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Abstract

A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in
time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor
fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we
designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human
supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic
variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to
construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6
developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei
and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive
visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including
user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose
computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale,
with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics
through developmental stages.
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Introduction

Deciphering and integrating the genetic and cellular dynamics

underlying morphogenesis and homeostasis in living systems is a

major challenge of the post-genomic era. Although full genome

sequencing is available for a number of animal model organisms

[1], quantitative data for the spatial and temporal expression of

genes is still lacking [2].

Remarkable advances in photonic microscopy imaging [3],[4],[5]

and labeling techniques [6] allowed gathering data at all levels of

a multicellular system’s organization with adequate spatial and

temporal resolutions. Fluorescent in situ hybridization techniques

[7], immunocytochemistry and transgenesis, combined with 3D

optical sectioning, make it now possible to assess the dynamics of

gene expression throughout animal development with precision at

the single-cell level. However, moving forward from databases of

gene expression that contain average values at low spatiotemporal

resolutions—such as those obtained from DNA microarrays avail-

able for most model organisms—to a dynamic, cell-based 4D atlas

is a major paradigm shift that requires the development of appro-

priate methods and tools.

In this context, the design and implementation of automated

image analysis strategies to build a gene expression atlas with

resolution at the cellular scale is an important methodological

bottleneck towards greater biological insights [8],[9]. The task of

assembling imaging data from cohorts of individuals, or analyzed

embryos, onto a series of 3D prototypes, or templates (one per
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developmental stage), can be approached by finding a spatial

correspondence between individuals based on registration meth-

ods, a technique used in medical imaging [10]. Yet, gathering and

consolidating into a single prototype multimodal and multiscale

features from different specimens that exhibit phenotypic vari-

ability remains a difficult challenge.

Recent studies on different model organisms have explored

computational strategies for building atlases either by measuring

cell positions to create prototypic specimens [11],[12] or by gath-

ering gene expression patterns observed in cohorts of specimens

[13],[14],[15],[16]. Yet, very few frameworks have combined both

features. Long et al. [11] collected data from 15 C. elegans speci-

mens at the earliest larval stage (L1 with 357 cells) to build a

statistical 3D atlas of nuclear center positions. C. elegans presents a

number of advantages facilitating the reconstruction process. The

entire organism can be imaged with resolution at the single-cell

level and its cell lineage tree is stereotyped enough to allow

spatiotemporal matching of different individuals at this level. The

same features allowed the reconstruction of a prototypic lineage

for a cohort containing six specimens of Danio rerio (zebrafish)

embryos throughout their first 10 cell division cycles [12]. Peng

et al. [15] achieved the spatial matching of 2,945 adult Drosophila

brains to collect the expression patterns of 470 different genes.

Similarly, Lein et al. [13] constructed a comprehensive atlas of the

adult mouse brain containing about 20,000 gene patterns. The

first gene expression atlas with resolution at the cellular scale was

produced by Fowlkes et al. [14]. They integrated 95 gene expres-

sion patterns observed at 6 different developmental stages in a total

of 1,822 different Drosophila embryos within a common 3D stencil.

Applying this approach to vertebrate model organisms is more

difficult because of higher cell lineage variability and heteroge-

neous levels of gene expression within highly dynamic patterns. In

addition, the reconstruction of 3D gene expression templates at

cellular scale for vertebrate species is likely to require the acqui-

sition of partial volumes recorded at high resolution [15] from

single specimens, and their precise mapping onto in toto reference

specimens. The zebrafish, a vertebrate model organism increasingly

used for its relevance to biomedical applications [17], cumulates

good properties for investigating the reconstruction of the multiscale

dynamics of early embryogenesis. The gene regulatory network

(GRN) architecture of the zebrafish early embryonic development is

under construction [18] and the embryo is easily accessible and

amenable to transgenesis, multiple in situ staining and 3D+time

imaging. The spatiotemporal data offered by a 4D atlas of gene

expression with resolution at the cellular level is expected to provide

the necessary measurements for further modeling of the GRN

dynamics and possible integration of the genetic and cellular levels

of organization [19]. Such data would make the zebrafish the first

vertebrate model amenable to a systemic study. However, building

3D templates of gene expression for the zebrafish blastula and

gastrula stages is especially problematic due to the lack of mor-

phological landmarks required for the registration of patterns

[20],[21].

We provide a methodology to construct, visualize and analyze a

gene expression atlas composed of templates at various stages of

vertebrate early development. We designed, implemented and

now deliver two computational frameworks, Match-IT and Atlas-

IT, to support the automatic mapping of 3D gene expression

patterns from different individuals (the analyzed embryos) onto

common reference specimens (the templates) with resolution at the

cellular scale. This ‘‘virtual multiplexing’’ procedure [14] over-

comes the limited number of gene products that can be jointly

stained and measured in a single specimen.

Match-IT was used to produce the prototypic cartography of 9

gene expression patterns imaged from 3D double fluorescent in situ

hybridization at 6 developmental stages (Table S1, Movie S1,

Figs. S1, S2, S3, S4, S5, S6, S7). Atlas-IT was designed to

interactively visualize gene coexpression patterns and their dynam-

ics. We validated our 4D atlas construction methodology by an

automated quantitative assessment of gene patterns’ similarity and

overlap through time. Analytical tools, such as clustering, were

designed to identify morphogenetic domains and gene synexpres-

sion groups, i.e. groups of genes sharing the same spatiotemporal

expression patterns. The proposed spatiotemporal atlas of zebrafish

blastula and early gastrula preserves the information of the cell as

the gene expressing unit, providing means for the integration of

genetic and cellular data unavailable so far.

Results

Match-IT: A workflow to build a gene expression atlas
We designed a computational framework (Fig. 1), going from

image acquisition to image data analysis, to perform the mapping

of different stained gene expression patterns onto a common pro-

totypic model at each developmental stage (Fig. S8), thus creating

a series of 3D templates of gene expression with resolution at the

cellular scale.

The processing workflow consisted of embryo staining, image

data acquisition (Materials and Methods), nuclear center detec-

tion, gene pattern segmentation, mapping of the analyzed embryos

onto a template at each stage, and selection of template cells

positive for the expression of specific genes. This methodology was

designed to document at a sufficient spatial and temporal reso-

lution the gene expression dynamics underlying the formation of

the Spemann organizer and the embryonic axis of zebrafish early

embryos. To this end, we imaged the dorsal side of fluorescently

stained embryos with cellular resolution from fixed specimens

about every 30 min from 4 to 6.3 hpf. The resulting 6 templates

comprised a stencil of in toto 3D images of the template specimens

(Fig. 2a) at different stages, and mappings of the partial 3D views

of the analyzed embryos (Fig. 2b).

In order to integrate 3D data into one template, our novel

Match-IT tool (Software S1 and User Guide S1) performed the

segmentation of gene expression domains, the mapping of analyzed

Author Summary

We propose a workflow to map the expression domains of
multiple genes onto a series of 3D templates, or ‘‘atlas’’,
during early embryogenesis. It was applied to the zebrafish
at different stages between 4 and 6.3 hpf, generating 6
templates. Our system overcomes the lack of significant
morphological landmarks in early development by relying
on the expression of a reference gene (goosecoid, gsc) and
nuclear staining to guide the registration of the analyzed
genes. The proposed method also successfully maps gene
domains from partially imaged embryos, thus allowing
greater microscope magnification and cellular resolution.
By using the workflow to construct a spatiotemporal
database of zebrafish, we opened the way to a systematic
analysis of vertebrate embryogenesis. The atlas database,
together with the mapping software (Match-IT), a custom-
made visualization platform (Atlas-IT), and step-by-step
user guides are available from the Supplementary Material.
We expect that this will encourage other laboratories to
generate, map, visualize and analyze new gene expression
datasets.

