
HAL Id: hal-01054715
https://hal.science/hal-01054715v1

Submitted on 8 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual characterizations for finite lattices via
correspondence theory for monotone modal logic

Sabine Frittella, Alessandra Palmigiano, Luigi Santocanale

To cite this version:
Sabine Frittella, Alessandra Palmigiano, Luigi Santocanale. Dual characterizations for finite lattices
via correspondence theory for monotone modal logic. Journal of Logic and Computation, 2016, J
Logic Computation 2016, �10.1093/logcom/exw011�. �hal-01054715�

https://hal.science/hal-01054715v1
https://hal.archives-ouvertes.fr

Dual characterizations for finite lattices via correspondence

theory for monotone modal logic

Sabine Frittella, Alessandra Palmigiano and Luigi Santocanale

Abstract

We establish a formal connection between algorithmic correspondence theory and certain dual characteri-

zation results for finite lattices, similar to Nation’s characterization of a hierarchy of pseudovarieties of finite

lattices, progressively generalizing finite distributive lattices. This formal connection is mediated through mono-

tone modal logic. Indeed, we adapt the correspondence algorithm ALBA to the setting of monotone modal logic,

and we use a certain duality-induced encoding of finite lattices as monotone neighbourhood frames to translate

lattice terms into formulas in monotone modal logic.

Keywords: finite lattices, monotone modal logic, algorithmic correspondence theory, dual characterization.

Mathematical subject classification: 03G10, 03B45, 03B70.

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Dual equivalence for finite lattices . 3

2.2 An environment for correspondence . 6

2.3 The standard translation . 8

2.4 An informal presentation of the algorithm ALBA . 10

3 Algorithmic correspondence for monotone modal logic 12

3.1 Two-sorted frames . 12

3.2 Basic ALBA on two-sorted frames . 13

4 Enhancing the algorithm for correspondence 15

4.1 Enriched two-sorted frames . 15

4.2 Correspondence rules for enriched two-sorted frames . 17

4.3 Closed right Ackermann rule . 18

5 Characterizing uniform upper bounds on the length of D+-chains in finite lattices 19

6 Conclusions and further directions 21

A Proof of lemma 5.3 24

1 Introduction

Dual characterization results for finite lattices. The present paper builds on a duality for finite lattices, estab-

lished by Santocanale [13]. The structures dually equivalent to finite lattices are referred to as join-presentations,

and are certain triples (X,≤,M) such that (X,≤) is a finite poset, and M : X −→ PPX. In [13], it has been

pointed out—and indicated as a worthwhile research direction—that the existence of this duality makes it possible

to investigate systematic dual characterization results, between equations or inequalities in the algebraic language

of lattices on one side, and first-order conditions in the language of join-presentations on the other. One signif-

icant instance of such systematic dual characterizations has been developed in the same paper, between a class

of inequalities in the language of lattices and a corresponding class of first-order conditions. Both classes are

1

parametric in the class of finite trees (cf. [13, Proposition 8.5]). This result generalizes Nation’s [12, Section 5]

stating that a certain class of finite lattices1 is a pseudovariety, and is similar to Semenova’s results [14].

From modal logic to unified correspondence theory. Modal logic is an area in which systematic dual charac-

terization results have been extensively developed, giving rise to a very rich theory—the so called modal corre-

spondence theory—which has been investigated for almost forty years. Modal correspondence theory was orig-

inally developed in a purely model-theoretic way [15]. However, correspondence-related phenomena have been

studied in an algebraic framework subsuming duality theory since the early 90s [11], and very recently, a unified

correspondence framework has emerged [5], which is based on duality, and uniformly extends correspondence

theory to many nonclassical logics. One of the main tools developed by this theory is an algorithm (actually

various cognate versions of it, cf. [7]) or calculus for correspondence, called ALBA, which mechanizes dual char-

acterization meta-arguments. In particular, as discussed in [7] and [2], the core of ALBA is the encoding of a

general meta-argument for correspondence known in the literature as the minimal valuation argument into a rule

which relies on the Ackermann lemma [1]. The algorithm ALBA takes in input formulas or inequalities in a given

propositional language and, whenever it succeeds2, it computes the first-order correspondent of the given formula

or inequality, i.e. a first-order sentence which holds in a given structure exactly when the given propositional for-

mula or inequality is valid in the dual algebra of that structure. The general theory also provides the syntactic

characterization of a class of formulas/inequalities for each logic, the so-called inductive formulas/inequalities,

on which the algorithm is guaranteed to uniformly succeed. For each language, inductive inequalities form the

largest such class syntactically defined so far in the literature.

Aim of the paper. Given the availability of this theory, it seems natural to try and understand dual characteriza-

tion results such as [13, Proposition 8.5] as instances of a more general unified correspondence mechanism. This

is what the present paper aims at doing, by establishing a novel dual characterization result similar to Nation’s.

Our result paves the way to the mechanization and systematization of dual characterizations such as the one in

[13].

Methodology: basic algorithmic correspondence for monotone modal logic. Our approach is based on an

adaptation of the algorithm/calculus ALBA of [7] to the case of monotone modal logic. This adaptation is neces-

sary, since some of the rules in the standard version of the algorithm would not be sound for the modal connectives

of monotone modal logic, and is one of the contributions of the present paper. The adapted ALBA is semantically

justified in the general environment of two-sorted frames (cf. Section 3), which are general structures that can en-

code monotone neighbourhood frames as special cases. As their name suggests, two-sorted frames are relational

structures based on two domains. Normal modal operators can be associated in the standard way with the binary

relations on two-sorted frames. Monotone modal operators can be then interpreted on two-sorted frames as the

composition of some of these normal modalities. This provides the basic semantic environment for the adapted

ALBA.

Correspondence theory for monotone modal logic has already been studied in [10], where a class of monotone

modal formulas which are guaranteed to have a first order correspondent has been identified. However, the class

of inductive inequalities corresponding to the ALBA setting is strictly larger than the one in [10].

Enhancing ALBA. However, the translations of inequalities such as Nation’s [12] and as the ones treated in

the present paper fall outside the inductive class. Hence, another contribution of the present paper is the addition

of special rules which are sound on the specific semantic setting arising from finite lattices. Interestingly, an

Ackermann-type rule features among these additional rules, the soundness of which cannot be straightforwardly

explained in terms of the Ackermann lemma, but which however still intuitively encodes a minimal valuation

argument.

Organization of the paper. In Section 2, we collect preliminaries on the duality between finite lattices and join-

presentations, the language and neighbourhood semantics of monotone modal logic, the duality-induced ‘standard

translation’ of lattice terms into terms in the language of monotone modal logic, and the algorithm for corre-

spondence ALBA. In Section 3, we adapt the algorithm ALBA specifically to monotone modal logic via the

1Namely, the finite lattices such that the length of their D-chains has a uniform upper bound.
2It is well known [4] that the problem of whether a formula admits a first-order correspondent is undecidable.

2

introduction of two-sorted frames. In Section 4, we enhance the adapted ALBA by introducing additional rules,

and prove their soundness w.r.t. the semantic environment of so-called enriched two-sorted frames which can be

naturally associated with finite lattices. In Section 5, upper bounds on the length of D+-chains (cf. Definition 5.1)

are obtained as a reduction of the enhanced ALBA. Section 6 collects the conclusions and further directions. The

proof of a technical lemma appears in the appendix.

2 Preliminaries

The aim of the present section is to collect preliminaries belonging to diverse fields of logic, and to connect them

so as to set the stage for the main result. In the next subsection, we report on a duality on objects for finite lattices,

which has been introduced in [13]. Given that the structures dual to finite lattices can be naturally associated

with monotone neighbourhood frames, and given that monotone neighbourhood frames are standard models for

monotone modal logic, the duality presented in subsection 2.1 serves as a basis for the definition of a standard

translation between lattice terms and monotone monotone modal logic formulas. In subsection 2.2, we recall the

basic definitions about monotone modal logic and neighbourhood frames, and we show how we can represent

a finite lattice as a monotone neighbourhood frame. In subsection 2.3, we define a standard translation between

lattice terms and formulas of monotone modal logic, and show that this translation adequately transfers and reflects

the validity of lattice inequalities on any finite lattice L, and the validity of their standard translations on the

monotone neighbourhood frames associated with L. Finally, in subsection 2.4, we give an informal presentation

of the algorithm for correspondence ALBA, introduced in [7], for correspondence for normal modal logic.

2.1 Dual equivalence for finite lattices

In the present subsection, we report on the object-part of a dual equivalence between finite lattices and certain

poset-based structures (cf. Definition 2.4). Our presentation is based on [13]. These structures will turn out

to be special neighbourhood frames, and hence the existence of this duality provides the bridge between the

propositional logic of lattices and monotone modal logic.

In what follows, L will denote a finite lattice. Elements of L will be denoted a, b . . . Throughout the paper,

the letters i, j, k will be reserved for join-irreducible elements of L (the set of which is J(L)), and m, n for meet-

irreducible elements of L (the set of which is M(L)), respectively. Recall that an element j , ⊥ of L is join-

irreducible iff j = a ∨ b implies that either j = a or j = b for all a, b ∈ L. Order-dually, an element m , ⊤ of L is

meet-irreducible iff m = a ∧ b implies that either m = a or m = b for all a, b ∈ L. A subset C ⊆ L is a join-cover

of a ∈ L if a ≤
∨

C.

For any poset (S ,≤), its associated refinement relation, denoted≪, is defined on the set P f (S) of finite subsets

of S by the following stipulation:

A ≪ B iff for every a ∈ A there exists some b ∈ B such that a ≤ b. (1)

Equivalently,

A ≪ B iff iff ↓A ⊆ ↓B,

where ↓C := {x ∈ S | x ≤ c for some c in C} for every C ⊆ S . Throughout the paper, we say that a join-cover C

of a is minimal if it is an ≤-antichain, and if, for any ≤-antichain D ⊆ L, (a ≤
∨

D and D ≪ C) imply D = C. A

join-cover of a is trivial if it contains a. We can easily show that any join-irreducible element j ∈ J(L) has only

one trivial minimal join-cover, that is, the singleton { j}.

Direct presentations and their closure operators. In the present paragraph, we define direct presentations, and

introduce a closure operator over these presentations which is a key ingredient of the duality on objects between

finite lattices and reflexive and transitive presentations (see paragraph below).

Definition 2.1. A presentation is a triple (X,≤,M) such that (X,≤) is a poset, andM : X → PPX. A presentation

is

• monotone if for all x, y ∈ X, any C ⊆ X, if y ≤ x and C ∈ M(x), then D ≪ C for some D ∈ M(y);

• reflexive if for each x ∈ X, there exists some C ∈ M(x) such that C ≪ {x};

3

• transitive if for every x ∈ X and every C ⊆ X, if C ∈ M(x) then for every collection {Dc | c ∈ C} such that

Dc ∈ M(c) for every c ∈ C, there exists some E ∈ M(x) such that E ≪
⋃

c∈C Dc;

• direct if it is monotone, reflexive, and transitive.

Recall that a downset of (X,≤) is a subset S ⊆ X such that for all x, y ∈ X, if y ≤ x and x ∈ S then y ∈ S . Let

D(X,≤) denote the set of downsets of (X,≤).

For any presentation A = (X,M) where X := (X,≤) is a poset, the assignment clA : DX −→ DX is defined as

follows: for any S ∈ DX,

clA(S) := {x ∈ X | D ⊆ S for some D ∈ M(x)}. (2)

Lemma 2.2. For any direct presentation A = (X,≤,M), the map clA is a closure operator.

Proof. We first prove that the map clA is well-defined. Fix S ∈ DX, x ∈ clA(S) and y ∈ X. Assume that y ≤ x.

Since x ∈ clA(S), there is some Cx ∈ M(x) such that Cx ⊆ S . In addition, since A is monotone, y ≤ x implies that

there exists some Cy ∈ M(y) such that Cy ≪ Cx. By definition of≪, we have that Cy ⊆ S because S is a downset.

Thus y ∈ clA(S). This finishes the proof that clA(S) is a downset. Hence the map clA is well-defined.

