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A Brief Tutorial On Recursive Estimation
With Examples From Intelligent Vehicle

Applications (Part IV): Sampling Based
Methods And The Particle Filter

Hao Li

Abstract

Following the third article of the series “A brief tutorial on re-
cursive estimation”, in this article (the fourth article) we continue to
focus on the problem of how to handle model nonlinearity in recursive
estimation. We will review the particle filter a.k.a. a sequential Monte
Carlo method which has the potential to handle recursive estimation
problems with an system model and a measurement model of arbitrary
types and with data statistics of arbitrary types. We will explain basic
principles that underlie the particle filter, and demonstrate its perfor-
mance with examples from intelligent vehicle applications. We will
explain its advantage as well as limitation.

Keywords: recursive estimation, model nonlinearity, particle filter
(PF), sequential importance sampling (SIS), multimodal ambiguity,
intelligent vehicles

1 Introduction

In the third article [1] of the series “A brief tutorial on recursive estimation”,
we have reviewed the unscented Kalman filter (UKF) [2] [3] which may be
treated as another “extension” of the original Kalman filter besides the al-
ready existing extended Kalman filter (EKF); we have explained its idea of
how to handle nonlinear factors in the estimation and maintain the consis-



tency of data statistics—note that the EKF may result in inconsistent data
statistics in handling a nonlinear estimation problem.

On the other hand, the UKF is still a KF and one fundamental require-
ment for applying it is that all data statistics are modelled as Gaussian
distributions. In other words, the distribution of a random variable is ap-
proximated by an ellipsoid (a high dimensional analogue of an ellipse).
Although data statistics in reality can hardly be strictly Gaussian, yet this
practice is fairly effective for modelling unimodal data statistics. A question
arises naturally: if data statistics of a variable are multimodal and it is not
suitable at all to approximate them as a Gaussian distribution (see Fig.1),
then what recursive estimation method can we use?

“Suitable ?

Figure 1: Multimodal statistics

Or imagine that data statistics of a state are still unimodal but the shape
of its distribution is not so like an ellipsoid (see Fig.2), then besides choices
of applying variants of the KF, what estimation method else can we use so
that the distribution shape may be better captured?

We do have another choice besides the KF family and this choice is the
particle filter (PF) a.k.a. a sequential Monte Carlo method (SMC) [4]
[5] [6] [7]. The PF has the potential to handle recursive estimation problems
with an system model and a measurement model of arbitrary types and with
data statistics of arbitrary types.



Suitable ?

Figure 2: unimodal statistics unlike an ellipsoid

2 Sequential Monte Carlo (SMC) Methods

In fact, contents in this section are not necessarily related to the PF; how-
ever, with understanding of these contents, on can naturally understand the
mechanism of the PF which is explained in section 3.

2.1 Sampling: Monte Carlo (MC) methods

We begin with a question: Suppose we have a random variable whose prob-
ability density function (PDF) p(x) is not exactly known, but we can
draw samples z* (i = 1,2, 3, ...) according to the distribution of this random
variable i.e. x' ~ p(z)—one can imagine that a black box process outputs
random samples from time to time, but we do not have any idea on the
distribution i.e. the PDF according to which the black box process outputs
random samples. An example of such kind of black box processes is the pro-
cess of throwing a dice again and again—Then can we approximate this PDF
unknown with samples drawn? The answer is yes. We can approximate p(x)
as in (1) (suppose we have already drawn N samples):

xirp(z) (1>

where 0,i(x) is the Dirac delta function with the Dirac measure or
Dirac unit mass at 2°. The quality of the approximation increases as the



number of samples increases, and we have:

p( ]\}I—I}loo AT Z 52:1 a:lwp (2>

We give a rough analysis for (2): given a generic set of = denoted as A,
we have

#(9[;Z yEA, fori=1,...,N)
N—o00 N

—plz e A) = / p(x)dz

a:’rvp

where (...) denotes the indicator function

1 ifistruex e A
I(z € A) or I4(x) = { 0 if not true

and #(...) means “the number of elements specified by (...)”. Because of the
generality of A in above derivation, we let ||A|] — 0 and the equality will
converge to a limit form as specified in (2). Above, we have only given a
rough proof for (2) because we have no intention to go into too much pure
mathematical details here. To understand the PF latter, one only needs to
know a fact here: normally, a PDF can be fairly approximated by a large
number of samples generated according to this PDF.

