e−2
√

µ/ε and βε =
FA(0)√
µ+ 1

[

1− (
√
µ− 1)2

(
√
µ+ 1)2

e−2
√

µ/ε
]−1

.

Taking ε → 0, we immediately compute

αε e
√

µ/ε → 0 and βε → β :=
FA(0)√
µ+ 1

,

thus, for any ε > 0 small enough, φA becomes positive and

0 < min
0≤x≤1

φA(x) ≤ max
0≤x≤1

φA(x) ≤ |αε|e
√

µ/ε + βε ≤ FA(0).

Then, using that HA is decreasing in both x and B, we obtain

− εdA
d2

dx2
φA =

[
min

0≤s≤FA(0)
HA

(
1, s, FB(1)

)]
φA ≤ HA

(
x, φA(x), Bε(x)

)
φA.

Therefore, φA is a sub-solution to (2.5) comprised between 0 and FA(0). Since Aε is a solution to the
same problem with the same bounds and φA(0) is converging to β, the existence of δA > 0 follows. �

3. Asymptotic analysis as ε vanishes and front position

We now consider the monotonic stationary solutions (Aε, Bε) for ε > 0 defined in Theorem 1.1. Thanks
to Proposition 2.3, we know that for any x ∈ [0, 1]

(3.1) 0 < Aε(x) ≤ FA(0) and 0 < Bε(x) ≤ FB(1).

We are now in a position to demonstrate the convergence of the pair (Aε, Bε) as ε → 0 towards a pair
(A0, B0) that are discontinuous at the same point x∗ and are characterized by point (i) of Theorem 1.1.
The proof proceeds as follows. First, using the monotonicity of (Aε, Bε) we find the existence of A0

and B0, and we characterize those limits as a family of critical points of (1.1) indexed by x. That
characterization gives us three possibilities for the support of A0. Using a WKB change of variables
and the monotonicity properties of critical points (characterized by lemma 1.2), we discard two of
them. This allows to conclude on the existence of a unique x∗ ∈ [xb, xa] with the properties stated in
Theorem 1.1.

3.1. The limit as ε vanishes. We recall that by monotonicity and L∞ bounds, the total variations
of Aε and Bε are uniformly bounded in ε. Classical theory of Bounded Variation functions (see for
instance [13, Theorem 4, p.176]) ensures that there exists a subsequence εk and BV-functions A0, B0

such that, almost everywhere and in all Lp(0, 1), 1 ≤ p < ∞,

(3.2)







Aεk −→ A0, 0 ≤ A0(x) ≤ FA(0),
d
dxA0 ≤ 0,

Bεk −→ B0, 0 ≤ B0(x) ≤ FB(1),
d
dxB0 ≥ 0, .

Those limits satisfy, almost everywhere,

(3.3)







A0HA

(
x,A0(x), B0(x)

)
= 0,

B0HB

(
x,A0(x), B0(x)

)
= 0.

This means that at each point x, (A0, B0) is one of the four nonnegative equilibrium points; (0, 0) and
those three given by hypothesese (1.3), (1.5). Because A0 is decreasing, three possible scenarios arise:

(a) There exits x∗ such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗ and (A0(x), B0(x)) =
(0, FB(x)), for x > x∗.

(b) There exists x∗
− < x∗

+ such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗
−, (A0(x), B0(x)) =

(0, 0), for x∗
− < x < x∗

+.
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(c) There exists x∗ ≥ xb such that (A0(x), B0(x)) = (FA(x), 0), for x < x∗ and (A0(x), B0(x)) =
(A∗, B∗) for x > x∗ close enough to x∗.

Notice that neither (a) nor (b) exclude the possibility that A0 is identically zero. Indeed, at this stage,
x∗ (or x∗

−) could be the origin. Our aim now is to show that only the first scenario is possible for some
x∗ ∈ [xb, xa] proving part (i) of Theorem 1.1.

Scenario (c) can be readily discarded. Indeed, if (c) holds, then the relationship (1.9) would be in
contradiction with the monotonicity of A0(x) in a neighborhood of x∗.