To prove that clA is a closure operator, we need to show that clA is order-preserving, and that S ⊆ clA(S) and

clA(clA(S)) ⊆ clA(S) for any S ∈ DX. It is immediate to see that clA is order preserving.

Since A is reflexive, there is some C ∈ M(x) such that C ⊆ ↓x. Moreover, x ∈ S implies that ↓x ⊆ S . Hence,

by definition of clA, we have that x ∈ clA(S) for any x ∈ S , that is S ⊆ clA(S).

It remains to be shown that clA(clA(S)) ⊆ clA(S) for any S ∈ DX. Let x ∈ clA(clA(S)). By definition of clA,

there exists some D ∈ M(x) such that D ⊆ clA(S). Then any d ∈ D is an element of clA(S). Thus, for each

d ∈ D there exists some Ed ∈ M(d) such that Ed ⊆ S . Since A is transitive, there is some C ∈ M(x), such that

C ≪
⋃

d∈D Ed. Thus C ⊆ S , and, by definition of clA(S), this proves that x ∈ clA(S). This completes the proof

that clA is a closure operator. �

Definition 2.3. For any direct presentation A = (X,≤,M), a downset S ⊆ X is closed if S = clA(S). The closure

of a downset S ⊆ X is the set clA(S). In the following, whenever it causes no confusion, we denote the closure of

a downset S by S .

Notice that for any direct presentation A = (X,≤,M), we can extend the closure operator clA to sets, as

follows:

clA : PX −→ PX

S 7−→ clA(↓≤S). (3)

Since, clA and ↓≤ are closure operators on downsets and on sets respectively, we can easily prove the clA is a

closure operator too.

Join-presentation of a finite lattice.

Definition 2.4. The join-presentation3 of a lattice L is the presentation (J(L),≤,M) such that (J(L),≤) is the poset

of the join-irreducible elements of L with the order induced by L, andM is the map J(L) −→ PPJ(L) assigning

any j to the collection of its minimal join-covers.

Lemma 2.5 (cf. Lemma 4.2 in [13]). For any finite lattice L, the join-presentation (J(L),≤,M) associated with L

is a direct presentation.

More generally, we can associate every element a of a lattice L with the setM(a) of its minimal join-covers.

The following lemma lists some properties ofM : L −→ PPJ(L).

Lemma 2.6 (cf. [13], page 5). Let (L,≤) be a finite lattice. For all a ∈ L, j ∈ J(L), C ∈ M(a) and Y ⊆ L,

1. C ⊆ J(L), and C is an ≤-antichain;

2. M(a) is a≪-antichain;

3Join-presentations are also referred to as OD-graphs in the literature (cf. [12, 13]).

4

3. if a ≤
∨

Y, then there exists some D ∈ M(a) such that D ≪ Y;

4. { j } ∈ M(j).

For every finite lattice L, let LL be the lattice of the closed downsets of the join-presentation (J(L),≤,M)

associated with L.

Proposition 2.7 (cf. [12]). Every finite lattice L is isomorphic to the lattice LL as above.

The following lemmas will be useful in the remainder of the paper.

Lemma 2.8 (Lemma 4.2 in [13]). For any finite lattice L and any j ∈ J(L), the downset ↓J(L) j is a closed subset

of the join-presentation (J(L),≤,M) associated with L.

Lemma 2.9. Let L be a finite lattice, and (J(L),≤,M) be its join-presentation. For any j, k ∈ J(L) and any

≤-antichain C ⊆ J(L), if C ∈ M(j) and k ∈ C,

1. j < ↓≤(C r k),

2. k < ↓≤(C r k),

3. j < {k′ ∈ J(L) | k′ < k},

4. there is no D ∈ M(j) such that D ⊆ ↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k}.

Proof. Fix C ∈ M(j) and k ∈ C. As to item 1. Since C is a minimal cover of j, the sets C r k and ↓≤J
(C r k) are

not covers of j. Hence j < ↓≤(C r k).

We show item 2 by contradiction. Assume that k ∈ ↓≤(C r k). By the definition of closure, this implies that

there exists some D ∈ M(k) such that D ⊆ ↓≤(C r k). The following chain of inequalities holds

j ≤
∨

C (C ∈ M(j))

=
∨

((C r k) ∪ {k})

= (
∨

(C r k)) ∨ k

≤
∨

(C r k) ∨
∨

D (D ∈ M(k))

=
∨

((C r k) ∪ D),

which shows that the set (C r k)∪D is a cover of j. Hence, there exists a minimal cover C′ ∈ M(j) that refines it,

i.e. such that C′ ≪ (Cr k)∪D. By the definition of≪, this means that C′ ⊆ ↓≤((Cr k)∪D). Since D ⊆ ↓≤(Cr k),

we have that ↓≤((Cr k)∪D) = ↓≤(Cr k), which proves that C′ ⊆ ↓≤(Cr k). This proves that j ∈ ↓≤(C r k), which

contradicts item 1.

Item 3 immediately follows from the definition of a minimal cover.

As to item 4, suppose for contradiction that there exists some D ∈ M(j) such that D ⊆ ↓≤J
(C r k) ∪ {k′ ∈

J(L) | k′ < k}. Then, for any d ∈ D, there exists some kd ∈ ↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k} such that d ≤ kd.

If kd ∈ {k
′ ∈ J(L) | k′ < k}, then kd < k. If kd < {k

′ ∈ J(L) | k′ < k}, then kd ∈ ↓≤J
(C r k) and there is some

Ed ∈ M(d) such that Ed ≪ C r k. Since the join-presentation of L is a transitive presentation, the set

E :=
⋃

{Ed | d ∈ D and kd < {k
′ ∈ J(L) | k′ < k}} ∪

⋃

{kd | d ∈ D and kd < k}

is a cover of j. Hence, there exists some E′ ∈ M(j) such that E′ ≪ E. Since E ≪ C and the relation ≪ is

transitive, this implies that E′ ≪ C. Hence, to finish the proof, it is enough to show that E′ , C, which would

contradict the minimality of C. Since

k < ↓≤J
(C r k) ∪ {k′ ∈ J(L) | k′ < k} and ↓≤J

E′ ⊆ ↓≤J
E ⊆ ↓≤J

(C r k) ∪ {k′ ∈ J(L) | k′ < k},

we have that k < E′. Since, by assumption, k ∈ C, this proves that E′ , C as required. �

5

2.2 An environment for correspondence

The structures described in the previous subsection are very close to neighbourhood frames (we will expand on this

at the end of the present subsection). Neighbourhood frames are well known to provide a state-based semantics for

monotone modal logic (see [10]). Hence, as discussed in [5], the duality between lattices and join-presentations

induces a correspondence-type relation between the propositional language and logic of lattices, and a fragment

of the language of monotone modal logic.

In the present section we collect the basic ingredients of this correspondence: the languages, their interpreta-

tions, and a syntactic translation which may be regarded as a kind of standard translation between the language of

lattices and the monotone modal language.

Definition 2.10. The language of lattice terms LLatt over the set of variables AtProp is as usual given by the

following syntax

ϕ ::= ⊥ | ⊤ | p | ϕ ∨ ϕ | ϕ ∧ ϕ,

with p ∈ AtProp.

Definition 2.11. The language of monotone modal logic LMML over the set of variables AtProp is recursively

defined as follows:

ϕ ::= ⊥ | ⊤ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | (∃∀)ϕ | (∀∃)ϕ.

Definition 2.12. A neighbourhood frame is a tuple F = (X, σ) such that X is a set and σ : X −→ PPX is a map.

For any x ∈ X, any element N ∈ σ(x) is called a neighbourhood of x. A neighbourhood frame F is monotone

if for any x ∈ X, the collection σ(x) is an upward closed subset of (PX,⊆). A neighbourhood model is a tuple

M = (F, v) such that F = (X, σ) is a neighbourhood frame and v : AtProp −→ PX is a valuation.

Definition 2.13. For any neighbourhood model M = (F, v) and any w ∈ X, the satisfaction of any formula

ϕ ∈ LMML inM at w is defined recursively as follows:

M,w ⊥ never

M,w ⊤ always

M,w p iff w ∈ v(p)

M,w ¬ϕ iff M,w 1 ϕ

M,w ϕ ∨ ψ iff M,w ϕ orM,w ψ

M,w ϕ ∧ ψ iff M,w ϕ andM,w ψ

M,w (∃∀)ϕ iff there exists some C ∈ σ(w) such that, for each c ∈ C, we haveM, c ϕ

M,w (∀∃)ϕ iff for each C ∈ σ(w) there exists some c ∈ C such that we haveM, c ϕ.

The above definition of local satisfaction naturally extends to global satisfaction as follows: for any formula

ϕ ∈ LMML,

M ϕ iff M,w ϕ for any w ∈ X.

The notions of local and global validity are defined as follows: for any formula ϕ ∈ LMML, any neighbourhood

frame F = (X, σ), and any w ∈ X,

F,w ϕ iff (F, v),w ϕ for any valuation v : AtProp −→ X.

F ϕ iff (F, v) ϕ for any valuation v : AtProp −→ X.

All the above definitions of satisfaction and validity can be naturally extended to LMML-inequalities as follows:

for all formulas ϕ, ψ ∈ LMML, and any neighbourhood modelM = (F, v),

M ϕ ≤ ψ iff M,w ϕ impliesM,w ψ for any w ∈ X.

F ϕ ≤ ψ iff for any valuation v and any w ∈ X, if (F, v),w ϕ then (F, v),w ψ.

Remark 2.14. We notice that the definition above is usually adopted only for monotone neighbourhood frames and

not for arbitrary neighbourhood frames. Under this definition, any neighbourhood frame behaves like a monotone

one. Adopting this definition, rather than the usual one, is more advantageous for the present treatment, in that it

will make it possible to equivalently describe any monotone neighbourhood frame only in terms of the minimal

neighbourhoods of its states, as detailed in the following paragraph.

6

Finite monotone neighbourhood frames and finite neighbourhood frames. Our main focus of interest in the

present paper are finite lattices and their related structures, which are also finite. For any finite monotone neigh-

bourhood frame F = (X, σ : X −→ PPX), the collection σ(x), which is an upset of PX, is uniquely identified

by the subcollection of its ⊆-minimal elements. Hence, any F as above can be equivalently represented as the

neighbourhood frame F∗ := (X, σ∗) where σ∗ : X −→ PPX maps each state x to the ⊆-minimal elements of

the collection σ(x). Conversely, any finite neighbourhood frame F = (X, σ) can be associated with a monotone

neighbourhood frame F′ := (X, σ′) where σ′(x) = ↑⊆σ(x) for any x ∈ X, and moreover, (σ∗)′ = σ for any finite

monotone neighbourhood frame. This correspondence extends to models as follows: for any finite monotone

neighbourhood modelM = (F, v), letM∗ := (F∗, v) denote its associated finite neighbourhood model. Conversely,

for any finite neighbourhood modelM = (F, v), letM′ := (F′, v) denote its associated finite monotone neighbour-

hood model. Thanks to the slightly non-standard definition of the interpretation of LMML-formulas adopted in the

present paper (cf. Definition 2.13 and remark 2.14), this equivalent representation behaves well with respect to the

interpretation of the monotone modal operators. Indeed, it is easy to show that for every ϕ ∈ LMML, every finite

monotone neighbourhood modelM, and every finite neighbourhood model N,

M,w ϕ iff M∗,w ϕ and N,w ϕ iff N′,w ϕ

The proof is done by induction on ϕ. We do not give it in full, and only report on the case ofM and the connectives

(∃∀) and (∀∃).

M,w (∃∀)ϕ iff there exists some C ∈ σ(w) such that C ⊆ v(ϕ)

iff there exists some C ∈ min⊆σ(w) such that C ⊆ v(ϕ)

iff M∗,w (∃∀)ϕ.

M,w (∀∃)ϕ iff for each C ∈ σ(w), C ∩ v(ϕ) , ∅

iff for each C ∈ min⊆σ(w), C ∩ v(ϕ) , ∅

iff M∗,w (∃∀)ϕ.

Join-presentations as monotone neighbourhood frames. Join-presentations (cf. Definition 2.4) of finite lat-

tices bear a very close resemblance to neighbourhood frames. This resemblance can be spelled out more precisely,

which is what we are going to do next.