The approximation method described in (1) and theoretically in (2) is the
Monte Carlo (MC) method—“Monte Carlo” refers to the name of a city
famous for its casino i.e. a place for lots of “sampling” processes, so one can
easily see the implicit meaning of “Monte Carlo” as used in “Monte Carlo
method” or other terms in statistics background. Privately, one may also
call it “Las Vegas” method or “Ao Men (Macao)” method if one likes.

4



If we have an explicit description of the PDF p(z), is the Monte Carlo
method still useful in this case? The answer is also yes. In real applications,
we rarely examine a PDF itself; instead, we usually examine certain integral
associated with the PDF, such as the expectation of a random state

T = /_Z xp(z)dz

or the variance or covariance of the state

We know that computing an integral explicitly is not always easy and
many times even impossible. The Monte Carlo method provides a tractable
and generic way to handle integrals numerically. Given an arbitrary function
f(x), its expectation can be approximately computed using the Monte Carlo
method as

=ty
~ [ i@l Y s
1 N

DI |

=1

dx

ﬂﬁiNP(x)]

2.2 Importance sampling

In the previous subsection, we have reviewed the basic Monte Carlo method.
Now suppose it is difficult to directly draw samples according to the objective
PDF p(z), but it is easy to draw samples according to another PDF ¢(z)
(satisfying q(z) > 0) as z* ~ ¢(z), 1 = 1,2, .... Question: can we approximate
p(z) with samples drawn according to ¢(z)? The answer is yes. We can



approximate p(x) as

i.e. asin (3)

where w' is called an importance weight or a weight for short. We can
normalize w® (i = 1,2,..., N) to guarantee that the integral of the approx-
imation function (3) is 1. Weights before the normalization step are called
unnormalized (importance) weights. The PDF ¢(z), according to which
samples are drawn, is called the proposal distribution function, the pro-
posal density, or the importance density.

2.3 Sequential sampling

Given a set of variables x, i.e. {zg,x1,...,2¢} and its associated joint prob-
ability density function (joint PDF) p(x¢.;), we can approximate this joint
PDF as in (1) and (2):

1 N
th NNZ zOt ’thNPth)

However, as t increases, it will become more and more difficult to draw
samples directly from the joint PDF p(z¢,). Then how to draw samples to
approximate p(xg.;)?

Although it is difficult to draw a sample for the whole z.; directly from
the joint PDF, it is much easier to draw a sample for only one element in
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To. To draw a sample x{,, we may follow the spirit of “divide and conquer”
and draw zj, 2, ..., x; one by one i.e. in a sequential way. Besides, recall
the chain rule

p(%:t) = p(xo)p(flh|£L‘0)p(332|370:1)---p(37t\$0;t71)

Then a strategy of sampling can be formulated as in (4):

556 ~ p(wo)
zy ~ p(1|zp)
zy ~ p(T2|Th,)

zy ~ Py ) (4)

This sampling method described in (4) is the sequential sampling (SS)
method. A question arises naturally, can a group of samples 2, (i = 1,.... N
with N large enough) drawn in the sequential way as in (4) fairly approximate
the statistics reflected by the joint PDF p(x.)?

The answer is yes. Here, we only give a rough proof for cases of t =
1 and one can extend the result to cases of general ¢ via (mathematical)
induction—We recommend readers to jump this proof part for the moment
and go directly to the next subsection.