3.2. WKB change of unknown. We define ϕε
A := −√

ε log(Aε), which is well defined thanks to
Proposition 2.3. Furthermore,

d

dx
ϕε
A = −

√
ε

d
dxAε

Aε
and

d2

dx2
ϕε
A = −

√
ε
( d2

dx2Aε

Aε
− | d

dxAε|2
A2

ε

)

,

and we find that ϕε
A is solution of the eikonal equation

∣
∣
∣
d

dx
ϕε
A

∣
∣
∣

2

−
√
ε

d2

dx2
ϕε
A = −HA(x,Aε, Bε),

with
d

dx
ϕε
A(0) =

FA(0)

Aε(0)
− 1,

d

dx
ϕε
A(1) = 1.

The same constructions can be made for ϕε
B . If we prove that the family (ϕε

A) has some regularity,
then we can take let ε go to 0 in ϕε

A and ϕε
B . That is the object of the following:

Lemma 3.1. The sequence (ϕε
A) is uniformly Lipschitz-continuous with respect to ε. Therefore, after

extracting a subsequence, ϕεk
A −→

εk→0
ϕ0
A, a Lipschitz continuous, non-decreasing viscosity solution of

(3.4)
∣
∣
∣
d

dx
ϕ0
A

∣
∣
∣

2

= −HA(x,A0, B0).

The same construction for Bε provides us with a function ϕB, Lipschitz continuous, non-increasing
viscosity solution of

(3.5)
∣
∣
∣
d

dx
ϕ0
B

∣
∣
∣

2

= −HB(x,A0, B0).

Proof. Since Aε ≥ 0 and d
dxAε ≤ 0 we get directly that d

dxϕ
ε
A ≥ 0. We are going to prove that there

exists Cε0 , independent of ε, such that

0 ≤ sup
x∈[0,1]

d

dx
ϕε
A(x) ≤ Cε0 .

Consider y, one argmax of d
dxϕ

ε
A(y). If 0 < y < 1, then d2

dx2ϕ
ε
A(x) = 0 and

∣
∣
∣
d

dx
ϕε
A

∣
∣
∣

2

= −HA(x,Aε, Bε),

which is uniformly upper-bounded because HA is continuous and evaluated on (0, 1) × (0, FA(0)) ×
(0, FB(1)). The upper bound follows.

If y = 0, Proposition 2.3 tells us that Aε(0) is bounded from below by some positive constant δA
independent from ε. Then, we may conclude again because

d

dx
ϕε
A(0) =

FA(0)

Aε(0)
− 1 ≤ FA(0)

δA
− 1 < ∞.

If y = 1, we immediately conclude thanks to the boundary condition and thus, we have proved the
uniform Lipschitz estimate.
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The Ascoli-Arzela theorem allows us to take a subsequence of ϕε
A which converges uniformly and we

conclude thanks to the usual theory of viscosity solutions [9, 2]. Note that the viscosity procedure
only allows to control the limsup or liminf of the right hand sides of (3.4), (3.5), and this information
sufficient for the conclusion we want to draw. �

A direct consequence of Lemma 3.1 is that scenario (b) cannot hold. Indeed, in that case,
∣
∣
∣
d

dx
ϕ0
A

∣
∣
∣

2

= −HA(x, 0, 0) < 0, ∀x ∈ (x∗
−, x

∗
+)

which is contradictory.

The only possible scenario is therefore (a). In order to conclude the proof, we are left showing that
x∗ ∈ [xb, xa]. It suffices to show that A0(x) becomes positive when x → 0 and the same with B0(x)
when x → 1.

Lemma 3.2. There exists two non empty intervals, namely Ib and Ia = [0, 1] \ Ib, such that B0 ≡ 0
in Ib and A0 ≡ 0 in Ia. Moreover,

[0, xb) ⊂ Ib and (xa, 1] ⊂ Ia.

Proof. Let us assume that there exists y ∈ (xa, 1) such that A0(y) > 0. We have shown that we are
necessarily in scenario (a), which implies that B0(y) = 0 and by monotonicity

B0(x) = 0, A0(x) = FA(x) for 0 ≤ x ≤ y.