Early Zebrafish Gene Expression Atlas
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embryos onto a common reference specimen and the identification

of positive cells (Fig. 1 and Movie S2), eventually delivering a 3D

database that summarized the genetic profile of single cells.

Nuclear center detection. Nuclear center detection was an

important preliminary step to (1) compute a common referential

for all the specimens that will guide the first coarse mapping, (2)

keep image registration within the boundaries of a ‘‘nuclear mask’’

around the embryo, and (3) quantitatively analyze gene expression

domains from intracellular locations only, without taking into

account extracellular space where staining is weaker. Additionally,

detecting the nuclei has the advantage that it allows working at the

cell level: cell clustering and cell entropy have a biological

meaning, whereas working at the voxel level, although theoreti-

cally possible, does not have this biological significance.

The detection of cell nuclei was carried out by an algorithm

followed by interactive supervision of the parameters through

visual inspection (Fig. 2c,e). First, nuclear centers were approx-

imately defined at the local maxima of a smoothed, simplified

version of the original image. Preprocessing consisted of convolv-

ing the image with two Gaussians of different standard deviations

ranging from 2 to 3 mm and 8 to 14 mm respectively, then

calculating their difference and only retaining gray values greater

than a threshold, which could vary between 1 and 15%. This

procedure smoothed the image while preserving only significant

objects. Multiple simulations were automatically run for each

combination of parameters in the above ranges of standard

deviations and thresholds. Using a visual inspection tool, (Fig. 2e)

the optimal values were subsequently chosen and validated by an

expert through comparison of the raw data with the candidate cell

positions from different runs. A quantitative evaluation of this

strategy performed on one dataset by comparing the detected

centers with 689 manually labeled nuclei produced an error rate of

4% (Fig. S9a–d). This error detection rate was considered

acceptable to assign positive gene expression at the cellular level

and was shown to be robust against possible variations in the

parameter choices by the expert (Fig. S9e).

Gene pattern segmentation. Our segmentation of the gene

expression domains first required supervision and selection by a

biologist of the lower image intensity values that best defined the

Figure 1. Schematic description of the atlas construction
process. For each developmental stage, the partial 3D volumes of
the analyzed embryos and the 3D volume of the whole template
embryo were processed for nuclear center detection and gene pattern
segmentation. Mapping the analyzed embryos onto the corresponding
common template was guided by the specimen’s shape, revealed by
the nuclei, and by the segmented gsc expression pattern, chosen to be
a common reference. Each step was supervised and, if necessary,
corrected via an interactive graphical user interface. The final model,
where all the gene patterns coming from different individuals could be
jointly compared, constitutes one 3D atlas template. The Match-IT
software performs the gene pattern segmentation and the validated
mapping. The Atlas-IT software allows interactive visualization of the 3D
atlas template.
doi:10.1371/journal.pcbi.1003670.g001

Figure 2. 3D raw data, nuclear center detection, gene pattern segmentation and their validation at 6.3 hpf. (a) Upper panel: volume
rendering, lower panel: axial orthoslice of an analyzed embryo’s nuclei (white), reference gsc pattern (red) and ntla pattern (green). (b) Same with
template nuclei (blue) and their gsc pattern (red). (c) Nuclear positions (yellow) superimposed on the raw nucleus images (white) displayed by three
orthoslices in the AL, AD and DL planes. (d) Zoom on the template gsc raw expression (red) superimposed on the template nuclear positions (blue).
(e) 36zoom on the boxed region in (c) with detected nuclei positions (pale yellow), an example of a validated nucleus (green), a false positive (red), a
false negative (yellow) and a selected position to be evaluated (white cube). (f) Same as (d) with the segmented gsc domain (white). Scale bars,

100 mm. Axes point to the animal pole (~aa), dorsal side (~dd) and lateral side (~ll) of the embryo respectively.
doi:10.1371/journal.pcbi.1003670.g002

Early Zebrafish Gene Expression Atlas
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domain features. Match-IT then used these parameters to perform

a thresholding operation followed by morphological image pro-

cessing (see Materials and Methods). The result of the expression

domain segmentation was validated by visual inspection with

Atlas-IT prior to the identification of positive cells within the

segmented domain (Fig. 2d,f). Alternatively, the amount of

fluorescent signal could also be used for relative quantification of

gene expression within each specimen at the cellular level (Fig.
S10). However, a binary expression assignment, such as one

provided by segmentation, was also consistent with conventional

Boolean GRN modeling [22]. Cells in the analyzed embryos were

identified as positive for the expression of a given gene if their

approximate nuclear centers were located at less than half the

average internuclear distance (Fig. S11) from the border of the

segmented expression domain.

Embryo mapping. Mapping the partial 3D volumes of the

analyzed embryos onto one template involved matching the

embryos’ common referential, their blastoderm contours and their

gsc-positive domains (Fig. 3a–d). The mapping procedure was a

two-step process. First, initialization was based on the automated

identification of a common referential (Fig. 3a,b) defined by two

orthogonal planes P1 and P2. Plane P1 separated the blastoderm

from the yolk at the level of the blastoderm margin, while P2 was

the bilateral symmetry plane containing both the center of the

embryo’s spherical approximation and the center of mass of the

gsc-positive nucleus population, C (see Materials and Methods).

These two planes unequivocally defined a three-vector basis com-

prising the animal-vegetal axis (~aa), the dorso-ventral axis (~dd) and

the perpendicular vector (~ll) given by the right-handed trihedron.

The origin O of the reference frame was obtained by projecting

C on P1 and, with the basis (~aa,~dd,~ll), was used to transform the

analyzed embryos into the template. The result of this initializa-

tion was visually checked and, if necessary, corrected with the

Match-IT graphical user interface, designed to minimize the effort

of manual supervision (Fig. 3a–d).

Second, this coarse initialization step was refined by a pixel-

based registration procedure. Considering that zebrafish early

embryos largely lacked the distinctive morphological features required

to apply landmark-based registration methods [23],[15],[24], and

given the partial nature of the volumes to be aligned, we opted for a

rigid, pixel-based transformation scheme [25] that searched for an

optimal match between dorsal blastoderm surfaces (Fig. 3c,d). A

preliminary quantification of morphological variability was per-

formed by estimating the embryos’ radial size. It showed that 95%

of the registered embryos differed by less than 10% from the mean

in terms of the radius of the blastoderm plane margin (Fig. S12).

The rigid transformation preserved original gene patterns, mak-

ing it possible to go back to the raw data for visualization and

validation/correction with the Match-IT software at every step of

the processing pipeline. After the final step, the average manual

offset needed to adjust the mapping of analyzed embryos onto the

template was 13 mm (i.e. approximately one cell row) and a 3u
rotation.

Positive template cell selection. Finally, the selection of

positive template cells (Fig. S13) was performed using the same

rule described for the identification of positive cells in the analyzed

embryos. The number Ni of cells positive for the expression of

gene i in an analyzed embryo differed from the number Mi of cells

selected as positive in the template after the mapping procedure.

Independently from the fluctuations in the mapping procedure

mentioned above, this difference was interpreted as resulting from

individual variations in terms of internuclear distance and embryo

shape, which can reflect staging misalignments (Fig. S14).