For any finite lattice L, let (J(L),≤,M) be its join-presentation. The monotone neighbourhood frame associ-

ated with L is the tuple FL := (J(L), σM : J(L) −→ PPJ(L)) such that for each j ∈ J(L),

σM(j) := {S ∈ PPJ(L) | C ⊆ S for some C ∈ M(j)}. (4)

Clearly, σM(j) is upward-closed, hence the construction above is well defined. Moreover, since M(j) is a

≪-antichain (see lemma 2.6.1), for all C and C′ inM(j), if C ⊆ C′ then C = C′. This immediately implies that

M(j) is the collection min⊆ σM(j) of the ⊆-minimal elements of σM(j).

Notice that the construction associating a neighbourhood frame with the join-presentation of a finite lattice L,

involves a loss of information. Namely, the order ≤J on the set J(L) of the join-irreducible elements of L cannot

be retrieved from the neighbourhood frame FL.

For every L, we are only interested in valuations on FL which are the dual counterparts of assignments on L.

Recall that L is isomorphic to the lattice LL of closed sets of the join-presentation associated with L. Hence, we

are only interested in valuations mapping atomic propositions to closed subsets, rather than to arbitrary subsets of

FL. This motivates the following definition.

Definition 2.15. For any finite lattice L, let a model on FL be a tupleML = (FL, v
∗) such that v∗ : AtProp −→ LL.

We refer to such maps as closed valuations. Then, abusing terminology, the local and global validity of formulas

and inequalities on FL will be understood relative to closed valuations, that is:

FL, j ϕ iff (FL, v
∗), j ϕ for any closed valuation v∗.

FL ϕ iff FL, j ϕ for any j ∈ J(L).

FL ϕ ≤ ψ iff for any closed valuation v∗ and any j ∈ J(L), if (FL, v
∗), j ϕ then (FL, v

∗), j ψ.

7

Let us spell out in detail the correspondence between assignments on L and closed valuations on FL. Clearly,

given a set of variables AtProp, closed valuations of AtProp on FL can be identified with assignments of AtProp

on LL. The isomorphism L : L −→ LL defined by the mapping a 7−→ { j ∈ J(L) | j ≤ a}, with inverse defined

by the mapping S 7−→
∨

L S , induce bijections between assignments on L and assignments on LL, defined by

post-composition. That is, any assignment v : AtProp −→ L gives rise to the assignment v∗ : AtProp −→ LL, such

that for any x ∈ AtProp,

v∗(x) := { j ∈ J(L) | j ≤ v(x)}. (5)

The inverse correspondence maps any assignment/closed valuation u : AtProp −→ LL to an assignment u′ :

AtProp −→ L such that for any x ∈ AtProp,

u′(x) :=
∨

L

u(x). (6)

Thus, v∗′ = v, and u′∗ = u for any assignment v on L and any assignment u on LL. Hence, for all lattice terms s

and t over AtProp, for any assignment v on L and any assignment u on LL,

L, v |= s ≤ t iff LL, v
∗ |= s ≤ t, (7)

L, u′ |= s ≤ t iff LL, u |= s ≤ t. (8)

2.3 The standard translation

Thanks to the duality of the previous subsection, and to the correspondence environment introduced above, we are

now in a position to define the ‘standard translation’ S T from the language of lattices to the language of monotone

modal logic. The aim of this translation is to have, for any lattice term t, any finite lattice L, any j ∈ J(L) and any

v : AtProp −→ L,

L, v |= j ≤ t iff FL, v
∗, j S T (t), (9)

where v∗ is defined as in the discussion after definition 2.15.

The definition of S T pivots on the duality between lattices and join-presentations. Namely, any given interpre-

tation of a lattice term t on a finite lattice L translates to an interpretation of t into the lattice LL of the closed sets of

the join-presentation (J(L),≤,M) associated with L, via the fact that L is isomorphic to LL. Then, by dually char-

acterizing the interpretation of t in LL, we retrieve the interpretation of t into the join-presentation (J(L),≤,M). In

its turn, this interpretation boils down to the satisfaction clause, on FL, of certain formulas belonging to a fragment

of monotone modal logic, which can be recursively defined as follows:

ϕ ::= ⊥ | ⊤ | p | ϕ ∧ ϕ | (∃∀)(ϕ ∨ ϕ).

Let us define S T by the following recursion:

S T (p) = p

S T (⊤) = ⊤

S T (⊥) = ⊥

S T (t ∧ s) = S T (t) ∧ S T (s)

S T (t ∨ s) = (∃∀)(S T (t) ∨ S T (s)).

The definition above recasts [13, Definition 7.1] into the language of monotone modal logic.

In what follows, we will find it useful to expand our propositional language with individual variables of a

different sort than propositional variables. These new variables, denoted j, k, possibly with sub- and superscripts,

are to be interpreted as join-irreducible elements of finite lattices. Let Nom (for nominals) be the collection of

such variables, and let Var := AtProp ∪ Nom. Finite lattice assignments from Var are maps v : Var −→ L such

that v(j) ∈ J(L) for every j ∈ Nom. Each such lattice assignment corresponds to a valuation from Var to FL as

described in the discussion at the end of subsection 2.2.

Proposition 2.16. Let L be a finite lattice which is different from the one-element lattice. Then, for any lattice

term t over AtProp, any j ∈ J(L), and any assignment v : Var −→ L with v(j) = j,

L, v |= j ≤ t iff FL, v
∗, j S T (t), (10)

8

Proof. By induction on t. If t = ⊤,⊥, then the statement is clearly true. If t = p ∈ AtProp, then S T (p) = p. Then,

the following chain of logical equivalences holds:

L, v |= j ≤ p iff v(j) ≤L v(p)

iff {k ∈ J(L) | k ≤ v(j)} ⊆ {k ∈ J(L) | k ≤ v(p)} (v(j) ∈ {k ∈ J(L) | k ≤ v(j)})

iff v∗(j) ⊆ v∗(p) (definition of v∗)

iff v(j) ∈ v∗(p) (v∗(p) is a downset)

iff FL, v
∗, j p. (v(j) = j)

The inductive step t = t1 ∧ t2 straightforwardly follows from the induction hypothesis.

As for the case t = t1 ∨ t2, assume that the equivalence (10) holds for t1 and t2, for every c ∈ J(L) and for any

v : Var −→ L. As discussed in the previous subsection (see equation (7)), we have

L, v |= j ≤ t1 ∨ t2 iff LL, v
∗ |= j ≤ t1 ∨ t2.

Let us recall that the meet ∧∗ and join ∨∗ of LL are respectively defined as follows: for all S ,T ∈ LL,

T ∧∗ S = T ∩ S and T ∨∗ S = T ∪ S

where T ∪ S is defined in (2), that is: T ∪ S = {x ∈ X | ∃C ∈ M(x) : C ⊆ T ∪ S }. Hence, the following chain of

logical equivalences holds:

LL, v
∗ |= j ≤ t1 ∨ t2

iff v∗(j) ⊆ v∗(t1 ∨ t2)

iff j = v(j) ∈ v∗(t1 ∨ t2)

iff j ∈ v∗(t1) ∪ v∗(t2)

iff there exists some C ∈ M(j) such that c ∈ v∗(t1) or c ∈ v∗(t2) for all c ∈ C

iff there exists some C ∈ M(j) such that ↓c ⊆ v∗(t1) or ↓c ⊆ v∗(t2) for all c ∈ C,

where ↓c := {k ∈ J(L) | k ≤ c}. For any c ∈ J(L), let uc be the j-variant of v∗ such that uc(j) = ↓c. Hence, the

previous clause can be equivalently rewritten as follows:

there exists some C ∈ M(j) such that for all c ∈ C, LL, uc |= j ≤ t1 or LL, uc |= j ≤ t2.

By equation (8), the clause above can equivalently rewritten as follows:

there exists some C ∈ M(j) such that for all c ∈ C, L, u′c |= j ≤ t1 or L, u′c |= j ≤ t2.

By the induction hypothesis, the clause above is equivalent to the following one:

there exists some C ∈ M(j) such that for all c ∈ C, FL, (u
′
c)∗, u′c(j) S T (t1) or FL, (u

′
c)∗, u′c(j) S T (t2).

Moreover, as discussed after definition (2.15), we have that u′c(j) =
∨

L uc(j) =
∨

L ↓c = c, and (u′c)∗ = uc. Hence,

the clause above can be simplified as follows:

there exists some C ∈ M(j) such that for all c ∈ C, FL, uc, c S T (t1) or FL, uc, c S T (t2),

and then as follows:

there exists some C ∈ M(j) such that for all c ∈ C, c ∈ uc(S T (t1)) or c ∈ uc(S T (t2)).

Since t1 and t2 are lattice terms over AtProp, no nominal variable occurs in them, and hence uc(S T (t1)) =

v∗(S T (t1)) and uc(S T (t2)) = v∗(S T (t2)). Thus, we can equivalently rewrite the clause above as follows:

there exists some C ∈ M(j) such that for all c ∈ C, c ∈ v∗(S T (t1)) or c ∈ v∗(S T (t2)).

By (4), and sinceM(j) = min⊆ σM(j) (see discussion below (4)), the condition above is equivalent to

there exists some S ∈ σM(j) such that for all c ∈ S , c ∈ v∗(S T (t1)) or c ∈ v∗(S T (t2)).

By definition, this is equivalent to

FL, v
∗, j (∃∀)(S T (t1) ∨ S T (t2)),

as required. �

9

The following corollary gives semantic justification to the standard translation, and provides the mathemat-

ical basis for our general approach of obtaining dual characterization results for finite lattices as instances of

correspondence arguments in the language of monotone modal logic. Recall that, by definition 2.15,

FL ϕ ≤ ψ iff for any closed valuation v∗ and any j ∈ J(L), if (FL, v
∗), j ϕ then (FL, v

∗), j ψ.

Corollary 2.17. Let L be a finite lattice. Then, for every lattice term t and s,

L |= t ≤ s iff FL S T (t) ≤ S T (s).

Proof. Notice that finite lattices are join-generated by their join-irreducible elements. Hence, the condition L |=

t ≤ s is equivalent to the following:

for any assignment v : AtProp −→ L, for any j ∈ J(L), if j ≤ v(t) then j ≤ v(s). (11)

Clause (11) is equivalent to the following condition holding for any j ∈ J(L), and for any valuation v : AtProp ∪

Nom −→ L such that v(j) = j:

if L, v |= j ≤ t, then L, v |= j ≤ s. (12)

By proposition (2.16), clause (12) is equivalent to:

if FL, v
∗, v(j) S T (t), then FL, v

∗, v(j) S T (s). (13)

Next, we claim that clause (13) holding for any j ∈ J(L) and for any valuation v : AtProp ∪ Nom −→ L such that

v(j) = j is equivalent to the following:

for any j ∈ J(L), and for any closed valuation u : AtProp −→ LL, if FL, u, j S T (t), then FL, u, j S T (s).

The latter condition is equivalent to FL S T (t) ≤ S T (s), as desired.

To finish the proof, let us prove the claim. For the direction from top to bottom, fix a closed valuation u :

AtProp −→ LL such that FL, u, j S T (t) and let v : AtProp∪Nom −→ L coincide with u′ on AtProp (cf. (6)) and

be such that v(j) = j. By assumption, (13) holds for our choice of v. Since (u′)∗ = u, we have that v∗ coincides

with u on AtProp, hence FL, v
∗, v(j) S T (t). Then, by (13), FL, v

∗, v(j) S T (s). Since v∗ coincides with u on

AtProp, we have FL, u, j S T (s) as required. The direction from bottom to top is proved similarly. �

2.4 An informal presentation of the algorithm ALBA

In the present subsection, we illustrate how ALBA works. Our presentation is based on [7, 5, 8]. Rather than

presenting the algorithm formally, in what follows we will run ALBA on one of the best known examples in

correspondence theory, namely ^�p→ �^p. It is well known that for every Kripke frame F = (W,R),

F ^�p→ �^p iff F |= ∀xyz (Rxy ∧ Rxz→ ∃u(Ryu ∧ Rzu)).

