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ABSTRACT

The understanding of the embryogenesis in living systems

requires reliable quantitative analysis of the cell migration

throughout all the stages of development. This is a major

challenge of the ”in-toto” reconstruction based on different

modalities of ”in-vivo” imaging techniques -spatio-temporal

resolution and image artifacts and noise. Several methods for

cell tracking are available, but expensive manual interaction

-time and human resources- is always required to enforce co-

herence. Because of this limitation it is necessary to restrict

the experiments or assume an uncontrolled error rate. Is it

possible to obtain automated reliable measurements of mi-

gration? can we provide a seed for biologists to complete

cell lineages efficiently? We propose a filtering technique that

considers trajectories as spatio-temporal connected structures

that prunes out those that might introduce noise and false pos-

itives by using multi-dimensional morphological operators.

Index Terms— Mathematical morphology, embryogene-

sis, cell tracking, multi-scale filtering, ”in-vivo” imaging

1. INTRODUCTION

Developmental biology is undergoing a revolution [1][2] in

the recent years thanks to the imaging techniques that allow

fast acquisition and reconstruction of temporal sequences of

3D images defining a 3D + t data domain [3]. These mi-

croscopy techniques make possible the ”in-vivo” observation

of the embryogenesis for its digitalization and quantitative

analysis [4][5] helping to the understanding of morphogen-

esis of living organisms. This is still a very open field as em-

bryos are complex systems formed by many interconnected

processes at different scales and influenced by multiple inter-

nal and external factors.

Image processing and computational analysis play a very

important role in this research paradigm as automated and

semi-automated methods are required to obtain quantitative

measurements[6][7]. From the quantitative analysis at the

cell level, the explanation of the morphology of higher level

structures like tissues or organs is expected. One of the most

interesting goals is to reconstruct the cell migration with ac-

curacy, so phenomena can be contextualized in the embryo-

genesis dynamics.

Although, plenty of cell tracking methods exist, the task

remains as a challenge due to the limitations of ”in-vivo”

imaging: artifacts, signal to noise ratio, spatio-temporal res-

olution, high density of cell populations and no distinctive

features or markers for each trajectory. The general approach

for cell tracking implies the segmentation of cell nuclei in 3D
images for the posterior time linking [8]. This strategy is very

sensitive to the mentioned factors resulting in false trajecto-

ries that bring a high level of uncertainty when observing sev-

eral stages of development. Additionally, mitosis detection

can hardly be performed as it requires faster imaging. There-

fore, cell tracking has to be supervised to enforce coherence

in the estimation of the migration.

The proposed method is motivated from a practical per-

spective, discarding those trajectories that introduce uncer-

tainty in the migration reconstruction. By working on the

3D + t domain, we profit from integrated spatio-temporal

criteria, identifying coherent trajectories and pruning out the

rest. The output is a coherent subset of cell migration trajec-

tories in 3D+twindows of analysis. Besides, this subset will

fasten the process of correction and completion of the whole

cell lineage as the context is useful for biologists to annotate

trajectories. In the next section we overview the morpholog-

ical operators used to implement the method. In section 3,

we describe the method in detail. Sections 4 and 5 depict the

experiments and the obtained results. The last section closes

with conclusions and future work.

2. SPATIO-TEMPORAL MULTISCALE ANALYSIS

2.1. Mathematical morphology operators

2.1.1. Area and volume opening and 3D granulometries

Area opening is a connected operator based on the notion

of surface area. The grey tone area opening of f of size

λa, denoted γa
λa
(f), is given by: γa

λa
(f)(x) = sup{h ≤

f(x) | A(γc
x(Xh(f))) ≥ λa}, where A(X) is the area of
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X . Volume opening allows us to weight the size by the inten-

sity within the surface area: γv
λv
(f)(x) = sup{h ≤ f(x) |

V (γc
x(Xh(f))) ≥ λv}, being V (X) the sum of the intensity

within X . Both attribute opening/closing can be used to per-

form 3D granulometries of the spatial scales. Applying this

analysis to ”in-vivo” microscopy images, it is possible to ap-

proximately segment cell nuclei [9].

2.1.2. Spatio-temporal granulometries using morphological
reconstruction

Previous operators extended to the 4D domain allow the char-

acterization of the spatio-temporal scales of objects in time.