Figure 3. Mapping procedure in the 6.3 hpf atlas template. (a) Analyzed embryos: detected nuclei (white), gsc positive cells (red), automated
initialization scheme extracting the plane passing through the blastoderm margin (green), bilateral symmetry plane (purple), and referential (~aa,~dd,~ll).

(b) Same with the template, detected nuclei in blue. (c) Initialization step aligning the (~aa,~dd,~ll) basis of the analyzed embryo and the template; the
yellow arrowhead points to a mismatch refined in (d) through the registration procedure. Scale bar 100 mm.
doi:10.1371/journal.pcbi.1003670.g003

Early Zebrafish Gene Expression Atlas
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Atlas-IT: A visualization tool for a gene expression atlas
Analysis of the 3D templates produced by Match-IT required

dedicated visualization tools to test hypotheses and derive bio-

logical insights. The available software kits did not fulfill our

requirements, either because they were too specific for a given

model organism (such as PointCloudXplore [26] for Drosophila) or

because they were too generic as visualization and processing tools

(such as Icy [27], Vaa3D [28], or CellProfiler [29]) and did not

allow displaying selections of individual cellular positions or

querying a template for coexpression domains with resolution at

the cellular scale.

For these reasons, we designed, developed and deliver here the

Atlas-IT interactive visualization interface (Fig. 4a and Software
S2 and User Guide S2) to explore 4D atlas resources. With this

tool, we can interact with the complete atlas data, in particular

superimpose raw images (either as 3D volumes or orthoslices),

segmented patterns, and the whole set of detected template nuclei

or selected positive nuclei at any time point (Movie S3). Atlas-IT

can be used to assess the dynamics of gene coexpression domains

or the variability of gene expression patterns.

A spatiotemporal atlas of the zebrafish early embryo
We used Match-IT and Atlas-IT together to reconstruct a 4D

atlas of zebrafish early embryogenesis, which is now released. It

comprises 6 developmental stages and 9 gene expression patterns

chosen to study a specific embryological question, namely the genetic

dynamics underlying the formation of the Spemann organizer at the

dorsal midline [1] (a region in the zebrafish containing precursors of

the segregation between the prechordal plate and the notochord

[30]). The 9 genes are: gsc, sox32, tbx16, oep, snai1a, foxa2, ntla, flh, and

egfp, where the latter was was detected in a custom-made transgenic

line Tg(24gsc:egfp)isc3. These genes appear as nodes in the axial

mesendoderm GRN proposed by Chan et al. [18]. In addition, egfp

allowed us to validate the transgenic line as a faithful reporter of

early gsc gene expression (Fig. S15). The time series of 3D templates

was chosen to explore gene expression dynamics from the onset of

zygotic activation at 3 hpf until early gastrulation, and encompasses

the following developmental stages: sphere (4 hpf), dome (4.3 hpf),

30% epiboly (4.7 hpf), 50% epiboly (5.3 hpf), shield (6 hpf) and late

shield (6.3 hpf) according to the staging defined at 28:50C. For each

new gene expression to be mapped, a cohort of individuals was

processed for double in situ hybridization and 3 of them were

imaged. The atlas construction methodology was established by

using one specimen of each cohort (Table S1).

Validation of the atlas to assess the relationships
between gene patterns

The atlas was constructed to be able to compare gene expres-

sion patterns from different stained specimens. Establishing spatial

relationships between gene patterns required assessing gene expres-

sion variability and calculating mean expression domains (Materials

and Methods). The expectation was that the spatial relationships

observed between two genes stained in the same embryo should be

maintained between their mean expression domains in a template.

The expression of gsc was revealed in 9 different specimens, which

comprised 8 analyzed embryos and one template, at each develop-

mental stage. It provided a paradigmatic case to calculate a mean

expression domain and assess gene variability (Fig. S16). At any

given stage, we quantified the mean distance from the complete

outer surface of each individual gsc domain (gscj ) to the closest boun-

dary point of the mean domain (gscmean), following a leave-one-out

protocol (Fig. 4b). The measured distance, which reflected both the

accuracy of our mapping scheme and the inter-individual variability

between the boundaries of the gsc expression domains, was on average

less than 12 mm, i.e. approximately one cell diameter (Fig. S17). This

accuracy error remained within the same range independently from

the thickness of the three main embryo planes (Fig. S18). Addi-

tionally, more than 80% of all the individual gscj border points were

less than one cell row away from the gscmean border, indicating that

there were no large distance discrepancies along the contours (Fig. S19).

To demonstrate that this level of accuracy was maintained in

regions far from the gsc expression domains, we replicated the

Figure 4. Exploring the 3D atlas with the visualization tool Atlas-IT. (a) Atlas-IT interface displaying the template nuclei (light blue),
segmented gene expression patterns of ntla (blue) and flh (green). (b) From left to right: equatorial, sagittal and dorsal views of the 9 individual gsc
boundaries as compared to the mean gsc domain (red) at 6.3 hpf. (c) Evolution of the oep-gscmean pair over time after being mapped onto the
template. (d) Evolution of the oep-gscoep pair over time in the analyzed embryo where they were co-stained. Scale bar 100 mm.
doi:10.1371/journal.pcbi.1003670.g004

Early Zebrafish Gene Expression Atlas
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same quality measure with another gene, tbx16, which spread

across a much larger area than gsc. With Match-IT, we added two

new tbx16 datasets, tbx16b and tbx16c, to the already existing tbx16a

expression in the atlas at 6.3 hpf (Fig. S20a). The mean distance

from the complete outer surface of each individual tbx16j domain

to the closest boundary point of tbx16mean remained under one cell

diameter (Fig. S20b). Moreover, the histogram of distances

between border points of tbx16j and tbx16mean confirmed that most

of the expression contours lay within two cell rows from each other

(Fig. S20c). Note that this quality measure was an upper bound of

the registration quality reflecting both the mapping variability and

the intrinsic inter-embryo variability.

Additionally, we confirmed that the spatial relationships between

every gene and the gscj patterns in the analyzed embryos were the

same in each template with respect to the gscmean domain. In par-

ticular, this was the case for the oep-gsc pair illustrated in Fig. 4c,d.

Analyzing a gene expression atlas with dedicated tools
Various analysis tools for the quantitative analysis of a spatio-

temporal atlas of gene expression were also developed (see

Materials and Methods). We performed an automated identifica-

tion of gene coexpression pattern dynamics in space and time,

explored clustering strategies at the cellular level to automatically

identify morphogenetic domains or spatiotemporal gene synexpres-

sion groups, and introduced an ‘‘entropy’’ analysis for gene expression.

Coexpression dynamics. Coexpression between gene pat-

terns was systematically analyzed across the atlas for all 36 possible

gene pairs and 6 developmental stages. At each time point, we

measured the number of cells that expressed a given pair of genes

with respect to the total number of positive cells for each of the

pair components. This quantification was used to construct a

coexpression matrix (Fig. 5a) and document the pairwise evo-

lution of gene coexpression with unprecedented temporal and

spatial resolution. Alternatively, the evolution over time of the

topological relationships between two gene patterns, which could

be identity, inclusion, exclusion or intersection, was displayed as a

trajectory in 2D space (Fig. S2). For example, the oep and sox32

domains went from inclusion at 4.3 hpf to intersection between 4.7

and 6 hpf to complete exclusion by 6.3 hpf. This representation

highlighted as well the similarity of the gsc and egfp patterns until

early gastrulation, a feature also captured by the high values of

Dice’s coefficient, DA,B~2DA\BD=(DADzDBD) (Fig. S22). The gsc-

egfp pair achieved an average D value of 0.77 over time, with a

standard deviation of 0.1, validating the transgenic line as an

acceptable reporter of the gsc activity at these developmental stages.