As is discussed at length in [7, 5], every piece of the argument used to prove this correspondence on Kripke

frames can be translated by duality to their complex algebras (cf. [3, Definition 5.21]), which, as is well known,

are complete atomic boolean algebras with operators. We will show how this is done in the case of the example

above. First of all, the above validity condition on F translates to its complex algebra A as ~^�p� ⊆ ~�^p� for

every assignment of p into A, so this validity clause can be rephrased as follows:

A |= ∀p[^�p ≤ �^p]. (14)

Since, in a complete atomic boolean algebra, every element is both the join of the completely join-prime elements

(the set of which is denoted J∞(A)) below it and the meet of the completely meet-prime elements (the set of which

is denoted M∞(A)) above it, the condition above can be equivalently rewritten as follows:

A |= ∀p[
∨

{i ∈ J∞(A) | i ≤ �^p} ≤
∧

{m ∈ M∞(A) | �^p ≤ m}].

By elementary properties of least upper bounds and greatest lower bounds in posets (cf. [9]), this condition is true

if and only if every element in the join is less than or equal to every element in the meet. Thus, the condition above

can be equivalently rewritten as:

A |= ∀p∀i∀m[(i ≤ ^�p & �^p ≤ m)⇒ i ≤ m],

10

where the variables i and m range over J∞(A) and M∞(A) respectively. Since this presentation is geared towards

the treatment in section 5, we find it useful to slightly depart from the standard treatment in [7] and eliminate the

conominal m as follows. First, notice that the clause above is clearly equivalent to the following clause:

A |= [∃p∃i∃m(i ≤ ^�p & �^p ≤ m & i � m)]⇒ false.

Second, notice that, in any complete atomic boolean algebra A, for each i ∈ J∞(A) and each m ∈ M∞(A), one has

i � m iff m = κ(i), where κ(i) =
∨

{ j ∈ J∞(A) | j , i} ∈ M∞(A). Hence, the clause above is equivalent to the

following clause:

A |= [∃p∃i(i ≤ ^�p & �^p ≤ κ(i))]⇒ false. (15)

Since A is in particular atomistic, the element of A interpreting �p is the join of the completely join-prime

elements below it. Hence, if i ∈ J∞(A) and i ≤ ^�p, because ^ is completely join-preserving on A, we have that

i ≤ ^(
∨

{ j ∈ J∞(A) | j ≤ �p}) =
∨

{^ j | j ∈ J∞(A) and j ≤ �p},

which implies that i ≤ ^ j0 for some j0 ∈ J∞(A) such that j0 ≤ �p. Hence, we can equivalently rewrite the validity

clause (15) as follows:

A |= [∃p∃i(∃j(i ≤ ^j & j ≤ �p) & �^p ≤ κ(i))]⇒ false,

and then as follows:

A |= ∀p∀i∀j[(i ≤ ^j & j ≤ �p & �^p ≤ κ(i))⇒ false].

Now we observe that the operation � preserves arbitrary meets in A, which is in particular a complete lattice. By

the general theory of adjunction in complete lattices, this is equivalent to � being a right adjoint (cf. [9, proposition

7.34]). It is also well known that the left adjoint of � is the operation _, which can be thought of as the backward

looking diamond of tense logic. Hence the condition above can be equivalently rewritten as:

A |= ∀p∀i∀j[(i ≤ ^j & _j ≤ p & �^p ≤ κ(i))⇒ false],

and then as follows:

A |= ∀i∀j[(i ≤ ^j & ∃p(_j ≤ p & �^p ≤ κ(i)))⇒ false]. (16)

At this point we are in a position to eliminate the variable p and equivalently rewrite the previous condition as

follows:

A |= ∀i∀j[(i ≤ ^j & �^_j ≤ κ(i))⇒ false]. (17)

Let us justify this equivalence: for the direction from top to bottom, fix an interpretation v, and assume that

A, v |= i ≤ ^j and A, v |= �^_j ≤ κ(i). Consider the p-variant v∗ of v such that v∗(p) = _j. Then it can be easily

verified that A, v∗ |= i ≤ ^ j and A, v∗ |= _j ≤ p and A, v∗ |= �^p ≤ κ(i)), which by assumption leads to an

inconsistency.

Conversely, fix an interpretation v such that A, v |= i ≤ ^j and A, v |= ∃p(_j ≤ p & �^p ≤ κ(i)). Then, by

monotonicity, the antecedent of (17) holds under v, which leads again to an inconsistency. This is an instance of

the following result, known as Ackermann’s lemma ([1], see also [6]):

Lemma 2.18. Let α, β(p), γ(p) be L-formulas, such that α is p-free, β is positive and γ is negative in p. For any

assignment v on an L-algebra A, the following are equivalent:

1. A, v |= β(α/p) ≤ γ(α/p);

2. there exists a p-variant v∗ of v such that A, v∗ |= α ≤ p and A, v∗ |= β(p) ≤ γ(p).

The proof is similar to that of [7, lemma 4.2]. Whenever, in a reduction, we reach a shape in which the lemma

above (or its order-dual) can be applied, we say that the condition is in Ackermann shape.

By the definition of κ(i), the inequality ^�_j ≤ κ(i)) is equivalent to i � ^�_j. Hence, clause (17) can be

equivalently rewritten as follows:

A |= ∀i∀j[(i ≤ ^j & i � �^_j)⇒ false], (18)

and then as follows:

A |= ∀i∀j[i ≤ ^j⇒ i ≤ �^_j]. (19)

11

By the atomicity of A, the clause above is equivalent to:

A |= ∀j[^j ≤ �^_j]. (20)

By again applying the fact that � is a right adjoint we obtain

A |= ∀j[_^j ≤ ^_j]. (21)

Recalling that A is the complex algebra of F = (W,R), this gives ∀w(R[R−1[w]] ⊆ R−1[R[w]]. Notice that

R[R−1[w]] is the set of all states x ∈ W which have a predecessor z in common with w, while R−1[R[w]] is the set

of all states x ∈ W which have a successor in common with w. This can be spelled out as

∀x∀w(∃z(Rzx ∧ Rzw)→ ∃y(Rxy ∧ Rwy))

or, equivalently,

∀z∀x∀w((Rzx ∧ Rzw)→ ∃y(Rxy ∧ Rwy))

which is the familiar Church-Rosser condition.

3 Algorithmic correspondence for monotone modal logic

A key intermediate step of the present paper is to adapt the algorithm or calculus for correspondence ALBA to

monotone modal logic. The interest of this adaptation is independent from the applications to the theory of finite

lattices. So, for the sake of modularity and generality, we work in a more abstract setting than the one associated

with finite lattices, to which this adaptation will be applied. The general strategy underlying this adaptation is

to exploit the well known fact that the ‘exists/for all’ and ‘for all/exists’ quantification patterns in the standard

interpretation of the monotone modal operators make it possible to regard monotone modal operators as suitable

concatenations of normal modalities. This same observation inspired Helle Hansen’s syntactic translation [10,

Definition 5.7] on which her Sahlqvist correspondence theorem for monotone modal logic is based. The present

section is aimed at making all this precise. In the next subsection, we introduce two-sorted frames, their associated

normal modal language, and first order correspondence language. We also spell out the relationship between two-

sorted frames and monotone neighbourhood frames, which allows to interpret monotone modal logic on two-sorted

frames. In subsection 3.2, we introduce the basic adaptation of ALBA to the normal modal language of two-sorted

frames.

3.1 Two-sorted frames

Definition 3.1. A two-sorted frame is a structure X = 〈X,Y,RXY ,RYX〉 such that X and Y are sets, RXY ⊆ X × Y

and RYX ⊆ Y × X.

The existence of the equivalent representation of any finite monotone neighbourhood frame F in terms of

the finite neighbourhood frame F∗ (cf. paragraph page 7) implies that we can equivalently encode any monotone

neighbourhood frame F as the following two-sorted structure (X,Y,RXY ,RYX), such that Y = PX, and for every

x ∈ X and y ∈ Y ,

xRXYy iff y ∈ min
⊆
σ(x) and yRYX x iff x ∈ y.

The definitions above imply that RXY [x] = min⊆ σ(x) for any x ∈ X, and RYX[y] = y for any y ∈ Y . In the

remainder of the paper, for any relation S ⊆ X × Y , we sometimes use the symbols xS and Sy to denote the sets

S [x] and S −1[y] respectively.

As is well known, each of the two relations RXY and RYX gives rise to a pair of semantic normal modal

operators:

〈RXY〉 : PY −→ PX [RXY] : PY −→ PX

T 7−→ R−1
XY

[T] T 7−→ (R−1
XY

[T c])c

〈RYX〉 : PX −→ PY [RYX] : PX −→ PY

S 7−→ R−1
YX

[S] S 7−→ (R−1
YX

[S c])c

12

where

R−1
XY

[T] := {x ∈ X | xRXY ∩ T , ∅} (R−1
XY

[T c])c := {x ∈ X | xRXY ⊆ T }

R−1
YX

[S] := {y ∈ y | yRYX ∩ S , ∅} (R−1
YX

[S c])c := {x ∈ X | xRYX ⊆ S }.

Definition 3.2. The complex algebra of the two-sorted frame X as above is the tuple

(PX,PY, 〈RXY〉, [RXY], 〈RYX〉, [RYX]).

To make definitions and calculations more readable we introduce the following convention: we note ≤ the order

on PX and � the order on PY .

Two-sorted frames and their complex algebras will be used as (nonstandard) models for the modal language

LMML over AtProp (cf. Definition 2.11), the definition of which we report here for the reader’s convenience:

φ ::= ⊥ | ⊤ | p | ¬φ | φ ∨ φ | φ ∧ φ | (∃∀)φ | (∀∃)φ.

Definition 3.3. A two-sorted model is a tuple M = (X, v) such that X is a two-sorted frame, and v is a map

AtProp −→ PX.

Given a valuation v, its associated extension function is defined by induction as follows:

~⊥�v,X = ∅

~⊤�v,X = X

~p�v,X = v(p)

~¬φ�v,X = ~φ�c

~φ ∨ ψ�v,X = ~φ�v,X ∪ ~ψ�v,X

~φ ∧ ψ�v,X = ~φ�v,X ∩ ~ψ�v,X

~(∃∀)φ�v,X = 〈RXY〉[RYX]~φ�v,X (∗)

~(∀∃)φ�v,X = [RXY]〈RYX〉~φ�v,X (∗∗)

3.2 Basic ALBA on two-sorted frames

In order to adapt ALBA to the setting of two-sorted frames, we need to define the symbolic language which ALBA

will manipulate. Analogously to what has been done in [7], let us introduce the language L+ as follows:

ϕ ::= ⊥ | ⊤ | p | j | m | j | m | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ r ϕ | ϕ→ ϕ |

〈RXY〉ϕ | [RXY]ϕ | 〈RYX〉ϕ | [RYX]ϕ | [R−1
XY]ϕ | 〈R−1

XY〉ϕ | [R
−1
YX]ϕ | 〈R−1

YX〉ϕ,

where p ∈ AtProp, j ∈ NomX , j ∈ NomY , m ∈ CNomX , m ∈ CNomY . The language above is shaped on the

complex algebra of two-sorted frames. In particular, the variables in NomX and NomY are to be interpreted as

atoms of PX and PY respectively, and the variables in CNomX and CNomY are to be interpreted as coatoms of

PX and PY . Moreover, the interpretation of the modal operators is the natural one suggested by the notation and

indeed we are using the same symbols to denote both the operators and their interpretations. Finally, clauses (∗)

and (∗∗) in Definition 3.3 justifies the definition of the obvious translation from formulas of LMML to formulas in

L+. In what follows, we introduce the ALBA rules which are sound on general two-sorted structures.

Adjunction and residuation rules. It is well known that, in the setting of boolean algebras, the interpretation

of the conjunction ∧ has a right residual, which is the interpretation of the implication,→, and the interpretation

of the disjunction ∨ has a left residual, which is the interpretation of the subtraction r. Thus, the following rules

are sound and invertible in the two boolean algebras associated with any two-sorted structure:

α ∧ β ≤ γ

α ≤ β→ γ
RS ∧

α ≤ β ∨ γ

α r β ≤ γ
RS∨

Moreover, it follows from very well known facts in modal logic that, for any two-sorted structure, 〈RXY〉 (resp.