Using the fact that (FA(x), 0) is linearly unstable for x ∈ (xa, 1] and that ϕ0
B is a viscosity solution

of (3.5), we have
∣
∣
∣
d

dx
ϕ0
B

∣
∣
∣

2

= −HB(y, FA(y), 0) < 0,

which is impossible, hence A0 ≡ 0 on (xa, 1). The same argument ensures us that B0 ≡ 0 in (0, xb).
One can therefore define the intervals Ia and Ib by maximality as the supports of A0 and B0. �

4. Characterization of the Front

Now that we have proved the existence of a boundary x∗, we can turn to the characterization of this
point. To this purpose, we start defining the point, x∗

ε such that

Aε(x
∗
ε) = Bε(x

∗
ε),

which, by monotonicity, is unique. We also know, by compactness and unique limit, that x∗
ε → x∗

when ε → 0.

We perform the change of variables y = (x− x∗
ε)/

√
ε, and define aε(y) = Aε(x

∗
ε +

√
εy) and bε in the

same way. System (5.1) becomes






−dA
d2

dy2 aε(y) = aε(y)HA

(
x∗
ε +

√
εy, aε(y), bε(y)

)
,

−dB
d2

dy2 bε(y) = bε(y)HB

(
x∗
ε +

√
εy, aε(y), bε(y)

)
,

aε(0) = bε(0).

Because aε and bε are uniformly bounded, by elliptic regularity they are uniformly bounded in C2 and,
after extraction of a subsequence (by uniqueness, as we will show, in fact the full sequence converges),
we may take the limit as ε → 0 (which we know is well defined, bounded, Lipschitz-continuous). We
find that this limit, denoted (a0, b0), is solution of

(4.1)







−dA
d2

dy2a0(y) = a0(y)HA

(
x∗, a0(y), b0(y)

)
, ∂ya0(y) ≤ 0,

−dB
d2

dy2 b0(y) = b0(y)HB

(
x∗, a0(y), b0(y)

)
, ∂yb0(y) ≥ 0,

a0(0) = b0(0).
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This solution is characterized as follows:

Theorem 4.1. The limits satisfy a0 6= 0, b0 6= 0 and there exists a unique value x∗ such that the
system (4.1) has a non-trivial solution. This solution is the unique traveling wave defined as

(4.2)







−c(x) ∂
∂ya(y;x)− dA

∂2

∂y2 a(y;x) = a(y;x)HA

(
x, a(y;x), b(y;x)

)
, y ∈ R,

−c(x) ∂
∂y b(y;x)− dB

∂2

∂y2 b(y;x) = b(y;x)HB

(
x, a(y;x), b(y;x)

)
,

lim
y→−∞

a(y;x) = FA(x), lim
y→+∞

a(y;x) = 0,

lim
y→+∞

b(y;x) = FB(x), lim
y→−∞

b(y;x) = 0,

with speed zero, that is c(x∗) = 0, and connecting (FA(x
∗), 0) to (0, FB(x

∗)).

Proof. The proof is split into three steps. First we show that functions aε and bε cannot converge both
at the same time to the zero function. Then, using that a0 and b0 converge at −∞ to solutions of (3.3),
we show that limit conditions of (4.2) are satisfied. Finally, thanks to a monotonicity argument on
the speed c(x), we show that (a0, b0) are in fact the unique traveling wave solutions of (4.2) such that
c(·) = 0.

1st step. The pair (aε, bε) does not converge to the zero function.

Indeed, for any interval (y−, 0) with y− < 0, integrating by parts the equation on aε after dividing it
by aε, we compute

1

dA

∫ 0

y−

HA

(
x∗
ε +

√
εy, aε(y), bε(y)

)
dy = −

∫ 0

y−

| d
dyaε|2

a2ε
dy −

[
d
dyaε

aε

]0

y−

≤ −
d
dyaε(0)

aε(0)
.

Moreover, Lemma 3.1 tells us that, for ε < ε0,

d

dx
ϕε
A = −

√
ε

1

Aε

d

dx
Aε < Cε0 .

This implies directly that for any y ∈ R

−
d
dyaε(y)

aε(y)
= − 1

Aε(x∗
ε +

√
εy)

d

dy
Aε(x

∗
ε +

√
εy) = −

√
εdAε

dx (x∗
ε +

√
εy)

Aε(x∗
ε +

√
εy)

≤ Cε0 .

Taking the limit ε → 0, using the continuity of HA and that (aε, bε) → (a0, b0) uniformly, we find

(4.3)
1

dA

∫ 0

y−

HA

(
x∗, a0(y), b0(y)

)
dy ≤ Cε0 .