Morphogenetic domain clustering. At any given time step,

we searched for potential morphogenetic domains using 3D

clustering of the cells ci according to their gene expression profile,

~cci~(gi,1,:::,gi,9), without any a priori assumption about their

spatial location (Fig. 5b). At 6.3 hpf, the classification of the 1,194

Figure 5. Assessing gene coexpression and cell genetic profiles. (a) Matrix displaying the percentage of cells coexpressing any given gene
pair at developmental stages from 4 to 6.3 hpf (see also Fig. S21). Gene pairs were ordered according to the similarity of the evolution of their
patterns over time (Fig. S23). (b) Spatial WPGMA clustering at 6.3 hpf of the 1,194 positive cells according to the similarity of their gene expression
profiles. (c) Volume rendering, (d) lateral view and (e) coronal view of template nuclei at 6.3 hpf. Nuclei were classified according to their gene
expression profiles, which revealed 5 distinct morphogenetic domains: dorsal hypoblast (yellow), marginal dorsal epiblast (blue), dorsal epiblast
(white), paraxial and lateral blastoderm margin (red), forerunners and dorsal YSL (green). White arrowheads indicate the limits of the imaged analyzed
embryos. Upper panel, sagittal section, lower panel equatorial section passing through the embryonic shield. Scale bar 100 mm.
doi:10.1371/journal.pcbi.1003670.g005
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positive cells resulted in the identification of 5 spatial domains with

specific morphological locations associated to their particular gene

expression profiles (Fig. 5b–e and Movie S4). This clustering

strategy revealed the antero-posterior and medio-lateral patterning

of the mesendodermal tissue at the onset of gastrulation.

Synexpression groups. The identification of synexpression

groups, i.e. genes with potentially the same spatial and temporal

regulation of expression, was automated by hierarchically cluster-

ing the genes gj analyzed in the atlas according to the spatio-

temporal similarity of their expression pattern at the single cell

level, ~ggj~(cj,1,:::,cj,P). The 9 genes used in our atlas (egfp, gsc, oep,

foxa2, sox32, flh, snai1a, tbx16, ntla) were clustered into 5 syn-

expression groups compatible with previous biological descriptions

[31] (Fig. S23).

Gene expression entropy. We also measured the Shannon

entropy of gene expression. In our atlas of 9 genes, where each cell

expresses one of 29~512 possible gene expression profiles, the

entropy cannot be greater than 9 bits per cell (bpc). The entropy

that we measured increased rapidly from 2.2 bpc at 4 hpf to a

maximum of 5.7 bpc at 4.7 hpf, then slightly decreased to 5.1 bpc

at 6.3 hpf (Fig. S24a). The increase in entropy may be related

with the progressive increase in the number of non coexpressed

genes (Fig. S24b). In addition, we measured the contribution of

each gene expression profile to the global entropy. During the

analyzed period, regardless of the time step, only around 100 dif-

ferent gene profiles were expressed out of the possible 512, and

only a small number of gene profiles, between 30 and 50, were

found to be responsible for 75% of the whole entropy (Fig. S24c–d).

Finally, we demonstrated that the proposed clustering and

entropy schemes were robust against changes in the threshold

values used to segment the gene expression patterns in the atlas

(Fig. S25). In particular, we chose two genes in the atlas at 6.3

hpf: oep (coexpressed with gsc) and ntla (expressed in a larger area

than gsc). For these two expression patterns, we varied the

thresholds chosen by the biologist expert by +10% and computed

the new segmented patterns, which modified accordingly the

number of positive cells found in the atlas. The resulting entropy

was almost the same as before.

Discussion

We have designed, developed and delivered the Match-IT and

Atlas-IT software tools dedicated to the reconstruction, analysis

and visualization of a 4D atlas of gene expression in zebrafish early

embryogenesis. The atlas comprises 6 different time points between

4 and 6.3 hpf, gathering data for 9 gene patterns into 6 different 3D

templates.

So far, the only known method delivered for the reconstruction

of gene expression atlases in the zebrafish was designed by

Ronneberger et al. [21] for the brain and at late developmental

stages, when a large number of morphological landmarks could

already be recognized. Given the complexity of building a zebrafish

brain atlas at late stages, the authors imposed strong constraints on

the data in terms of staining protocols and imaging. Our own

atlasing strategy was designed to map partial 3D volumes onto

whole embryos chosen as templates. Specimens were only required

to display, in addition to any pattern of interest, nuclear staining for

single-cell counterstain and a common gene expression pattern, gsc

in the present version of the atlas, used for the registration step. This

gene was chosen as a relevant marker, with early, strong and well-

regionalized expression, to serve as a reference for constructing the

dorsal side’s gastrulation atlas. Thus we have minimal prerequisites

for data format and specimen preparation, which should facilitate

the introduction of new data into the atlas. In addition, our scheme

could be easily adapted to other vertebrate organisms, e.g. xenopus,

dogfish or lamprey, at early stages of development, when too few

morphological features are available to use landmark-based regis-

tration methods in the mapping process. The possibility of visual

inspection and, if necessary, manual correction using our Match-IT

graphical interface contributes to flexibility and accuracy when

integrating new data into the atlas and validating the results.

Resolution at the cellular scale
Our choice to work with a hybrid automated/supervised method

of nuclear center detection proved to be suitable for quantifying

certain features of gene expression pattern dynamics at the cellular

level. This opens the possibility to discuss, in terms of cell number,

the overlap between gene expression patterns and their evolution in

time. It also allows studying whether cell proliferation alone is

enough to account for the expansion of gene expression patterns,

by correlating internuclear distance and cell division, which, in

zebrafish early development, happens at constant global cell volume

(Fig. S26). On the other hand, the resolution of the atlas at the

cellular scale is a requirement to exploit the correlation between

gene expression dynamics and cell lineage. Cellular resolution enables

further mapping of the atlas onto digital specimens reconstructed

from live in toto imaging, starting with our transgenic line.

Working at the cellular resolution was also intended to tackle

the problem of gene expression quantification. Current strategies

for in situ hybridization could at best provide relative measure-

ments suitable for quantifying graded patterns and fuzzy borders

within each analyzed embryo. Such a relative quantification would

be readily available from our atlas (Fig. S10). We expect future

developments of the programmable in situ amplification technique

[7] to help achieve quantification of gene expression comparable

among different analyzed embryos at the cellular level.

Individual variability and the atlas
The relevance of the atlas relies on its ability to represent and

integrate the same information as would be obtained by inspecting

different patterns in the same specimen. This depends on the

accuracy of the registration strategies but most importantly on how

the atlas construction scheme deals with individual variability.

Every step of the mapping strategy has to cope with individual

variations in terms of shape, cell number, cell density, and vari-

ability of the reference gene pattern. In this context, the choice of

the template is crucial. The template should be closest to the mean

of the population, based on geometric parameters and gene expres-

sion. Ideally, a multiscale model of individual variability should

drive the choice of the atlas template as well as representative

reference patterns or features to guide the mapping. In our case, the

gsc pattern served as a guide for the registration step, based on the

hypothesis that its expression is symmetric with respect to the

bilateral plane. Although this is a reasonable assumption, it is an

approximation that might be confronted to other features such as

other reference gene patterns or additional morphological traits.

The templates used in this paper were visually chosen to be the

closest to the mean. Although this choice may not be fully repre-

sentative of the average morphology, the concept of average is also

not completely relevant for the released proof-of-principle atlas that

comprises 9 specimens per developmental stage. The tools released

here open the way for a broader population that could ideally

produce a more representative template.