[RXY]) has a right (resp. left) adjoint, which is [RYX] (resp. 〈RYX〉). Thus, the following rules are sound and

invertible on any two-sorted structure:

〈RXY〉α ≤ β

α � [R−1
XY

]β
AJ〈RXY〉

α ≤ [RXY]β

〈R−1
XY
〉α � β

AJ[RXY]
〈RYX〉α � β

α ≤ [R−1
YX

]β
AJ〈RYX〉

α � [RYX]β

〈R−1
YX
〉α ≤ β

AJ[RYX]

13

Approximation rules. The soundness and invertibility of the rules below straightforwardly follows from the

complete join- (resp. meet-)preservation properties of the modalities 〈RXY〉, [RXY], 〈RYX〉 and [RYX], and also

from the fact that the boolean algebras PX and PY are both completely join-generated by their completely join-

irreducible elements and completely meet-generated by their completely meet-irreducible elements. For more

details on this the reader is referred to [7].

i ≤ 〈RXY〉α

∃j (i ≤ 〈RXY〉j & j � α)
AP〈RXY〉

[RXY]α ≤ m

∃n (α � n & [RXY]n ≤ m)
AP[RXY]

i � 〈RYX〉α

∃j (i � 〈RYX〉j & j ≤ α)
AP〈RYX〉

[RYX]α � m

∃n (α ≤ n & [RYX]n � m)
AP[RYX]

Splitting rules. The following rules reflect the fact that the logical conjuction and disjunction are respectively

interpreted with the greatest lower bound and least upper bound lattice operations, and hence are sound and

invertible.

ϕ ≤ ψ1 ∧ ψ2

ϕ ≤ ψ1 & ϕ ≤ ψ2

S P ∧
ψ1 ∨ ψ2 ≤ ϕ

ψ1 ≤ ϕ & ψ2 ≤ ϕ
S P∨

Ackermann rules. The soundness and invertibility of the following rules (here below is the right-Ackermann

rule) has been discussed in [7, Lemmas 4.2 and 4.3].

∃p
[

&
n

i=1{αi ≤ p} & &
m

j=1{β j(p) ≤ γ j(p)}
]

&
m

j=1{β j(
∨n

i=1 αi) ≤ γ j(
∨n

i=1 αi)}
(RAR)

where p does not occur in α1, . . . , αn, the formulas β1(p), . . . , βm(p) are positive in p, and γ1(p), . . . , γm(p) are

negative in p. Here below is the left-Ackermann rule:

∃p
[

&
n

i=1{p ≤ αi} & &
m

j=1{β j(p) ≤ γ j(p)}
]

&
m

j=1{β j(
∧n

i=1 αi) ≤ γ j(
∧n

i=1 αi)}
(LAR)

where p does not occur in α1, . . . , αn, the formulas β1(p), . . . , βm(p) are negative in p, and γ1(p), . . . , γm(p) are

positive in p.

Boolean tautologies. Clearly, the appropriate boolean and lattice tautologies justify the soundness and invert-

ibility of the following rules. For the sake of conciseness, some of these rules will be given as formula-rewriting

rules rather than as equivalences between inequalities.

ϕ ∨ ⊥

ϕ
∨ ⊥

ϕ ∨ (ψ1 ∧ ψ2)

(ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2)
D ∨ ∧

¬¬φ

φ
T NN

A ≤ B

(A ∧ B) = A
BA∧

ϕ ∧ ⊤

ϕ
∧ ⊤

ϕ ∧ (ψ1 ∨ ψ2)

(ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2)
D ∧ ∨

x ∨ (y r x)

x ∨ y
T∨

B ≤ A

(A ∨ B) = A
BA∨

ϕ ∨ ψ

ψ ∨ ϕ
C∨

(ϕ ∧ ψ) ∧ χ

ψ ∧ (ϕ ∧ χ)
A∧

x ∧ (x→ y)

x ∧ y
T∧

ϕ ∧ ψ ≤ ⊥

ϕ ≤ ¬ψ
T ∧ ⊥

ϕ ∧ ψ

ψ ∧ ϕ
C∧

(ϕ ∨ ψ) ∨ χ

ψ ∨ (ϕ ∨ χ)
A∨

ξ ∧ (ϕ r ψ) ≤ χ

ξ ∧ ϕ ≤ ψ ∨ χ
Tr

¬(ϕ ∨ ψ)

¬ϕ ∧ ¬ψ
DM

Behaviour of atoms. In any complete atomic boolean algebra, κ(j) coincides with ¬ j for each completely join-

irreducible element j. Thus, the following rules are sound and invertible in the two boolean algebras associated

14

with any two-sorted structure:

j ∧ s ≤ ⊥

s ≤ κ(j)
AtCoat1

j ∧ s ≤ κ(j)

s ≤ κ(j)
AtCoat2

j ∧ s � ⊥

s � κ(j)
AtCoat1

j ∧ s � κ(j)

s � κ(j)
AtCoat2

j ≤ s ∨ t s ≤ κ(j)

j ≤ t s ≤ κ(j)
MT

j � s ∨ t s � κ(j)

j � t s � κ(j)
MT

Logical rules. Finally, we find it useful to stress that ALBA is able to perform elementary equivalent simplifi-

cations such as those represented in the rules below:

φ ≤ ψ φ ≤ ψ

φ ≤ ψ
bis

A = B t(A) ≤ s(A)

A = B t(B) ≤ s(B)
S ub

ϕ ≤ ψ ψ ≤ χ

ϕ ≤ ψ ψ ≤ χ ϕ ≤ χ
TR

where t(B) and s(B) are obtained by replacing occurrences of A with B in t and s respectively.

Rules for normal modalities. The soundness and invertibility of the following rules T BD, T DB and T NM

straightforwardly follows from well known validities for classical normal modal logic. The soundness and invert-

ibility of TRR−1 immediately follows from the definition of the semantics of 〈R〉 and 〈R−1〉.

[R]X

¬〈R〉¬X
T BD

¬〈R〉¬X

[R]X
T DB

j ≤ 〈R〉j

j ≤ 〈R−1〉j
TRR−1 X ≤ 〈R〉A X ≤ [R]B

X ≤ 〈R〉(A ∧ B) X ≤ [R]B
T NM.

4 Enhancing the algorithm for correspondence

We are working towards being able to account for Nation’s characterisation in [12] as an instance of algorithmic

correspondence for the monotone modal logic language defined in Definition 2.11. As we saw in subsection 2.3,

the validity of a lattice inequality on any finite lattice L corresponds to the validity of the standard translation (cf.

page 2.3) of the given inequality on the join-presentation FL associated with L restricted to closed valuations (cf.

Definition 2.15). However, the version of ALBA for monotone neighbourhood frames defined in the previous

section is not equipped to recognize closed valuations and properly treat them. Therefore, in the present section,

we enhance the environment of two-sorted frames with an extra relation which encodes the order on the join-

presentation FL. On this environment, additional ALBA rules can be shown to be sound, thanks to which closed

valuations can be accounted for.

4.1 Enriched two-sorted frames

In the present subsection, we introduce the enriched two-sorted frames, and we show that the join-presentation of

any finite lattice can be equivalently represented as an enriched two-sorted frame.

Definition 4.1. An enriched two-sorted frame is a structure E = 〈X,Y,RXY ,RYX ,RXX〉 such that 〈X,Y,RXY ,RYX〉 is

a two-sorted frame (cf. Definition 3.1), and RXX ⊆ X × X. An enriched two-sorted frame is

• ordered if RXX is a partial order;

• minimal if

– it is ordered,

– xRXYy implies that the set yRYX = {x
′ ∈ X | yRYX x′} is a RXX-antichain for every x ∈ X and y ∈ Y ,

– the collection {yRYX | y ∈ xRXY } is a≪-antichain for any x ∈ X,

where≪ is the refinement relation associated with the partial order (X,RXX) (cf. (1)).

• monotone if for all x, x′ ∈ X, and for each y ∈ Y , if x′RXX x and xRXYy, then y′RYX ≪ yRYX for some

y′ ∈ x′RXY ;

• reflexive if for every x ∈ X there exists some y ∈ Y such that xRXYy and yRYX ≪ {x};

15

• transitive if for every x ∈ X and y ∈ Y , if y ∈ xRXY and yx′ ∈ x′RXY for some x′ ∈ yRYX then there exists

some y′ ∈ Y such that xRXYy′ and y′RYX ≪
⋃

{yx′RYX | x
′ ∈ yRYX};

• direct if it is ordered, minimal, monotone, reflexive and transitive;

Definition 4.2. Any join-presentation AL := (J(L),≤J ,M : J(L) −→ PPJ(L)) can be equivalently represented as

an enriched two-sorted frame EL := (X,Y,RXY ,RYX ,RXX) by setting

X := J(L), Y := {S ∈ PJ(L) | S is a ≤J -antichain},

RXY := {(x, y) ∈ X × Y | y ∈ M(x)}, RYX := ∋, and RXX = ≤J .

It can be easily verified that for every finite lattice L, the enriched two-sorted frame EL is direct.

Similarly to what has been discussed at the beginning of subsection 3.1 (cf. page 12), each of the three relations

RXY , RYX , and RXX gives rise to a pair of semantic normal modal operators:

〈RXY〉 : PY −→ PX [RXY] : PY −→ PX

T 7−→ R−1
XY

[T] T 7−→ (R−1
XY

[T c])c

〈RYX〉 : PX −→ PY [RYX] : PX −→ PY

S 7−→ R−1
YX

[S] S 7−→ (R−1
YX

[S c])c

〈RXX〉 : PX −→ PX [RXX] : PX −→ PX

S 7−→ R−1
XX

[S] S 7−→ (R−1
XX

[S c])c

where

R−1
XY

[T] := {x ∈ X | xRXY ∩ T , ∅} (R−1
XY

[T c])c := {x ∈ X | xRXY ⊆ T }

R−1
YX

[S] := {y ∈ Y | yRYX ∩ S , ∅} (R−1
YX

[S c])c := {y ∈ Y | yRYX ⊆ S }

R−1
XX

[S] := {x ∈ X | xRXX ∩ S , ∅} (R−1
XX

[S c])c := {x ∈ X | xRXX ⊆ T }.

Definition 4.3. The complex algebra of the enriched two-sorted frame E as above is the tuple

(PX,PY, 〈RXY〉, [RXY], 〈RYX〉, [RYX], 〈RXX〉, [RXX]).

Definition 4.4. An enriched two-sorted model is a tuple M = (E, v) such that X is an enriched two-sorted frame,

and v is a map AtProp −→ PX.

The advantage of moving from the language of two-sorted frames to the language of enriched two-sorted

frames is that the closure operator cl defined on direct presentations (see (3)) can be expressed in the modal

language associated with enriched two-sorted frames. Indeed, unravelling the definitions involved, it is not difficult

to see that for each subset S ,

cl(S) = ↓≤J
S = (∃∀)↓≤J

S = 〈⊳〉[∋]〈≤J〉S . (22)

Recall that any assignment v on a given finite lattice L uniquely gives rise to the assignment v∗ on EL defined by

v∗(p) := { j ∈ J(L) | j ≤L v(p)} for every p ∈ AtProp. Then it can be readily verified that the following identity is

satisfied for every p ∈ AtProp:

v∗(p) = 〈⊳〉[∋]〈≤J〉v
∗(p).

The semantic identity above suggests the following definition:

Definition 4.5. A valuation v on an enriched two-sorted model E is closed if v(p) = 〈RXY〉[RYX]〈RXX〉v(p) for

every p ∈ AtProp. An enriched two-sorted model is closed if its associated valuation is closed.

Thus, in the case a given enriched two-sorted model M = (EL, v) for some finite lattice L, the fact that the

valuation v arises from a lattice assignment on L can be expressed in the modal language of enriched two-sorted

frames by means of the satisfaction of the identity p = 〈RXY〉[RYX]〈RXX〉p for every p ∈ AtProp.

Definition 4.6. An enriched two-sorted model is ordered if its underlying enriched two-sorted frame is ordered

and its associated valuation assigns every p ∈ AtProp to a downset of (X,RXX).