Given a generic set of g denoted as Ay and a generic set of x; denoted
as Aj; let a large number of samples drawn sequentially via (4) be denoted
as zh, (1 =1,...,N). Define

(Ao,Al = hm/ / xgl)dﬂfodfﬁl
A1

=1
What we want to prove is
1; S(Ao, Al)
im
| Ao:1[|—0 p(iUo € Ag,x1 € Al)

=1 (5)
First, define two functions in terms of x;
Pmin(T1]|A0) = min p(z4|xo), Vo, € Ay
T0E€AQ

pmaz($1|z40) = ;gleaﬁp(fﬂxo), Vo, € Ay



We have

N
) 1
S(A(),Al) = ]&ILI;O /AO /Al N25x(i):l(l'0:1)dl‘0dl'1
1

=1

= lim N#(xé S AQ,ZL‘% S Al

N—o0

:ciwp(xﬂxé))

~ lim #(xh € Ag) #(xh € Ao, :ci € Ayt mp(an o))
Ny N #(xh € Ao)

> i @0 € Ao) #(xf) € Ao, ) € A i ~pmin (21 40) )

= p(l’o € A(])pmzn(xl € A1|A0>

Note in above derivation that 2} ~ ppn(71|Ag) is independent of xf) ~ p(zo).
Similarly we have

$(Ao, A1) < p(xo € Ao)Pmax(z1 € A1]Ao)
If we assume p(z) is continuous, then we have

pmax(xl € Al ’AO)

im =1
I A0:1l=0 Pmin(T1 € A]Ap)

Also note that

p(ry €Ayl € Ap)
_/ p(z1 € Ay|zo)p(zo)
Jay plxo € Ao)
- Ly Pmin(w1 € Ar] Ag)p(w0)dao
N p(zo € Ao)
= Pmin(21 € A1]|A)

dZL'O

and similarly that
p(x1 €Ar|zo € Ap) < Pimax(x1 € A1]Ao)

and thus we have

; Pmaz(T1 € A1|Ao) _ Pmin(T1 € A1]Ap)
l401]—0 p(z1 € Ar|mo € Ag)  lA0al—0 p(z1 € Ar|zo € Ap)

=1




and we further have

im p(330 € AO)pmax(xl € Al‘AO)
HA0:1||—>0p(-I'0 S Ao)p($1 € Al‘.’Eo < Ao)
T p(xo € Ag)Pmin(x1 € A1|Ap) B
= 1m =1
1401ll=0 p(z0 € Ao)p(z1 € Ai]To € Ag)

i.e.
p(To € Ao)Dmaz(1 € A1]Ap)
im
l401]l-0  p(x0 € Ao, 21 € Ay)

— p(IO € A(])pmzn(xl S A1|A0)
= 1m
| Ao:1[|—0 p(q;o € Ag, 11 € Al)

=1

Then with the already obtained result

p(xo € Ag)Pmin(z1 € A1]Ap) < 5(Ap, A1)
S p(xl) S AO)pmax(xl S A1|AO)

we can have the result in (5).

2.4 Sequential importance sampling (SIS)

Now suppose we have a set of variables xq; i.e. {xg, 21, ..., z;} and its associ-
ated joint PDF p(zg,). Further suppose it is even difficult to draw samples
for only one element in xq.; according to p, not to mention to draw samples
directly for the whole z¢.; according to the joint PDF. Then how can we draw
samples of xq.;?

Based on the importance sampling method introduced in section 2.2 and
the sequential sampling method introduced in section 2.3, we can naturally
introduce a solution to this problem, which is a combination of the impor-
tance sampling method and the sequential sampling method. The solution is
usually referred to as the sequential importance sampling (SIS) method
in literature. The idea is:

Draw samples z}, according to a proposal joint PDF ¢(zg;) using the



sequential sampling method as

zp ~ (7| ) (6)

and then represent p(z.) with these samples using the importance sampling
method as

where samples zj, (i = 1,...,N) are drawn according to ¢(zo;) as in (6).
Here, we define the (unnormalized) weights as

i 1 p(xé) ﬁ p(‘xﬂ‘xézk—l) (8)
b Ng(xp) LA g(p]zh, )
Note that
. 1 i
W = _p(x?)
NQ(:CO)
wh = w! Mforkle t
b (|, ) T

So we can reformulate (6) and (8) in a recursive way as follows:
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Sequential Importance Sampling (SIS)

Initialization (¢t = 0):
e Sample z}) (i =1,...,N) as

e Compute weights w (i = 1,..., N) as

and normalize the weights.
Iteration (t > 1):
e Sample zi (i =1,...,N) as

e Compute weights w! (i =1,..., N) as

and normalize the weights.