In this context, we calculated a mean gsc expression pattern after

registering the domains from 9 different specimens. The resulting

gscmean domain could be subsequently used as a new reference to

refine the global mappings. Moreover, all the genes gathered in

the atlas could be averaged, thus preventing potentially misleading
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conclusions based on single specimens that might be outliers. The

increase in size of the cohorts will allow exploring the possible

convergence of the averaging strategy toward a single or multiple

prototypical specimens.

Tools for analyzing the atlas data
Atlas resources will only be fully exploited with the development

and use of automated analysis methods and dedicated visualization

tools. Toward this objective, we designed Atlas-IT to provide a

number of functionalities not available in any of the visualization

tools that we examined: augment/visualize/analyze raw data and

segmented data, calculate mean gene expression domains, gene

coexpression patterns, synexpression groups, and morphogenetic

domains by cell clustering. Interactive visualization and data

display are essential to reveal biologically relevant information.

The exploration of analytical methods to highlight spatial and

temporal correlations is also a major endeavor. Typically, cluster-

ing methods have been used to establish the gene expression

profiles of cells and tissues from microarray data, and more

recently to group anatomical regions according to their gene

expression profile [13],[32],[33]. Although clustering of spatial

gene expression patterns has been described elsewhere [34], it is

the first time that this method is applied to gene expression profiles

at the cellular level, f(xi,yi,zi,t,gi,1,:::gi,N )g, providing the means

to reveal morphogenetic domains and synexpression groups.

Additionally, whereas the Shannon entropy has been used to

measure gene expression complexity [35], it is also the first time

that this measure is applied to spatially mapped data. Introducing

the concept of ‘‘genetic entropy’’ in the analysis of atlas data offers

a new systematic way to assess cell diversification and its under-

lying genetic complexity. This analysis proved to be robust against

the noise due to errors in the segmentation and/or spatial map-

ping. Although a relatively high proportion (100 out of 512) of all

possible gene expression profiles were found in the atlas, only 30 of

them (i.e. *6%) produced 75% of all the atlas genetic information

(Fig. S24).

Conclusion
Making a gene expression atlas is a necessary step toward the

integration of multiscale and multimodal data, which should be

organized, displayed and annotated to provide and share as much

relevant information as possible. Developmental biology remains

far behind the biomedical field in the construction and sharing of

this type of resources. Thus, before reaching a consensus and

establishing standards in the field, a lot remains to be explored in

terms of different schemes, their flexibility, their potential and

limitations. The atlas construction process presented here allowed

us to address some of the most difficult biological questions linked

to individual variability, its components and characteristic scales.

A gene expression atlas often comprises hundreds or even thousands

of genes [36]. On the other hand, resources can grow and diffuse

only if deployed together with appropriate algorithms and analytical

tools. Our novel construction and manipulation methods, which led

to the first release of the zebrafish blastula and early gastrula atlas,

are meant as a contribution toward the complete reconstruction of

the zebrafish embryonic physiome (or ‘‘embryome’’) under different

genetic and environmental conditions.

Materials and Methods

In situ hybridization
In vitro fertilization was used to synchronize the spawn from wild

type (wt) or transgenic crosses from the custom made fish line

Tg(24gsc:egfp)isc3. Embryos, staged according to Kimmel et al.

[37], were fixed 24 h at 40C in PFA 4% then rinsed 3 times in PBS

0.1% Tween and stored at {200C in ethanol. Double fluorescent

in situ hybridization (FISH) was carried out as described in Brend

et al. [38] using antisense RNA probes labeled with fluorescein or

digoxygenin. Probes were detected with an anti-digoxigenin-POD

Fab fragment and anti-fluorescein-POD Fab fragment (Roche)

used at 1:250 in a blocking reagent solution (Roche). Probe

detection was done with Cy3 or Cy5 mono NHS ester (Amersham)

or NHSFluoresceine (Pierce) tyramides as POD substrates. Nuclei

were stained in DAPI (Invitrogen D3571).

Image data acquisition
As an input, our methodology used 3D images acquired by

confocal laser scanning microscopy from fixed zebrafish embryos

with fluorescent staining of gene expression patterns and DAPI

counterstain to highlight cell nuclei. Image acquisition was per-

formed with a Leica SP2 two-photon (for DAPI) and confocal laser

scanning upright microscope with a Leica objective HCX APO

20X/0,5W U-V-I or HCX APO 10X/0,3. Embryos were

mounted in a teflon mold at the bottom of a 3 cm Petri dish filled

with 16PBS, 01% twin 20, and maintained properly oriented with

1% agarose.

The nuclei and gsc expression domains were systematically

revealed in all the analyzed embryos and templates, and used to

compute the gene expression mappings. In addition to the ref-

erence gene, gsc, each analyzed embryo was stained for the

expression of another gene of interest. The template data was

obtained by imaging the whole embryo with a 106objective while

the analyzed specimens were imaged with a 206 objective

providing a 3D view limited to the dorsal side of the embryo

with a better spatial resolution (Fig. 2a,b and Movie S1).

The fluorescent in situ hybridization used a state-of-the-art

protocol [38] and reproduced standard data (zfin.orgzfin.org).

More details about data acquisition parameters and specimen

features can be found in Table S1 and Fig. S1, S2, S3, S4, S5,
S6, S7.

Algorithmic details of Match-IT and Atlas-IT
The Match-IT custom-made code was implemented in ITK

and Matlab, including the MathWorks package ‘‘geom3D’’ redis-

tributed under a BSD license. A public release of this software,

together with sample datasets and a user guide, accompanies the

publication of this article, http://bioemergences.iscpif.fr/documents/

MatchIT.zip. The segmentation of the gene expression patterns in

each analyzed embryo was carried out by a thresholding operation

supervised by a biologist to best define the domain features. This

operation was followed by ‘‘morphological closing’’ [39], a mathe-

matical transformation based on a spherical structuring element the

size of a typical cell diameter (i.e. internuclear distance). Finally, a

converse ‘‘morphological opening’’ operation left only the largest

connected pattern. The common referential extraction started by

applying a spherical fit to the outer cell nuclei in all analyzed

embryos and templates. The blastoderm margin was identified with

a plane, P1, fitted to the 5% southernmost nuclei. The bilateral

symmetry plane, P2, was found by connecting the spherical model

center and the center of mass of the gsc segmented domain

perpendicular to the blastoderm margin. The origin of the triplet

was placed at the latitude of the blastoderm margin, and the

longitude was defined by the center of mass of the gsc domain. The

registration ([10],[40]) of the analyzed embryo images on the

template employed the ITK registration toolkit to optimize the

cross-correlation metric between the embryo shape of the template

and that of the analyzed embryos according to a step gradient opti-

mizer. The embryo shapes were weighted by the inverse distance
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function to the external blastoderm contour (i.e. half the average

internuclear distance away from the outermost nuclear layer).

The Atlas-IT custom-made visualization platform was imple-

mented in Processing. A public release of this software, together

with sample datasets and a user guide, accompanies the publication

of this article, http://bioemergences.iscpif.fr/documents/AtlasIT.zip

Analysis tools for spatiotemporal gene expression atlases
3D clustering of cells according to their gene expression

profiles. Template cells at one given developmental stage were

grouped according to the similarity of their gene expression

profiles using a hierarchical clustering scheme. For a given observed

time t, we associated a gene expression vector to each of the

detected M cells:~cci~(gi,1,:::,gi,N ), where N~9 is the number of

genes under study, gi,j is 1 if the i-th cell expressed the j-th gene, and

is 0 otherwise. Then, a weighted pair group method with averaging

(WPGMA) was performed on these vectors based on the Euclidean

distance (Fig. 5). This method was implemented with the Statistics

toolbox of Matlab.