16

4.2 Correspondence rules for enriched two-sorted frames

In the present subsection, we show the soundness of the following extra rules on enriched two-sorted frames.

〈RXX〉j ∧ s ≤ κ(j)

s ≤ κ(j)
AtomRXX

Lemma 4.7. The rule AtomRXX is sound and invertible on ordered enriched two-sorted models.

Proof. Fix an ordered enriched two-sorted model M = (E, v). Let x ∈ X such that v(j) = {x}, and assume that

〈RXX〉j∧ s ≤ κ(j) is satisfied onM. This means that x < (↓RXX
x)∩ v(s), which implies that x < v(s). This condition

is equivalent to s ≤ κ(j) being satisfied.

Conversely, assume that s ≤ κ(j) is satisfied onM as above. This is equivalent to x < v(s). Since by assumption

v(s) is a downset of (X,RXX), we have that x < v(s) iff ↓RXX
x * v(s). Hence x < ↓RXX

x ∩ v(s), which is equivalent

to 〈RXX〉j ∧ s ≤ κ(j) being satisfied onM, as required. �

j ≤ 〈⊳〉C k ≤ 〈∈〉C

j ≤ 〈⊳〉C k ≤ 〈∈〉C 〈⊳〉[∋]〈≤X〉(〈∈〉C r k) ≤ κ(k)
MinCov2

Lemma 4.8. The rule MinCov2 is sound and invertible on every closed model M = (EL, v) such that EL =

(J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with some finite lattice L (cf. Definition 4.2).

Proof. The direction from bottom to top is immediate. Conversely, assume that the inequalities j ≤ 〈⊳〉C and

k ≤ 〈∈〉C are satisfied onM. Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. Hence,

C ∈ M(j) and k ∈ C. By Lemma 2.9.2, this implies that k < ↓≤(C r k), which is equivalent to the satisfaction of

the inequality 〈⊳〉[∋]〈≤X〉(〈∈〉C r k) ≤ κ(k) onM. �

Lemma 4.9. Let s be a L+-term. For every closed modelM = (EL, v) such that EL = (J(L),PJ(L),⊳, ∋,≤J) is the

enriched two-sorted frame associated with some finite lattice L (cf. Definition 4.2),

M (S 1) iff M (S 2),

where

(S 1) :=

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

,

(S 2) :=

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)) ≤ ⊥

.

Proof. The right to left direction is immediate, since (S 1) is a subset of (S 2). Assume that (S 1) is satisfied onM.

Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. The assumptions imply that

C ∈ M(j), k ∈ C, k < ↓≤J
j ∩ ↓≤J

k, k < ↓≤J
k ∩ v(φ).

It is enough to show that

j < v(〈⊳〉[∋](〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s))).

Unravelling the definitions of 〈⊳〉 and [∋], the condition above is equivalent to the following:

there exists no D ⊆ J(L) such that D ∈ M(j) and D ⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)).

(23)

17

The conditions k < ↓≤J
j ∩ ↓≤J

k and k < ↓≤J
k ∩ v(φ) respectively imply that k < ↓≤J

j and k < v′(s). Hence, the

following chain of inclusions holds:

v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s))

= v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (v′(〈≤J〉j) ∩ v′(〈≤J〉k)) ∪ (v′(〈≤J〉k) ∩ v′(s))

= v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
j ∩ ↓≤J

k) ∪ (↓≤J
k ∩ v′(s)) (by definition of 〈≤J〉)

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k}) ∪ (↓≤J

k ∩ v′(s)) (k < ↓≤J
j)

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k}) ∪ (↓≤J

k r {k}) (k < v′(s))

⊆ v′(〈⊳〉[∋]〈≤J〉(〈∈〉C r k)) ∪ (↓≤J
k r {k})

⊆ ↓≤J
(C r k) ∪ (↓≤J

k r {k}). (cf. (22))

The fact that C ∈ M(j) and k ∈ C implies, by Lemma 2.9.4, that there is no cover of j which is included in the set

↓≤J
(C r k) ∪ (↓≤J

k r {k}). This implies that (23) holds as required. �

4.3 Closed right Ackermann rule

In the present section, we are going to prove the soundness of the following special version of the Ackermann

rule.

∃p
[

&
n

i=1{αi ≤ p} & &
m

j=1{β j(p) ≤ γ j(p)}
]

&
m

j=1{β j(〈⊳〉[∋]〈≤X〉
∨n

i=1 αi) ≤ γ j(〈⊳〉[∋]〈≤X〉
∨n

i=1 αi)}
(RAcl)

Lemma 4.10 (Right Ackermann Lemma for closed models). The rule (RAcl) is sound and invertible on closed

enriched two-sorted modelsM = (EL, v) such that EL is the enriched two-sorted frame associated with some finite

lattice L.

Proof. Fix a closed enriched two-sorted modelM = (EL, v) such that EL is the enriched two-sorted frame associ-

ated with some finite lattice L. For the direction from bottom to top, assume that for every 1 ≤ j ≤ m,

v(β j(〈⊳〉[∋]〈≤X〉

n
∨

i=1

αi)) ⊆ v(γ j(〈⊳〉[∋]〈≤X〉

n
∨

i=1

αi)).

Let v′ be the p-variant of v such that v′(p) = 〈⊳〉[∋]〈≤X〉v(
∨n

i=1 αi). As discussed in subsection 4.1, the composition

〈⊳〉[∋]〈≤X〉 is the operator that maps each set to the closure of its downset. Hence v′(p) is a closed set and v′ is a

closed valuation. Since αi does not contain p, we have that v′(αi) = v(αi), and hence

v′(αi) ≤ v(α1) ∨ ... ∨ v(αn) ≤ 〈⊳〉[∋]〈≤X〉(v(α1) ∨ ... ∨ v(αn)) = v′(p).

This shows that

v′(αi) ≤ v′(p), for all 1 ≤ i ≤ n.

Moreover, for all 1 ≤ i ≤ m, we have

v′(βi(p)) = v(βi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) ≤ v(γi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) = v′(γi(p)).

For the implication from top to bottom, we make use of the fact that the βi are monotone (since positive) in p,

while the γi are antitone (since negative) in p. Since the αi do not contain p, and v is a p-variant of v′, we have

v(αi) = v′(αi) ≤ v′(p), for all 1 ≤ i ≤ n; hence, v(α1) ∨ ... ∨ v(αn) ≤ v′(p). Since v′ is a closed valuation, v′(p) is a

closed set, and v(α1) ∨ ... ∨ v(αn) ≤ v′(p) implies that

〈⊳〉[∋]〈≤X〉(v(α1) ∨ ... ∨ v(αn)) ≤ v′(p).

Hence,

v(βi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)) ≤ v′(βi(p)) ≤ v′(γi(p)) ≤ v(γi(〈⊳〉[∋]〈≤X〉(α1 ∨ ... ∨ αn)/p)).

�

18

5 Characterizing uniform upper bounds on the length of D+-chains in

finite lattices

Definition 5.1. Let L be a finite lattice and let EL = (J(L),PJ(L),⊳, ∋,≤J) be its associated enriched two-sorted

frame (cf. Definition 4.2). Consider the binary relation D+ ⊆ J(L) × J(L) defined as follows: for any j, k ∈ J(L),

jD+k iff j ⊳C, k ∈ C and k � j for some C ∈ PJ(L).

A D+-chain of length l is a sequence (j0, ..., jl) of elements of J(L) such that jiD
+ ji+1 for each 0 ≤ i ≤ (l − 1).

A notion similar to the one defined above has been used in [12] and [14] to define a hierarchy of varieties

of lattices progressively generalising the variety of distributive lattices. More discussion about the similarities

and differences between Nation and Semenova’s notion of D-chain and the one above can be found in Section

6. In [13], the result in [12] and [14] has been generalized, and the existence of a Sahlqvist-type correspondence

mechanism underlying it has been observed. The main motivation of the present paper is to provide a formal

framework where this observation can be precisely spelled out, and in the present section, we are ready to obtain

a result similar to Nation’s by means of an ALBA reduction.

Fix enumerations of variables xn, yn for n ∈ N. Consider the following family of lattice inequalities:

{tn ≤ sn | n ∈ N},

such that the lattice terms tn and sn are recursively defined as follows:

t0 := x0 tn+1 := xn+1 ∧ (yn+1 ∨ tn)

s0 := ⊥ sn+1 := xn+1 ∧ (yn+1 ∨ (xn+1 ∧ xn) ∨ sn).

The aim of this section is proving the following proposition:

Proposition 5.2. For any finite lattice L and any n ∈ N,

L |= tn ≤ sn iff there is no D+-chain of length n in L.

Proof. For n = 0, we need to prove that, if L is a finite lattice, L |= x0 ≤ ⊥ iff there is no D+-chain of length 0 in

L. This is clear, since the only finite lattice L such that L |= x0 ≤ ⊥ is the one-element lattice, which is the only

finite lattice which has no join-irreducible element.

Let n + 1 ≥ 1. By Corollary 2.17,

L |= tn+1 ≤ sn+1 iff EL S T (tn+1) ≤ S T (sn+1),

where EL = (J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with L (cf. Definition 4.2), and the

validity on the right-hand side of the equivalence is understood in terms of satisfaction for every closed valuation.

We will provide ALBAl reductions for each n+1 ≥ 1 and each inequality tn+1 ≤ sn+1. Since all the ALBAl rules

are sound and invertible on EL, the reduction will output a condition in the first order correspondence language

of EL, which is equivalent to the validity of the input inequality on L, and which will express the existence of no

D-chains of length n + 1 in L.

First of all, using the standard translation introduced in section 2.2, the lattice terms tn+1 and sn+1 translate into

the following monotone modal logic formulas:

S T (t0) := x0 S T (tn+1) := xn+1 ∧ t′
n+1

with t′
n+1

:= (∃∀)(yn+1 ∨ S T (tn))

S T (s0) := ⊥ S T (sn+1) := xn+1 ∧ s′
n+1

with s′
n+1

:= (∃∀)(yn+1 ∨ (xn+1 ∧ xn) ∨ S T (sn)).

Using the notation introduced in section 2.2, the LMML-terms above can be translated into the modal language

of enriched two-sorted frames (cf. Subsection 4.1) as indicated below. For the sake of simplicity, we use the

symbols tn and sn also to indicate the translations of the original lattice terms.

t0 = x0 tn+1 = xn+1 ∧ t′
n+1

with t′
n+1
= 〈⊳〉[∋](yn+1 ∨ tn)

s0 = ⊥ sn+1 = xn+1 ∧ s′
n+1

with s′
n+1
= 〈⊳〉[∋](yn+1 ∨ (xn+1 ∧ xn) ∨ sn)

19

Let x stand for the list of variables xn, ..., x0, and y stand for the list of variables yn, ..., y1. ALBAl transforms

the input inequality tn+1 ≤ sn+1 into the following quasi-inequality (cf. section 2.4):

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

((

jn+1 ≤ tn+1

sn+1 ≤ κ(jn+1)

)

⇒ false

)

.

Since tn+1 = xn+1 ∧ t′
n+1

and sn+1 = xn+1 ∧ s′
n+1

, we can rewrite the quasi-inequality above as:

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

((

jn+1 ≤ xn+1 ∧ t′
n+1

xn+1 ∧ s′
n+1
≤ κ(jn+1)

)

⇒ false

)

.

Applying the rule (S P∧) to the first inequality yields:

∀xn+1,∀x,∀yn+1,∀y,∀jn+1,

jn+1 ≤ xn+1

jn+1 ≤ t′
n+1

xn+1 ∧ s′
n+1
≤ κ(jn+1)

⇒ false

.

Notice that xn+1 < Var(t′
n+1

) and s′
n+1

is monotone in xn+1. Thus we can apply the Ackermann rule (RAcl) to

eliminate xn+1 via the substitution xn+1 ←− 〈≤J〉jn+1.

∀x,∀yn+1,∀y,∀jn+1,

((

jn+1 ≤ t′
n+1

〈≤J〉jn+1 ∧ s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

)

⇒ false

)

.

Recall that EL is an ordered enriched two-sorted frame and closed valuations assign variables to downsets.

Hence, by Lemma 4.7, the quasi-inequality above is equivalent to the quasi-inequality below by applying the

rule (AtomRXX).