However, this extension brings more degrees of freedom, so

it is necessary to establish spatial and temporal constraints

to successfully analyze specific scales. Thus, we require a

spatio-temporal analysis depending on de-correlated spatial

and temporal scales f(λ3d, δt) being the former the spatial

constraint and the latter the time interval of observation -3D+
t domain-. This is consistent with the definition of a trajectory

as a spatio-temporal connected structure -a nucleus moving

along time frames-. This operator is composed of an attribute

opening that works in the spatial sub-domain -3D of 3D + t-
and a causal-anticausal 3D + t morphological reconstruction

by dilation [10] that ensures the temporal connectivity of the

structure throughout the time interval.

To apply this operator directly in the 3D + t image, a

3D+ t structuring element -SE- has to be defined. Instead of

using a 4D − ball, we choose 3D + t tubular structures that

correspond to a 3D−ball that remains still in time [11]. These

SEs allow highlighting the spatio-temporal connectivity of

trajectories to perform a 3D + t segmentation ”in one step”.

3. METHOD DESCRIPTION

Cell lineage in the 3D + t domain -even in different imag-

ing modalities- can be defined as a hyper-tree composed of

spatio-temporal branches -trajectories-. Due to artifacts and

noise, the lineage appears as a grayscale 3D + t blob where

the tree branches might be interconnected or interrupted -

insufficient temporal resolution-. We aim at pruning the con-

nected hyper-structures to extract the underlying hyper-tree.

We propose the method depicted in Fig.1 to achieve this

pruning. The spatio-temporal operators help obtaining con-

sistent trajectories by imposing spatial constrains and enforc-

ing temporal connectivity: 3D false positive detections do un-

likely propagate consistently in time. Final refinement comes

from labeling each trajectory and automatically discarding the

results by analyzing their topology. However, due to memory

limitations to process 3D + t data and the problems to image

mitosis at the right temporal scale force us to consider only

3D+t windows of the hyper-tree. Also, changes through em-

bryogenesis stages demand re-calculating the parameters. A

1D+T synthetic example with three levels of intensity -black,

grey, white- is presented in Fig.2 to illustrate the method.

Fig. 1. Method workflow.

3.1. Spatial filtering by attribute openings

We filter the image with 3D attribute (area/volume) openings

output=openingλmin-openingλmax, imposing spatial con-

strains to the branches, ”cutting off” at some level to match

this range. These attributes mean the spatial characterization

of the nuclei, so characterizing them is critical to adjust the

pruning to disconnect merged trajectories (see Fig.2).

Fig. 2. Left: Three level grayscale synthetic image in 1D + t
domain [t0, tf ]. Independent trajectories (gray to white) may

be interconnected at some gray level Right: Applying the

3D spatial filtering by attribute openings, weakly connected

branches are ”disconnected” (independent trajectories or tra-

jectories with sharper movements).

3.2. Forward and backward reconstruction in time

The causal and anticausal reconstructions enforce the connec-

tivity within the interval of the 3D+ t window, removing the

hanging or incomplete branches. Applying causal reconstruc-

tion using the proposed SE and the first frame as marker, we

impose connectivity forwards. Then, the resulting image is

reconstructed backwards using the last frame as marker im-

posing connectivity backwards. Due to the reconstruction

properties, the resulting image features consistent branches

as 3D + t regional maxima (see Fig.3).

The strategy ensures the inconsistencies in the 3D anal-

ysis are not propagated in time. The longer the interval, the

more consistent the filtering is, but with the limits imposed by

capturing many cell divisions producing disconnections and
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Fig. 3. Left: Anticausal reconstruction imposes the maxima

in t0 as 3D+t maxima. Right: Causal reconstruction imposes

the maxima in tf as 3D + t maxima. Therefore, we obtain

branches as 3D + t regional maxima only for connected tra-

jectories throughout the interval.

the computational cost. Other undesired windowing effect is

the pruning of trajectories getting in and out which should be

not significant. Therefore, the optimal size and interval of the

3D + t window are critical.

3.3. Spatio-temporal trajectories analysis

The resulting branches are candidate trajectories that can be

labeled as 3D + t objects using the SE. In an automated

analysis, we can decompose each 3D + t object in different

3D sections, where each section is an hypothesis of the mov-

ing nucleus. By imposing criteria to these hypothesis we can

refine the filtering obtaining a coherence-enhanced set of tra-

jectories (see Fig.4).

Fig. 4. Each 4D regional maximum is labeled as a trajectory.