3D+time clustering of genes according to their spatiotem-

poral regions of expression. Here the analysis involved the

totality of cells across all acquisition times. For each of the N~9
genes under study, we associated a spatiotemporal expression

vector: ~ggj~(cj,1,:::,cj,P), where P is the total number of cells

observed across all the observation times: P~
P6

k~1 Mk~55,759,

with Mk being the number of cells observed at the k-th time of

acquisition. For the j-th gene, the i-th coordinate of that vector,

cj,i, was set to 1 if the i-th cell expressed that gene, and 0

otherwise. Clustering the genes according to their associated

region of expression vectors allowed identifying synexpression

groups [41]. We used the same WPGMA algorithm based on the

Euclidean distance and Matlab implementation (Fig. S23).

Shannon entropy of gene expression. We used information

theory to measure an ‘‘entropy’’ for gene expression. We consider

that the gene expression ~cci observed in the i-th cell (1ƒiƒM,

where M is the number of cells) is the value taken by a discrete

random variable Gi among all possible N-uples (gi,1,:::,gi,N ) of 0’s

and 1’s, i.e. all the integers in the interval ½0,2N{1�. Assuming

that the random variables G1,:::,GM are independent and iden-

tically distributed, e.g. with the same law as a given random variable

G, their common entropy is: H(G)~{
P2N {1

k~0 pk log2 pk, with the

usual conventions that pk denotes the probability of event G~k and

we set 0 log20~0, where 2 was chosen as the base in order to

express the result in bits. Each pk can be estimated from the

observed sample (~cc1,:::,~ccM )~((g1,1,:::,g1,N ),:::,(gM,1,:::,gM,N )) by

setting p̂pk~nk=M, where nk is the number of template cells

showing the k-th expression N-uple. Replacing each pk in the

formula by the corresponding p̂pk gives an estimate for H(G). Under

the same hypotheses the total entropy for the population of M cells

is equal to M:H(G), but if the Gi are not independent, the total

entropy of the population (defined using a single random variable to

generate the combined expressions of all the cells in a population,

and requiring the observation of several populations to permit

estimation) can be less than M:H(G).

Computation of the mean gsc expression domain
At each developmental time point, a total of 9 different analyzed

embryos with gsc staining were mapped onto the template where

gsc expression was also revealed. Consequently, every nucleus, ni,

in the template was assigned a value, Vi, ranging from 0 to 9,

depending on the number of analyzed patterns that led to its

selection as positive for the expression of gsc. We used a Voronoi

diagram to model the cell around each nucleus and assigned these

cells their corresponding value Vi. In order to measure the

variability of the resulting mean gsc expression, we studied the

profile of V across 3 cutting lines centered on the mean gsc

centroid and following the specimen anatomy along the lateral,

radial and sagittal directions respectively (Fig. S16).

Evaluation of the entropy and clustering robustness with
respect to gene segmentation thresholds

We demonstrated that the proposed clustering and entropy

schemes are robust against changes in the thresholds employed to

segment the gene expression patterns in the atlas. In particular, we

chose two gene expressions in the atlas at 6.3 hpf: oep, which co-

expresses with gsc, and ntla, which spreads through a much larger

area than gsc. For the expression of these two genes, we modified

by +10% the thresholds chosen by the biologist expert, computed

the new segmented patterns and modified accordingly the number

of positive cells found in the atlas. The entropy and clustering

resulting from these modified atlases were compared to the ori-

ginal atlas and showed to be robust against these threshold

changes (Fig. S25). To compare the modified vs. the original

clustering (Fig. 5b–c) we used two metrics previously employed in

literature: a) the correlation between the distance matrix that

generate the modified and the original clustering hierarchical trees

[42], b) the cophenetic correlation, a measure of how faithfully a

hierarchical tree preserves the pairwise distances between the

original data points [43], [44]. In this later case, the cophenetic

coefficient was extracted by comparing the original hierarchical

tree to the new pairwise distances generated by the modified

atlases. To compare the modified vs. the original entropy we

computed the difference in number of bits. The biggest difference

between all the modified and the original atlas was 0.15 bits in

entropy and a 0.03 decrease for both the cophenetic coefficient

and the correlation between distance matrix (Fig. S25). To put

these values in perspective, the minimal possible variation to the

atlas (changing the value of one gene expression for one cell only)

had an impact of 0.0003 bits of entropy and 0.005 in cophenetic

correlation, whereas a substantial variation to the atlas (e.g. chang-

ing one third of the atlas values or substituting it by a random

atlas) had an impact of 0.83 and 3.6 bits of entropy and 0.52 and

0.79 in cophenetic correlation respectively.

Supporting Information

Figure S1 Raw data rendering of sox32 expression
pattern. For every developmental stage, four panels are

displayed: Top right: gsc expression (red), bottom right: sox32

(green), top left: gsc and sox32 expressions viewed from the dorsal

side, bottom left: gsc and sox32 expressions viewed from the ventral

side. The analyzed embryo’s nuclei are shown in gray.

(TIF)

Figure S2 Raw data rendering of tbx16 expression
pattern. For every developmental stage, except at 4 hpf when

there is no tbx16 expression, four panels are displayed: Top right:

gsc expression (red), bottom right: tbx16 (green), top left: gsc and

tbx16 expressions viewed from the dorsal side, bottom left: gsc and

tbx16 expressions viewed from the ventral side. The analyzed

embryo’s nuclei are shown in gray.

(TIF)

Figure S3 Raw data rendering of oep expression
pattern. For every developmental stage, four panels are

displayed: Top right: gsc expression (red), bottom right: oep (green),

top left: gsc and oep expressions viewed from the dorsal side, bottom
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left: gsc and oep expressions viewed from the ventral side. The

analyzed embryo’s nuclei are shown in gray.

(TIF)

Figure S4 Raw data rendering of snai1a expression
pattern. For every developmental stage, except at 4 hpf when

there is no snai1a expression, four panels are displayed: Top right:

gsc expression (red), bottom right: snai1a (green), top left: gsc and

snai1a expressions viewed from the dorsal side, bottom left: gsc and

snai1a expressions viewed from the ventral side. The analyzed

embryo’s nuclei are shown in gray.

(TIF)

Figure S5 Raw data rendering of foxa2 expression
pattern. For every developmental stage, four panels are dis-

played: Top right: gsc expression (red), bottom right: foxa2 (green),

top left: gsc and foxa2 expressions viewed from the dorsal side,

bottom left: gsc and foxa2 expressions viewed from the ventral side.

The analyzed embryo’s nuclei are shown in gray.

(TIF)

Figure S6 Raw data rendering of ntla expression
pattern. For every developmental stage, four panels are dis-

played: Top right: gsc (red) and ntla (green) expressions viewed

from the dorsal side, bottom right: gsc and ntla expressions viewed

from the ventral side, top left: gsc expression, bottom left: ntla

expression. The analyzed embryo’s nuclei are shown in gray.

(TIF)

Figure S7 Raw data rendering of flh expression pattern.
For every developmental stage, four panels are displayed: Top

right: gsc (red) and flh (green) expressions viewed from the dorsal

side, bottom right: gsc and flh expressions viewed from the ventral

side, top left: gsc expression, bottom left: flh expression. The

analyzed embryo’s nuclei are shown in gray.