∀x,∀yn+1,∀y,∀jn+1,

((

jn+1 ≤ t′
n+1

s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

)

⇒ false

)

.

By lemma 5.3, the quasi-inequality above is equivalent to

∀jn+1, ..., j0,∀Cn,Cn−1, ...,C0

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

. (24)

Notice that, for 0 ≤ i ≤ n, the following inequalities:

ji+1 ≤ 〈⊳〉Ci, ji ≤ 〈∈〉Ci, 〈≤J〉ji+1 ∧ ji ≤ ⊥

are respectively equivalent to the following atomic formulas in the first order correspondence language of enriched

two-sorted frames (cf. Subsection 4.1):

ji+1 ⊳Ci, ji ∈ Ci, ji � ji+1.

By definition 5.1, the conditions above yield ji+1D+ ji for each 0 ≤ i ≤ n. Hence the quasi-inequality (24) is

equivalent to the following quasi-inequality:

∀ jn+1, ..., j0 [(jn+1D+ jn . . . j1D+ j0)⇒ false],

which expresses the condition that there is no D+-chain of length n + 1. �

The proof of the proposition above relies on the following lemma, the proof of which can be found in section

A.

20

Lemma 5.3. For every n ≥ 1, ALBAl succeeds on the quasi-inequality

∀xn−1, ..., x0,∀yn, ..., y0,∀jn,

((

jn ≤ t′n
s′n(〈≤J〉jn/xn) ≤ κ(jn)

)

⇒ false

)

,

and produces

∀jn, ...j0,∀Cn−1, ...C0

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

6 Conclusions and further directions

Conclusions. In the present paper, the algorithmic correspondence theory revolving around ALBA (cf. [7, 2])

has been adapted and extended, so as to provide an adequate environment in which to formalize the observation

(cf. [13]) of the existence of a Sahlqvist-type mechanism underlying dual characterization results for finite lattices.

The treatment of lattice inequalities in the setting of ALBA is mediated by monotone modal logic, thanks to

the existence of a duality-on-objects between finite lattices and join-presentations (cf. Definition 2.4), and the fact

that join-presentations are closely related to (monotone) neighbourhood frames.

A key step towards the main result of the present paper is the adaptation of ALBA to monotone modal logic,

semantically justified by the introduction of two-sorted structures and their associated correspondence language.

In this setting, the Sahlqvist correspondence theory of [10] can be embedded and generalized.

Comparison with Nation’s results. As mentioned early on, our result is similar to Nation’s dual characteriza-

tion of uniform upper bounds on the length of D-chains in finite lattices:

Definition 6.1. Let L be a finite lattice. Let D ⊆ J(L) × J(L) be the binary relation defined as follows: for any

j, k ∈ J(L),

jDk iff j ⊳C, k ∈ C and k , j for some C ∈ PJ(L).

A D-chain of length l is a sequence (j0, ..., jl) of elements of J(L) such that jiD ji+1 for each 0 ≤ i ≤ (l − 1).

The dual characterization of section 5 is different from Nation’s [12] and is not covered by the result in [13],

which generalizes Nation’s. As far as we know, it is original.

Clearly, D+ is included in D for any finite lattice L. Hence, the validity on a finite lattice L of Nation’s

inequalities for a given n is a sufficient condition for L having D+-chains of length at most n. However, in the

remainder of the paragraph, we are going to show that this upper bound is not accurate. Indeed, the maximal

length of D+-chains starting from a given join-irreducible element in a lattice can be strictly smaller than the one

for D-chains starting from the same join-irreducible element. Consider the lattice L the Hasse diagram of which

is given by the figure. In this example, it can be easily verified that

J(L) := { a, b, c, d, e },

M(c) := { { c }, { a, b } },

M(e) := { { e }, { a, d }, { c, d } }.

The only D+-chain starting from e is eD+d, whereas there are D-chains of length 2 starting from e, for instance

eDcDb.

Further directions. The present paper is a first step towards the fully-fledged automatization of dual character-

ization results for finite lattices. Significant extensions of Nation’s dual characterization results appear e.g. in [14]

and [13, Proposition 8.5]. Hence, natural directions worth pursuing are (a) extending the results of the present pa-

per so as to account for [13, Proposition 8.5], and (b) analyzing the technical machinery introduced in the present

21

⊤

e

l d

c

a

b

⊥

Figure 1: The Hasse diagram of the lattice L

paper from an algorithmic perspective. The latter point involves e.g. establishing whether the present set of rules

is minimal, or whether some rules can actually be derived.

Related to both these directions, but more on the front of methodology, are outstanding open questions about

Lemma A.1. This lemma provides the soundness and invertibility of a rule by means of which variable elimination

is effected via instantiation. So far, all rules of this type in ALBA have been proved sound and invertible thanks

to one or another version of Ackermann’s lemma. However, it is not clear whether Lemma A.1 can be accounted

for in terms of Ackermann’s lemma, and hence whether the rule justified in Lemma A.1 can be regarded as an

Ackermann-type rule. Moreover, while Lemma A.1 is rooted and has an intuitive understanding in the semantics

of minimal coverings, at the moment it is not clear whether and how more general versions of this rule can be

formulated, which would be of a wider applicability. Giving answers to these questions would significantly enlarge

the scope of algorithmic correspondence theory, and is also a worthwhile future direction.

References

[1] W. Ackermann. Untersuchung über das Eliminationsproblem der mathematischen Logic. Mathematische

Annalen, 110:390 – 413, 1935.

[2] A. Baltag and S. Smets, editors. Unified Correspondence, volume Johan F.A.K. van Benthem on Logical

and Informational Dynamics. Springer series, Outstanding Contributions to Logic, 2014.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic, volume 53 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge, 2001.

[4] A. Chagrov and L. A. Chagrova. The truth about algorithmic problems in correspondence theory. In G. Gov-

ernatori, I. Hodkinson, and Y. Venema, editors, Advances in Modal Logic, volume 6, pages 121 – 138.

College Publications, 2006.

[5] W. Conradie, S. Ghilardi, and A. Palmigiano. Unified correspondence. In A. Baltag and S. Smets, editors,

Johan F.A.K. van Benthem on Logical and Informational Dynamics, Outstanding Contributions to Logic.

Springer, in print 2014.

[6] W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and completeness in modal logic

I: The core algorithm SQEMA. Logical Methods in Computer Science, 2(1:5), 2006.

[7] W. Conradie and A. Palmigiano. Algorithmic correspondence and canonicity for distributive modal logic.

Annals of Pure and Applied Logic, 163(3):338 – 376, 2012.

[8] Willem Conradie, Yves Fomatati, Alessandra Palmigiano, and Sumit Sourabh. Sahlqvist Correspondence

for Intuitionistic Modal µ-Calculus, Submitted.

22

[9] B. A. Davey and H. A. Priestley. Lattices and Order. Cambridge Univerity Press, 2002.

[10] Helle Hansen. Monotonic modal logic. Master’s thesis, University of Amsterdam, 2003.

[11] B. Jónsson and A. Tarski. Boolean algebras with operators. Amer. J. Math., (73):891–939, 1951.

[12] J. B. Nation. An approach to lattice varieties of finite height. Algebra Universalis, 27(4):521–543, 1990.

[13] Luigi Santocanale. A duality for finite lattices. preprint, 2009.

[14] M. V. Semënova. On lattices that are embeddable into lattices of suborders. Algebra Logika, 44(4):483–511,

514, 2005.

[15] J. van Benthem. Modal Logic and Classical Logic. Indices : Monographs in Philosophical Logic and Formal

Linguistics, Vol 3. Bibliopolis, 1985.

23

A Proof of lemma 5.3

Lemma 5.3 For every n ≥ 1, ALBAl succeeds on the quasi-inequality

∀xn−1, ..., x0,∀yn, ..., y0,∀jn,

((

jn ≤ t′n
s′n(〈≤X〉jn/xn) ≤ κ(jn)

)

⇒ false

)

, (25)

and produces

∀jn, ...j0,∀Cn−1, ...C0

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

Proof. By induction on n. If n = 1, then the quasi-inequality (25) has the following shape (cf. the definitions of tn
and sn on page 19):

∀x0,∀y1,∀j1,

((

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0) ∨ ⊥) ≤ κ(j1)

)

⇒ false

)

.

By applying the rules (AtCoat1) and (T ∧ ⊥) to the second inequality, we get:

∀x0,∀y1,∀j1,

((

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

j1 ≤ ¬〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0))

)

⇒ false

)

.

Now we can apply (T DB) and (T BD) to the second inequality, and get:

∀x0,∀y1,∀j1,

((

j1 ≤ 〈⊳〉[∋](y1 ∨ x0)

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

)

⇒ false

)

.

By applying the rule (T NM) to the first and second inequalities, we get:

∀x0,∀y1,∀j1,

((

j1 ≤ 〈⊳〉([∋](y1 ∨ x0) ∧ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0)))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

)

⇒ false

)

.

We can apply the rule (AP♦) to the first inequality, and get:

∀x0,∀y1,∀j1,∀C0

j1 ≤ 〈⊳〉C0

C0 ≤ [∋](y1 ∨ x0) ∧ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rule (S P∧) to the second inequality, we get:

∀x0,∀y1,∀j1,∀C0

j1 ≤ 〈⊳〉C0

C0 ≤ [∋](y1 ∨ x0)

C0 ≤ 〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

We can now apply the rule (AJ�) to the second inequality and (AP♦) to the third inequality, and get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

C0 ≤ 〈∋〉j0

j0 ≤ ¬(y1 ∨ (〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

24

By applying the rules (DM) and (S P∧) to the fourth inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

C0 ≤ 〈∋〉j0

j0 ≤ ¬y1

j0 ≤ ¬(〈≤J〉j1 ∧ x0))

j1 ≤ [⊳]〈∋〉¬(y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rule (TRR−1) to the third inequality, the rules (T ∧ ⊥) and (AtCoat1) to the fourth and fifth

inequalities, and the rules (T DB) and (T BD) to the last inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ 〈∈〉C0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ≤ ¬〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0))

⇒ false

.

By applying the rule (TR) to the second and third inequalities and the rule (T ∧ ⊥) to the last inequality, we get:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ 〈∈〉C0

j0 ≤ y1 ∨ x0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0)) ≤ ⊥

⇒ false

.

By applying the rule (MT) to the fourth and fifth inequalities, the rule (AtCoat1) to the last inequality, and by ex-

changing the position of the second and third inequalities, the quasi-inequality above can be equivalently rewritten

as follows:

∀x0,∀y1,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈∈〉C0 ≤ y1 ∨ x0

j0 ≤ x0

y1 ≤ κ(j0)

〈≤J〉j1 ∧ x0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](y1 ∨ (〈≤J〉j1 ∧ x0)) ≤ ⊥

⇒ false

.

By lemma A.1 with the following instantiations4

t := ⊤, s := ⊥, j := j1, k := j0, C := C0, x := x0,

the quasi-inequality above is equivalent to the following:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

cl(〈∈〉C0 r j0) ≤ κ(j0)

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](cl(〈∈〉C0 r j0) ∨ (〈≤J〉j1 ∧ 〈≤J〉j0)) ≤ ⊥

⇒ false

,

where cl abbreviates the composition 〈⊳〉[∋]〈≤J〉. By applying the rule MinCov2 bottom to top, the quasi-

inequality above can be equivalently rewritten as follows

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

j1 ∧ 〈⊳〉[∋](cl(〈∈〉C0 r j0) ∨ (〈≤J〉j1 ∧ 〈≤J〉j0)) ≤ ⊥

⇒ false

,

4Notice that t := ⊤ and s := ⊥ reduce the inequalities k ≤ t, 〈∈〉C ≤ y ∨ t and x ∧ s ≤ κ(k) in the statement of Lemma A.1 to tautologies,

and the inequality j ∧ 〈⊳〉[∋](y ∨ (〈≤J〉j ∧ x) ∨ (x ∧ s)) ≤ ⊥ to j ∧ 〈⊳〉[∋](y ∨ (〈≤J〉j ∧ x)) ≤ ⊥.