In general, the resulting 3D + t objects can be classified

within subsets belonging to the set Trajs(n,m), where n is

the number of 3D objects in the first frame and m the number

of 3D objects in the last frame. This means that a 3D + t
object starts with n branches and ends up with m. However,

as trajectories do not divide backwards, coherent trajectories

can only belong to Trajs(1,m). Moreover, as mitosis pro-

duce two children, m has to represent a coherent number of

trajectories for the interval of analysis. Even so, it would be

necessary to check the coherence of those sets as they might

contain false mitosis. Therefore, the set containing only cor-

rect solutions a priori is Trajs(1, 1) -trajectories that did not

divide-. We assume that m will always reflect the divisions.

4. EXPERIMENTS

We have tested the method using in-vivo images of a wild-

type Zebrafish embryo injected at the fertilization with the

mRNA encoding fluorescent H2B/mcherry protein to stain

nuclei. The dataset was acquired 4 hours post fertilization

(hpf) with a time-lapse, two-photon scanning microscopy

technique with z-axis orientation from the animal pole. Data

defines a 3D + t domain with spatial isotropic resolution

1.37μm3 and a time step of 67 seconds (see Fig. 5).

Fig. 5. Raw data after collapsing all frames into a 3D volume.

It can observed the higher noise going from 3D to 4D.

We have performed the multi-scale analysis for a 3D + t
window during the gastrulation of 10 time steps and con-

taining 461 cell trajectories. The number of mitosis can be

disregarded as well as the trajectories getting in and out, so

that Trajs(1/1) could provide an accurate description of the

cell migration. Having the parameters for this window, we

could sample the embryo during this stage to get a complete

migration description. The optimal parameters are the pair

λmin − λmax that generates largest set of Trajs(1, 1). Pa-

rameters are obtained experimentally.

vol: {λmin:[800;+100;1500] - λmax:[1000;+250;5000] (no dim)}
area: {λmin:[10;+10;150] - λmax:[50;+50;500] (pixels)}

5. RESULTS

After the morphological filtering for the parameters tested, we

analyze the resulting sets Trajs(m,n) (Fig. 6). The green
line represents m = n, under it, we find inconsistent trajecto-

ries m > 1 or candidate mitosis n > 1. Volume attribute

proves to behave better in order to characterize the spatial

dimensions of the 3D + t cell lineage producing more in-

dependent trajectories than the area attribute filtering. This

seems coherent as the volume attribute weights both size and

intensity of the bright spots depicting nuclei in fluorescence

images.
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Fig. 6. Left: n and m values against 4D detections for the vol-

ume opening filtering. Right: same data for the area opening

filtering. Greenline = Trajs(n,m).

Selecting the greatest Trajs(1, 1) for the volume open-

ing, the pair (800 pixels, 3000 pixels) obtains 426 trajectories

(92%). For the area opening, the best parameters (20 pixels,
75 pixels) reconstruct 364 (79%). In Fig.7, we observe the

output, forming a descriptive map of cell migration in em-

bryogenesis suitable for quantitative analysis and to use as a

reference to complete the cell lineage. These results are ob-

tained in few hours of automated processing -varying on re-

sources and the 3D + t window size-. We assume that this

output would not require supervision, in opposition to ap-

proaches that may demand up to days of human interaction,

as the error rate is not as critical as knowing which trajectories

are correct and which are valid.

Fig. 7. Filtered data where noise has been greatly reduced

keeping most part of trajectories. Each 3D has been bina-

rized and then summed and collapsed into one 3D volume.

Brighter trajectories (the position persists in time) stand for

slow migration epithelial cells in comparison with the bottom

layer of faster migrating cells during the gastrulation.

6. DISCUSSION

We propose a robust methodology to process data for cell

migration analysis based on the selection of coherent spatio-

temporal trajectories, using 3D + t morphological filtering.

As current ”in-vivo” imaging does not reach the requirement

to observe migration at the cell level, the coherent and com-

plete reconstruction of the cell lineage is very complex and

requires very time-consuming validation. The presented tech-

nique succeeds in reducing uncertainty in the results by iden-

tifying coherent trajectories inside a spatio-temporal window

in an automated way. The major limitation to achieve a quasi-
complete cell lineage is the scaling, as it is not capable of

tracking mitosis and reconstruct more than one cell generation

robustly without too restrictive time resolution. However, it is

well suited for embedding in interactive tools allowing faster

validation -mainly mitosis detection- and to provide an accu-

rate estimation of migration patterns obtaining displacements

fields from coherent 3D + t trajectories.
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