(TIF)

Figure S8 Raw data of one analyzed embryo mapped
onto the template at 6.3 hpf. (a) Raw data rendering of one

analyzed embryo showing the nuclei (gray), gsc expression (red)

and tbx16 expression at 6.3 hpf. (b) Raw data rendering of the 3D

template showing the nuclei (blue) and gsc expression (orange) at

6.3 hpf. (c) Analyzed embryo’s nuclei (gray) and tbx16 expression

(green) are showed superimposed on the template’s nuclei (blue)

after they were mapped with Match-IT.

(TIF)

Figure S9 Evaluation of nuclear center detection. (a)

Volume rendering of nuclear raw data (blue) together with the

manually labeled ‘‘ground truth’’ (GT, red) for one analyzed

embryo dataset. (b) Centers produced by our methodology (visually

interactive choice of the optimal parameters by an expert) com-

pared to the manually labeled GT. Out of the 689 cells in GT, there

were 664 correct detections (blue), 4 false positives (FP, red), and 25

false negatives (FN, yellow), with a resulting error rate of 4.2%

(error~
FPzFN

689
). The chosen parameters were a 7% threshold,

and 2.8 mm and 12 mm standard deviations for the two Gaussian

kernels. A detection was considered correct when lying less than

4.2 mm (i.e. the approximate radius of the smallest nucleus in the

dataset) from GT. (c) Centers produced by decreasing the detection

threshold to 6%. As a consequence, the number of FN (yellow) is

reduced to 20 at the cost of raising the number of FP (red) to 14 with

a resulting error rate of 4.9%. (d) Centers yielded by increasing the

detection threshold chosen by the expert to 8%. As a consequence,

the number of FP (red) is reduced to 1 at the cost of raising the

number of FN (yellow) to 40 with a resulting error rate of 5.9%.

Scale bar 50 mm. (e) Variations of the error rate with respect to

changes in the threshold and standard deviations. Blind results

obtained by an expert following our methodology (red square)

showed to be robust against possible variations around the selected

parameters.

(TIF)

Figure S10 Gene expression quantification. 3D rendering

of the relative gene expression levels measured at the cellular scale

for tbx16 at 6.3 hpf. The gene expression levels range from 0 (dark

blue) to 1 (red). Centered in each nucleus, a sphere with a radius

equal to the average internuclear distance was used to measure the

mean intensity values of the raw tbx16 expression. The mean

background intensity, measured in the image regions outside the

embryo, was subtracted from these values, which were also

compensated by a depth penetration factor computed from the

attenuation observed on the nucleus channel. Scale bar 50 mm.

(TIF)

Figure S11 Evolution of the internuclear distance over
time. The mean internuclear distance (in mm) is calculated for 9
different specimens at each stage. The observed decrease fits with

an average of approximately 1:75 divisions per cell between 4 and

6:3 hpf and an exponential decrease in the cell cycle length. This is

in agreement with previous observations in literature and validates

the accuracy of the center detection procedure. Standard deviation

is interpreted as reflecting individual variations.

(TIF)

Figure S12 Quantification of the morphological vari-
ability among individual embryos. In 95% of the matched

individuals, the radial size differs by less than 10% from the mean

radius at each developmental stage.

(TIF)

Figure S13 Positive cell selection in the template. (a)

Raw tbx16 expression pattern (green) from the analyzed embryo

mapped onto the template’s raw nuclei (blue). (b) Template nuclei

(blue) falling into the analyzed gene expression domain are

considered positive (green). White arrowheads indicate the limits

of the imaged analyzed embryo. Scale bar 100 mm.

(TIF)

Figure S14 Variation in the number of positive cells
between analyzed embryos and template as a function of
their relative internuclear distance. More than 95% of the

analyzed embryos fall within a +10% deviation from the identity

function, yielding a statistical p-value of 0:04. The two specimens

deviating from this norm in the plot come from a very early

developmental stage, 4:3 hpf, when staging is more difficult due to

the lack of morphological traits.

(TIF)

Figure S15 Evolution of the egfp-gsc pair through time
after being mapped onto the template. Atlas-IT interface

displaying the template nuclei (dark blue) and the coexpression

(yellow) between the gscegfp and egfp expressions. Scale bar 100 mm.

(TIF)

Figure S16 Variability of the gsc gene expression
pattern. (a) Volume rendering of the aggregated gsc expressions,

gscsum, together with the three cutting lines along which variability

is measured: lateral line (red), radial line (blue) and sagittal line (green).

The black arrowhead indicates the gscsum centroid. (b–f) Left panel:

From left to right: equatorial, sagittal and dorsal orthoslices

passing through the gscsum expression domain at the level of its

centroid. The color code indicates the number of gsc expression

repetitions in the template cells based on the analysis of the 9
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available specimens. Right panel: Profile showing how many

embryos (out of the 9 mapped individuals) expressed gsc along the

three cutting lines centered at the gscsum centroid as displayed in

(a). Expression variability appears as additional rows of cells around a

core domain (where cells are positive for all the observed specimens).

The dotted lines indicate the borders of the gscmean pattern.

(TIF)

Figure S17 Quantification of pattern differences: eval-
uation of gsc expression variance after mapping. Each of

the individual gsc segmented domains mapped onto the atlas were

compared to the mean gsc following a leave-one-out strategy at

every developmental stage between 4.3 and 6.3 hpf. The error bars

represent the mean and the standard deviation of the distance, in

mm, between the individuals’ gsc borders and their corresponding

gscmean. The average internuclear distance (dotted red line) ranges

from 14 mm at 4.3 hpf down to 10 mm at 6.3 hpf (see Fig. S11a).

As discussed for Drosophila embryos, individual variations in gene

expression patterns, in terms of positive cell numbers or domain

topology, could arise from gene expression regulation itself, and

from geometric variations such as embryo size and cell proli-

feration rate variability. In the zebrafish early embryo, overall size,

internuclear distance, and cell proliferation rate are dependent

parameters (Fig. S11 and Fig. S26b). Internuclear distance,

expected to decrease through cell divisions until the end of

gastrulation (10 hpf), was indeed variable among specimens, but

converged toward similar values (Fig. S11a). There was however

no clear correlation between embryo size and internuclear distance,

possibly indicating variability in the proliferation rate and/or

developmental speed of our batches of embryos. Because of the

difficulty to separate the different components of variability, our

atlasing strategy did not attempt to minimize it but introduced the

calculation of mean expression domains (Fig. S16).

(TIF)

Figure S18 Quantification of pattern differences on the
main embryo planes. Mean and standard deviation of the

distance, in mm, between the individuals’ gsc borders and their

corresponding gscmean at 6.3 hpf. Distances were obtained using

the expression contours in 3D (as performed in Fig. 17) and

restricting them to the three main embryo planes: equatorial,

sagittal and dorsal (see Fig. 4b and Fig. S16a).

(TIF)

Figure S19 Quantification of pattern differences along
the domain borders. For each developmental stage: histogram

of the Hausdorff distances from the all the points placed at the

complete outer border of each individual’s gsc expression to the

closest boundary point of the gscmean pattern. The vast majority of

these boundaries is within two cell rows from gscmean (cell diameter

is 12 mm). This constitutes an upper bound for the registration

quality, as it reflects the variability in the mapping procedure plus

the intrinsic interembryo variability.

(TIF)

Figure S20 Quantification of pattern differences: eval-
uation of tbx16 expression variance after mapping. (a)

Each of the individual tbx16 segmented domains mapped onto the

atlas were compared to the mean tbx16 following a leave-one-out

strategy at 6.3 hpf. (b) Mean and standard deviation of the

distance, in mm, between the individuals’ tbx16 borders and the

tbx16mean pattern. The average internuclear distance (dotted red

line) is 10.3 mm at 6.3 hpf (see Fig. S11a). (c) Histograms of the

distance, in mm, between the points located at individual tbx16

borders to the closest point at the tbx16mean border.