25

By applying Lemma 4.9, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ 〈≤J〉j0 ≤ κ(j0)

⇒ false

,

By applying (AtomRXX) to the third inequality, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ≤ κ(j0)

⇒ false

,

By (AtCoat1) to the third inequality, we get:

∀x0,∀j1, j0,∀C0

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

,

which finishes the proof of the base case.

Induction step. Fix n ≥ 1, and assume that the lemma holds for n. Recall that x stands for the list of variables

xn, ..., x0, and y stands for the list of variables yn, ..., y1. Let us prove the lemma for the quasi-inequality

∀x,∀yn+1,∀y,∀jn+1

((

jn+1 ≤ t′
n+1

s′
n+1

(〈≤J〉jn+1/xn+1) ≤ κ(jn+1)

)

⇒ false

)

.

By the definitions on page 19, the quasi-inequality above can be rewritten into:

∀x,∀yn+1,∀y,∀jn+1

((

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn) ≤ κ(jn+1)

)

⇒ false

)

,

which, by applying the rules (AtCoat1) and (T ∧ ⊥) to the second inequality, is equivalent to:

∀x,∀yn+1,∀y,∀jn+1

((

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

jn+1 ≤ ¬〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

)

⇒ false

)

.

By applying the rule (T BD) and (T DB) to the second inequality, we get:

∀x,∀yn+1,∀y,∀jn+1

((

jn+1 ≤ 〈⊳〉[∋](yn+1 ∨ tn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

)

⇒ false

)

.

By applying the rule (T NM) to the first and second inequalities, we get:

∀x,∀yn+1,∀y,∀jn+1

((

jn+1 ≤ 〈⊳〉([∋](yn+1 ∨ tn) ∧ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn))

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

)

⇒ false

)

.

By applying the rule (AP♦) to the first inequality, we get:

∀x,∀yn+1,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

Cn ≤ [∋](yn+1 ∨ tn) ∧ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (S P∧) to the second inequality, we get:

∀x,∀yn+1,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

Cn ≤ [∋](yn+1 ∨ tn)

Cn ≤ 〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

26

We can now apply the rule (AJ�) to the second inequality and (AP♦) to the third inequality, and get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn
Cn ≤ 〈∋〉jn

jn ≤ ¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rules (DM) and (S P∧) to the fourth inequality, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn
Cn ≤ 〈∋〉jn

jn ≤ ¬yn+1

jn ≤ ¬(〈≤J〉jn+1 ∧ xn)

jn ≤ ¬sn

jn+1 ≤ [⊳]〈∋〉¬(yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (TRR−1) to the third inequality, the rules (T ∧ ⊥) and (AtCoat1) to the fourth, fifth and sixth

inequalities, and the rules (T DB) and (T BD) to the last inequality, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn
jn ≤ 〈∈〉Cn

yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

sn ≤ κ(jn)

jn+1 ≤ ¬〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn)

⇒ false

.

By applying the rule (TR) to the second and third inequalities and the rule (T ∧ ⊥) to the last inequality, and by

exchanging the position of the second and third inequalities, we get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ tn
jn ≤ yn+1 ∨ tn
yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

sn ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ sn) ≤ ⊥

⇒ false

.

By applying the rule (MT) to the fourth and fifth inequalities, and since by definition tn = xn ∧ t′n and sn = xn ∧ s′n,

the quasi-inequality above is equivalent to the quasi-inequality below:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ (xn ∧ t′n)

jn ≤ xn ∧ t′n
yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

xn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ (xn ∧ s′n)) ≤ ⊥

⇒ false

.

27

We can apply now the rules (D∨∧) and (S P∧) to the third inequality, and the rule (S P∧) on the fourth inequality,

and get:

∀x,∀yn+1,∀y,∀jn+1, jn,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈∈〉Cn ≤ yn+1 ∨ xn

〈∈〉Cn ≤ yn+1 ∨ t′n
jn ≤ xn

jn ≤ t′n
yn+1 ≤ κ(jn)

〈≤J〉jn+1 ∧ xn ≤ κ(jn)

xn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](yn+1 ∨ (〈≤J〉jn+1 ∧ xn) ∨ (xn ∧ s′n)) ≤ ⊥

⇒ false

.

By lemma A.1 with the following instantiations

t := t′n, s := s′n, j := jn+1, k := jn, C := Cn, x := xn,

the quasi-inequality above is equivalent to the following quasi-inequality:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n
cl(〈∈〉Cn r jn) ≤ κ(jn)

〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](cl(〈∈〉Cn r jn) ∨ (〈≤J〉jn+1 ∧ 〈≤J〉jn) ∨ (〈≤J〉jn ∧ s′n)) ≤ ⊥

⇒ false

.

where cl abbreviates the composition 〈⊳〉[∋]〈≤J〉. By applying the rule MinCov2 bottom to top, the quasi-

inequality above can be equivalently rewritten as follows

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n
〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

jn+1 ∧ 〈⊳〉[∋](cl(〈∈〉Cn r jn) ∨ (〈≤J〉jn+1 ∧ 〈≤J〉jn) ∨ (〈≤J〉jn ∧ s′n)) ≤ ⊥

⇒ false

.

By applying Lemma 4.9, we get:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

jn ≤ t′n
〈≤J〉jn+1 ∧ 〈≤J〉jn ≤ κ(jn)

〈≤J〉jn ∧ s′n ≤ κ(jn)

⇒ false

.

By applying (AtomRXX) and (AtCoat1) to the fourth inequality, and (AtomRXX) to the last inequality, we get:

∀xn−1, ..., x0,∀y,∀jn+1,∀Cn

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

jn ≤ t′n
s′n ≤ κ(jn)

⇒ false

.

Notice that the system above consists of a set of pure inequalities and a set of inequalities of the exact shape

to which the induction hypothesis applies. Since a run of ALBA does not depend on the presence of side pure

28

inequalities, the induction hypothesis implies that ALBAl succeeds on the system above, and outputs the pure

quasi-inequality below, as required:

∀jn+1, jn, ...j0,∀Cn,Cn−1, ...C0

jn+1 ≤ 〈⊳〉Cn

jn ≤ 〈∈〉Cn

〈≤J〉jn+1 ∧ jn ≤ ⊥

jn ≤ 〈⊳〉Cn−1

jn−1 ≤ 〈∈〉Cn−1

〈≤J〉jn ∧ jn−1 ≤ ⊥

. . .

j1 ≤ 〈⊳〉C0

j0 ≤ 〈∈〉C0

〈≤J〉j1 ∧ j0 ≤ ⊥

⇒ false

.

�

The lemma below proves the soundness of an Ackermann-type rule for the elimination of non-elementary

variables which however cannot be explained in terms of Ackermann principles.

Lemma A.1. Let t and s be monotone L+-terms such that x, y < Var(t). For every closed model M = (EL, v)

such that EL = (J(L),PJ(L),⊳, ∋,≤J) is the enriched two-sorted frame associated with some finite lattice L (cf.

Definition 4.2),

M (S 1) iff M (S 2),

where

(S 1) := ∃x∃y∃j∃k∃C

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

〈∈〉C ≤ y ∨ x

〈∈〉C ≤ y ∨ t

k ≤ x

k ≤ t

y ≤ κ(k)

〈≤J〉j ∧ x ≤ κ(k)

x ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](y ∨ (〈≤J〉j ∧ x) ∨ (x ∧ s)) ≤ ⊥

,

(S 2) := ∃j∃k∃C

j ≤ 〈⊳〉C

k ≤ 〈∈〉C

k ≤ t

cl(〈∈〉C r k) ≤ κ(k)

〈≤J〉j ∧ 〈≤J〉k ≤ κ(k)

〈≤J〉k ∧ s ≤ κ(k)

j ∧ 〈⊳〉[∋](cl(〈∈〉C r k) ∨ (〈≤J〉j ∧ 〈≤J〉k) ∨ (〈≤J〉k ∧ s)) ≤ ⊥

,

and cl(φ) denotes 〈⊳〉[∋]〈≤J〉φ.

Proof. Assume that the conjunction of the inequalities in (S 1) holds under v. Let v′ be the (x, y)-variant of v such

that v′(x) = 〈≤J〉v(k) and v′(y) = cl(v(〈∈〉C r k)). Since the assignment v is closed, for any z ∈ AtProp r {x, y},

the set v′(z) = v(z) is closed. By definition, v′(y) is closed, and v′(x) is closed because for any finite lattice and

any k ∈ J(L), the downset ↓≤J
k is a closed set (cf. Lemma 2.8). Thus v′ is a closed assignment. In addition,

v′(x) ⊆ v(x). Indeed, the assumption that k ≤ x holds under v and v(x) being closed, hence a downset, imply that

↓≤J
v(k) ⊆ v(x), hence we have:

v′(x) = 〈≤J〉v(k) = ↓≤J
v(k) ⊆ v(x).

The first, second and third inequalities in (S 2) hold under v′ since they do not contain the variables x and y and

coincide with the first, second and sixth inequalities in (S 1), which by assumption hold under v. The satisfaction of

the fifth and sixth inequalities in (S 2) under v′ is implied by monotonicity, since the eighth and ninth inequalities

in (S 1) are satisfied under v, and since v′(x) ⊆ v(x). It remains to show that the fourth and seventh inequalities in

29

(S 2) hold under v′. Let j, k ∈ J(L) and C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. The assumption

that j ≤ 〈⊳〉C and k ≤ 〈∈〉C hold under v imply that C ∈ M(j) and k ∈ C. Hence, 〈∈〉C = C. By Lemma 2.9.2,

k < ↓≤J
(C r k). Hence,

v′(cl(〈∈〉C r k)) = ↓≤J
(C r k) ⊆ J(L) r k = v′(κ(k)).

Thus the fourth inequality in (S 2) holds under v′. As to the last inequality, it follows directly from the satisfaction

of the previous inequalities under v′ and Lemma 4.9.

Let us prove the converse implication. Assume that the conjunction of the inequalities in (S 2) holds under v.

Let v′ be the (x, y)-variant of v such that v′(x) := 〈≤J〉v(k) and v′(y) := cl(〈∈〉v(C) r v(k)). The first, second and

sixth inequalities in (S 1) hold under v′ since they do not contain the variables x and y and coincide with the first,

second and third inequalities in (S 2), which by assumption hold under v. Since v′(x) = v′(〈≤J〉k) = ↓≤J
v(k), the

fifth inequality is satisfied under v′. The satisfaction under v′ of the eighth, ninth and tenth inequalities in (S 1)

immediately follows from the satisfaction of the fifth, sixth and seventh inequalities in (S 2) respectively and the

definition of v′.

It remains to be shown that the third, fourth and seventh inequalities in (S 1) hold under v′. Let j, k ∈ J(L) and

C ⊆ J(L) such that v(j) = { j}, v(k) = {k} and v(C) = {C}. The satisfaction of the first and second inequalities in

(S 1) under v′ imply that C ∈ M(j) and k ∈ C, which imply by Lemma 2.9.2, that k < v′(y). This implies that the

seventh inequality in (S 1) is satisfied under v′. By definition of v′ and of the closure,

v′(〈∈〉C r k) ⊆ cl(v′(〈∈〉C r k)) = v′(y).

In addition, by the satisfaction of the fifth and sixth inequalities in (S 1) under v′, we have that k ∈ v′(x) and

k ∈ v′(t). Hence

〈∈〉v′(C) = (〈∈〉v′(C) r k) ∪ {k} ⊆ v′(y) ∪ v′(x)

and

〈∈〉v′(C) = (〈∈〉v′(C) r k) ∪ {k} ⊆ v′(y) ∪ v′(t).

This finishes the proof that the third and fourth inequalities (S 1) hold under the closed assignment v′. �

30

	Introduction
	Preliminaries
	Dual equivalence for finite lattices
	An environment for correspondence
	The standard translation
	An informal presentation of the algorithm ALBA

	Algorithmic correspondence for monotone modal logic
	Two-sorted frames
	Basic ALBA on two-sorted frames

	Enhancing the algorithm for correspondence
	Enriched two-sorted frames
	Correspondence rules for enriched two-sorted frames
	Closed right Ackermann rule

	Characterizing uniform upper bounds on the length of D+-chains in finite lattices
	Conclusions and further directions
	Proof of lemma 5.3