If (a0, b0) ≡ (0, 0), then the left hand side becomes |y−|HA(x
∗, 0, 0)/dA which goes to ∞ when

y− → −∞. Therefore, one of them, say a0 is positive in some interval and by the strong maxi-
mum principle, a0(y) > 0 for any y ∈ R. By the condition a0(0) = b0(0), then b0 is also positive.

2nd step. The pair (a0, b0) satisfies the conditions at infinity in (4.2).

We treat for instance the limit at −∞. Again by elliptic regularity and thanks to (4.3), d2

dy2 a0(y) and
d2

dy2 b0(y) vanish at −∞. Therefore the limits of a0 and b0 are steady state solutions with a0(−∞) >

b0(−∞).

The case when this steady state is (A∗(x∗), B∗(x∗)) is discarded by stability hypothesis (1.5) and
saturation hypothesis (1.2). Indeed, we can rewrite the system defining ǫA = A(x∗) − a0 and ǫB =
b0 − B(x∗). These functions are always positive and have non negative derivatives. Moreover, both
they and their first derivatives, go to zero when y → −∞. We can write

d2

dy2

(
ǫA(y)
ǫB(y)

)

≈
(
−∂AHA/dA ∂BHA/dA
∂AHB/dB −∂BHB/dB

)(
ǫA(y)
ǫB(y)

)

,
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where the matrix is evaluated at (x∗, A∗(x∗), B∗(x∗)) and we have neglected the terms of the type
ǫ2A, ǫ

2
B and ǫAǫB (which do not play a role in the analysis of the signs when y → −∞). Integrating

between −∞ and any value y ≪ −1 we get

0 ≤ d

dy

(
ǫA(y)
ǫB(y)

)

≈
(
−∂AHA/dA ∂BHA/dA
∂AHB/dB −∂BHB/dB

)(∫ y

−∞
ǫA

∫ y

−∞
ǫB

)

,

which is only possible when ∂AHA ∂BHB−∂BHA ∂AHB ≥ 0 contradicting the saddle characterization
of (A∗(x), B∗(x)).

3rd step. Finally because the system is competitive, the positive solutions are unique and, in the case
at hand, traveling waves with speed 0. We recall why the speed c(·) is monotonic. Considering the
derivatives wa(y) =

∂
∂ya(y) < 0, wb(y) =

∂
∂y b(y) > 0 they satisfy







−c(x) ∂
∂ywa(y;x)− dA

∂2

∂y2wa(y;x) = M11wa +M12wb,

−c(x) ∂
∂ywb(y;x)− dB

∂2

∂y2wb(y;x) = M21wa +M22wb.

The signs M12 := ∂BHA < 0 and M21 := ∂AHB < 0 are compatible with the Krein-Rutman theory,
and by consequence the dual problem has a signed solution







c(x) ∂
∂yΦa(y;x)− dA

∂2

∂y2Φa(y;x) = M11Φa +M21Φb, Φa > 0

c(x) ∂
∂yΦb(y;x)− dB

∂2

∂y2Φb(y;x) = M12Φa +M22Φb, Φb < 0.

We now consider the x−derivative: za(y) =
∂
∂xwa(y;x) and zb(y) =

∂
∂xwb(y;x) satisfying







−c(x) ∂
∂y za(y;x)− dA

∂2

∂y2 za(y;x) = M11za +M12zb + c′(x)wa + a ∂xHA,

−c(x) ∂
∂y zb(y;x)− dB

∂2

∂y2 zb(y;x) = M21za +M22zb + c′(x)wb + b ∂xHB.

Integrate in y against the test function Φ and add the two lines, it remains

0 = c′(x)

∫

[waΦa + wbΦb]
︸ ︷︷ ︸

<0

dy +

∫ <0
︷ ︸︸ ︷

[aΦa ∂xHA + bΦb ∂xHB] dy, 0 < x < 1,

thus c′ < 0. The uniqueness of x∗ follows directly. �

This result concludes the proof of theorem 1.1. We now use this result on a simple model of differen-
tiating neuronal tissue.

5. Application

5.1. Model. As discussed in [24], a classical illustration of neurodevelopment is provided by the com-
partmentalization of the neural tube in response to the diffusion of the ventral and dorsal morphogens
Sonic Hedgehog (SHH) and Bone Morphogenetic Protein (BMP), respectively [26, 32]. In this system,
a continuous gradient activates ventral and dorsal genes, transcription factors are reciprocal inhibitor
and self-activitor and diffuse through boundaries. This is well-known to result in the clear definition
of territories that express distinct transcription factors subsets [1, 10, 11, 18].