(TIF)

Figure S21 A synthetic view of gene coexpression pairs
and their evolution through time. (a) Gene coexpression

pairs fell into 5 possible categories defined by gene pattern

similarity: A and B expression domains exclude each other

(bottom left), A is included in B (bottom right), B is included in A
(top left), A is identical to B (top right), A and B domains partially

overlap (center). (b) This chart allows a visualization of the

segregation of oep-sox32 coexpression through time. (c) Gene

pattern relationships and their evolution in time for the 36 possible

pairs. Coherence with a priori knowledge has been checked and

demonstrates the power of the atlas construction strategy and

further analysis tools.

(TIF)

Figure S22 Evolution of similarity coefficient for all pos-

sible gene pairs. Dice’s similarity coefficient: DA,B~
2DA\BD
DADzDBD

was calculated for the 36 gene pairs, which were then arranged in

descending order according to DA,B at 6:3 hpf.

(TIF)

Figure S23 Gene synexpression groups defined by their
spatiotemporal clustering patterns. (a) A hierarchical

clustering of genes according to the similarity of their spatiotem-

poral regions of expression defined 5 different groups with

characteristic spatiotemporal behaviors. For each group, a color

code (column to the right of the panel) was displayed to indicate

whether cells expressed 0, 1, 2 or 3 genes. The 8 analyzed genes

fell into the following synexpression groups: gsc-oep-foxa2, sox32, flh,

snail1a, ntla-tbx16. (b) Visualization of the synexpression groups

identified in (a). Arrowheads indicate the limits of the imaged

volume in the analyzed embryos.

(TIF)

Figure S24 Gene expression entropy. (a) Gene expression

entropy as a function of time: the Shannon entropy provides a

measurement of the complexity of a cell’s gene expression profile.

(b) Percentage of positive cells for each gene expression as a

function of time. A gene expression (inhibited until a certain time

step) that would suddenly start expressing would make the entropy

increase by 1 bit at most. (c) Quantity of information (in bits)

contributed by each gene expression profile at each time step.

Expression profiles are sorted by decreasing contribution to the

information. Only the first 150 profiles are plotted. We can

observe that many of the possible 29~512 gene expression profiles

are actually never used, and most of the information is conveyed

by a small number (around 100) of representative combinations.

(d) Number of gene expression profiles required to convey 60%

(red line), 75% (green line) and 90% (blue line) of the total entropy

at each time step. The ascending slopes from 4.0 to 5.3 hpf are

compatible with the time trend toward more equidistribution

visible in (c).

(TIF)

Figure S25 Robustness of entropy and clustering with
respect to gene segmentation thresholds. (a) From left to

right: correlation between the distance matrix, cophenetic coeffi-

cients and entropy of the original and modified atlases. Threshold

modifications in the expressions of oep and ntla (labeled ‘oep-10%’,

‘oep+10%’, ‘ntla-10%’, ‘ntla+10%’) showed metrics similar to the

original atlas (labeled ‘atlas’) or a minimally modified atlas (labeled

‘one-cell’), and are all grouped around one value (green rectangle).

They are clearly distinct from other, severe modifications in the

atlas, such as substituting one third of its values (labeled ‘one-

third’) or using a randomly generated atlas (labeled ‘random’). (b)

Original cell values for ntla (left) and oep (right) in the atlas at 6.3

Early Zebrafish Gene Expression Atlas
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hpf (as seen in Fig. 5b) are compared to the values obtained after

modifying by +10% the thresholds originally chosen by the

biologist expert.

(TIF)

Figure S26 Correlation between cell proliferation and
the expansion of gene expression domains. (a) Evolution of

the number of positive cells for each of the 9 considered gene

products. (b) Temporal evolution of the number of cells in the

region of interest (ROI) centered on the dorsal side of each

analyzed embryo as shown in (c). The cell proliferation rate

extracted from this experiment matched previous observations

from the literature. (c) Dorsal region of interest (ROI) used to

measure the cell proliferation rate in each analyzed embryo. (d)

Ratio between the increase rate of positive cells for a given gene

and the estimated overall cell proliferation rate. This ratio

indicates whether the dynamics of gene expression patterns can

be explained by sustained expression in proliferating cells or

requires upregulation (such as egfp by 6.3 hpf) or downregulation

(such as sox32 by 6.3 hpf).

(TIF)

Movie S1 3D rendering of the raw data from one
analyzed embryo and the template used to construct
the atlas model at 6.3 hpf. Both analyzed embryo and

template were imaged from the dorsal side but otherwise randomly

oriented. After registration with Match-IT, the expression patterns

stained in the analyzed embryo, gsctbx16 (red) and tbx16 (green) are

gathered in the atlas together with the gsctemplate (orange). This

movie is available as Supplementary Material to this paper and at

http://bioemergences.iscpif.fr/documents/MovieS1-RawData.wmv.

(MP4)

Movie S2 Step-by-step procedure to map an analyzed
embryo onto the atlas model with Match-IT. This movie is

available as Supplementary Material to this paper and at http://

bioemergences.iscpif.fr/documents/MovieS2-MatchIT.wmv.

(MP4)

Movie S3 Visualization and analysis of the final atlas
model with Atlas-IT. This movie is available as Supplementary

Material to this paper and at http://bioemergences.iscpif.fr/

documents/MovieS3-AtlasIT.wmv.

(MP4)

Movie S4 Clustering of cells according to their gene
expression profile. See also Fig. 3. This movie is available as

Supplementary Material to this paper and at http://bioemergences.

iscpif.fr/documents/MovieS4-CellClusters.wmv.

(MP4)

Software S1 Match-IT: A software package to map gene
expression data at the cellular-scale onto an atlas model.
(a) Main window. b) Validation Graphical User Interface (GUI). A

tutorial on using Match-IT can be found as an annex to this

document. The Match-IT software package together with its

tutorial and representative datasets can be downloaded from the

Bioemergences website http://bioemergences.iscpif.fr/documents/

MatchIT.zip.

(TIF)

Software S2 Atlas-IT: A software package to visualize
and analyze an atlas of gene expression at the cellular
scale. A tutorial on using Atlas-IT can be found as an annex to

this document. The Atlas-IT software package together with its

tutorial and representative datasets can be downloaded from the

Bioemergences website http://bioemergences.iscpif.fr/documents/

AtlasIT.zip.

(TIF)

Table S1 Acquisition details of the early zebrafish
microscopy datasets included in the atlas. ‘‘Usage’’ column:

a = included in the atlas, t = template. ‘‘Genotype’’ column:

WT = wild type. ‘‘Detection’’ column: ISH = in situ hybridization.

(TIF)

User Guide S1 Match-IT User Guide: A step-by-step
protocol. This user guide is available as Supplementary Material

to this paper and at http://bioemergences.iscpif.fr/documents/

MatchIT.zip.

(PDF)

User Guide S2 Atlas-IT User Guide: A step-by-step pro-
tocol. This user guide is available as Supplementary Material to

this paper and at http://bioemergences.iscpif.fr/documents/AtlasIT.

zip.

(PDF)
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26. Rübel O, Weber G, Huang M, Bethel E, Biggin M, et al. (2010) Integrating data

clustering and visualization for the analysis of 3D gene expression data. IEEE/

ACM Transactions on Computational Biology and Bioinformatics 7: 64–79.

27. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, et al. (2012)
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