We analyze a simplified version of the model proposed in [24], which includes:

• Epigenetic phenomena: the more a specie has been expressed, the more it is likely to be
expressed. This phenomenon scales the production rate with a coefficient αi(A,B).

• The presence of morphogens with a graded concentration along the neural tissue, Fi(x), i ∈
{A,B},

• The self-activation of transcription factors
• and the saturation effects, limiting the production rate of each species proportionally to the
total concentration within a cell.
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• Eventually, diffusion of homeoproteins will be considered, through a small diffusion parameter
ε ≪ 1.

We will show that these four mechanisms regulating the gene expression (response to gradients, self-
activation, reciprocal inhibition and saturation) precisely correspond to our theoretical assumptions.
Assuming that the number of cells is large, we consider a space-continuous description of the system,
and we denote by A(x) and B(x) the concentrations of transcription factors at location x on the neural
tissue. The system described above readily translates into the system of parabolic equations:

∂tA− εdA∆A = αAA
(
FA(x) + A)− βAA(A+B), 0 < x < 1,

and a similar equation for B. In this equation, we considered epigenetic phenomena to have linear
effects: αA(A,B) = αAA. Therefore, the term αAA is the transcriptional intensity, βA is the sat-
uration parameter, and we assume 0 < αA < βA because saturation will overcome necessarily the
self-activation. The parameter dA incorporates the relative level of diffusion of the parameter A com-
pared to that of B (at least one of these constants can be incorporated in the ε). We shall assume
that the system is subject to Robin type boundary conditions (1.6).

It is not hard to rescale the system so as to write the stationary solutions in the form:

(5.1)

{

−εdA∆A = A
(
FA(x) −A− sAB

)
, 0 < x < 1,

−εdB∆B = B
(
FB(x) −B − sBA

)
,

where, for simplicity of notation, we use the same terms FA(x) and FB(x) to represent the rescaled
action of external morphogen gradients. We introduce the parameters si as positive constants taking
into account the relation between αi and βi:

sA =
βA

βA − αA
> 1 and sB =

βB

βB − αB
> 1.

In the limit ε goes to 0, we look for a decreasing solution A connecting the value FA(0) with 0. The
morphogen gradients are monotonic and smooth, assumed to be twice differentiable, defined on the
closure of the domain, strictly positive and monotonic. Summarizing, there exists δ > 0 such that for
any 0 ≤ x ≤ 1

(5.2) FA(x) > δ,
d

dx
FA(x) < 0, FB(x) > δ,

d

dx
FB(x) > 0.

We have mentioned that diffusion is extremely small. Non-trivial differentiation at these levels of
diffusion would require that steady states for ε = 0 are non-trivial as well. This is why we shall assume
that:

(5.3) ∃ (xa, xb) ∈ I, xb < xa such that FA(xb) = sAFB(xb), FB(xa) = sBFA(xa).

A first remark is that combining assumptions (5.2) and (5.3) we get that

(5.4)

{

FB(x) < FB(xa) = sBFA(xa) < sBFA(x), for x ∈ [0, xa),

FA(x) < FA(xb) = sAFB(xb) < sAFB(x), for x ∈ (xb, 1].

We have already noticed that both saturation coefficients sA and sB are greater than 1. For the sake
of generality, we make the weaker assumption:

(5.5) sAsB > 1.

Of course, in these notations, the parabolic system reads:

(5.6)







∂tA− εdA∆A = A
(
FA −A− sAB

)
, 0 < x < 1, t ≥ 0,

∂tB − εdB∆B = B
(
FB −B − sBA

)
,

with the Robin boundary conditions (1.6). If (1.2)–(1.5) are met for these HA and HB, then Theo-
rem 1.1 allow us to say that starting with monotonic initial conditions, then solution to (5.6) defines
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a unique point x∗ as a boundary between the two functional areas considered, disambiguating the
boundary location.

To start with, note that assumption (1.2) is valid thanks to (5.2) and that they fit the interpretation for
neurodevelopment. They are trivially checked in our case since the maps HA(x,A,B) and HB(x,A,B)
are linear. We are therefore left to characterizing the equilibria of the system and their stability.

Lemma 5.1. The properties (1.3)–(1.5) are valid for our model (see Fig. 2). In details, under as-
sumptions (5.2), (5.3) and (5.5) and in the absence of diffusion, we have

(i) (FA(x), 0) is a stable fixed point for x ∈ [0, xa),
(ii) (0, FB(x)) is a stable fixed point for x ∈ (xb, 1],
(iii) and there exists an additional solution, which is saddle, in (xa, xb).

Proof. First two fixed points are trivial solutions, and their stability is obtained by investigating the
eigenvalues of the Jacobian matrix at these points

(i) At
(
FA(x), 0

)
, the Jacobian matrix reads

[
−FA(x) −sAFA(x)

0 FB(x)− sBFA(x)

]

,

and (5.4) ensures us that this point is stable only on the region [0, xa).
(ii) The pair

(
0, FB(x)

)
which is analogous to the previous point and stable on (xb, 1].

(iii) Because of hypothesis (5.5), there is an extra fixed point (A∗, B∗) given by

A∗ =
sAFB − FA

sAsB − 1
, B∗ =

sBFA − FB

sAsB − 1
.

From (5.4) and (5.5), we get that (A∗, B∗) is admissible (i.e. both coordinates are non-negative)
only in the region [xb, xa]. Monotonicity properties are trivial from the explicit expression, and
the stability is governed by the eigenvalues of the Jacobian matrix

Jac(A∗, B∗) = −
[

A∗ sAA
∗

sBB
∗ B∗

]

,

which has negative determinant (as a consequence of assumption (5.5)). Therefore, its eigen-
values are real with opposite signs, i.e. the point (A∗, B∗) is a saddle fixed point, completing
the proof.

�

Remark 5.2. Let us eventually notice the following fact explaining the topology of the phase plane
for x ∈ (xb, xa). The space R+ × R+ is partitioned into the attraction basin of (FA(x), 0) and that
of (0, FB(x)), in addition to lower-dimensional invariant manifolds. The attraction basins of the fixed
point are separated by the one-dimensional stable manifold of the saddle fixed point (A∗(x), B∗(x)),
which is an invariance manifold serving as a separatrix between those trajectories converging to

(
FA, 0

)

and
(
0, FB

)
.

By a direct application of Theorem 1.1, the system has a unique differentiated solution in the limit
of small diffusion. But when considering only cell-autonomous mechanisms, the bistable region x ∈
(xb, xa) induces an indeterminacy in the differentiation between two domains: cells may choose inde-
pendently to differentiate into type A or type B, yielding irregular and non-reproducible boundaries
depending on the initial condition. This phenomenon is illustrated in Figure 2, right panel: in the
absence of diffusion, the region within the interval (xb, xa) has an unpredictable behavior that depends
on space, while in the presence of even a very small diffusion, ambiguity disappears and a unique steady
state emerges (see Figure 2). In that sense, a small diffusion suffices to stabilize the transition. From an
evolutionary viewpoint, endowing developmental transcription factors with non diffusion properties is a
simple mechanism ensuring dramatic stabilization and robustness of the differentiation process. These
numerical simulations further open some new perspectives. Indeed, we observe that the convergence



HOMEOPROTEIN DIFFUSION AND BOUNDARY STABILIZATION 15

(a) The morphogen gradients and steady states
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Figure 2. Morphogenesis model with exponential morphogen gradients FA(x) and
FB(x) (not shown) and sA = sB = 2. (Left) Equilibria of the system in the absence
of diffusion together with their stability (thick solid line: stable, thin solid line: re-
pulsive, dashed: saddle). (Right) Numerical simulations of stationary states of the
system (5.6)-(1.6) shows (top) the ambiguity of boundary location for ε = 0 and
(bottom) the disambiguation for small diffusion ε = 10−6.

towards the monotonic differentiated solutions seem to occur even when we relax the initial condition
monotonicity hypothesis of Theorem 1.1. Moreover, with random initial conditions, we numerically
observe that for small times, A converges rapidly to FA in [0, xb) and B to FB in (xa, 1], before the
appearance of two abutting traveling fronts that develop toward the center of the coexistence zone,
whose speed decreases as the solution converge. Proving that the theorem persists for general initial
conditions remains an open problem.
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