2.5 Resampling

The effectiveness of the SIS method described in section 2.4 relies on the
condition that the number of samples i.e. N is large enough for all the ¢ 4+ 1
dimensions of zo,—a generic z; (k € {0,1,...,t}) may itself be a multidi-
mensional state, yet we treat it here as an representative for an “abstract”
dimension—As ¢ increases, more samples are naturally needed to “cover” the
extra dimensions. For example, suppose we need 10 samples for each dimen-
sion to guarantee a fair distribution approximation for this dimension, then
we need a total number of 10*! samples to approximate the distribution of
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the joint states xg;. The number of samples needed grows exponentially with
t and will quickly become forbiddingly large. In reality, we can only set a
limited number of samples despite the increase of t. Given a fixed number of
samples, the approximation quality of these samples deteriorates quickly as
t increases and before long the samples can not represent the distribution of
2o at all. This is the degeneracy problem.

Since samples are limited, we hope that they can represent distribution
areas of large importance instead of being wasted to represent areas of triv-
ial importance. The resampling technique provides a way to concentrate
samples more towards areas of large importance.

The idea of the resampling technique is: given N samples z* (i = 1,..., N)
with their corresponding weights w’ (i = 1, ..., N), generate N new samples
7' (i = 1,...,N) from the old samples. Each new sample is generated by
selecting randomly an old sample in 'V with the chance of this old sam-
ple being selected proportional to its corresponding weight. After the new

samples are generated, set all the new weights to be the same to 1/N i.e.
w'=1/N (i =1,...,N). Replace 2" and w'" by 'V and w'*".

2.6 Sequential importance sampling with resampling

(SIS/R)

We may perform the resampling introduced in section 2.5 at the end of each
iteration in the sequential importance sampling procedures introduced in
section 2.4. On the other hand, we may choose to perform the resampling
occasionally only under certain conditions. For example, if the weights are
distributed not uniformly enough, which means most importance are con-
centrated to few samples, then we will perform the resampling so that in
the next iteration samples are more likely to be drawn from areas of large
importance. An indicator for the uniformness of the weights can be defined
as in (9):
1

Nefr = ———

Ty

The more uniform are the weights, the larger is the indicator Ngss. In

special cases where w’ = 1/N (i = 1,..., N) i.e. the weights are most uniform,

Ncyr achieves the largest value of V. We can set a threshold for N.;; denoted
as Ny,: the resampling will be applied if N.¢; is below Ny,

Now we can reformulate the SIS procedures with adaptive resampling in

(9)
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a more generic framework as follows

Sequential Importance Sampling with Resampling (SIS/R)

Initialization (¢t = 0):
e Sample z}) (i =1,...,N) as

e Compute weights wf (i =1,...,N) as

and normalize the weights.
Iteration (¢t > 1):
e Sample z} (i =1,...,N) as

wp ~ (el zh,_y)
e Compute weights w! (i =1,..., N) as

q(zi|7h, 1)

and normalize the weights.
e Compute N,s; of wiY via (9). If N.py < Ny, then resample zf, and w;
(1=1,...,N) as described in section 2.5.

With the SIS/R method introduced, we can go to the particle filter, ex-
planations on which would be rather natural now.

3 The Particle Filter

Recall the generic formulation of estimation problems in the first tutorial
article [8]. Given a priori knowledge on x(, measurements z.; (from time 0

13



to time t), a system model p(x|z;—1) (here we omit explicit representation of
the system input), and a measurement model p(z;|z;), the estimation problem
consists in estimating the a posteriori distribution p(xg.|z1.). Using Bayesian
inference we have (based on the Markov assumption)

p(zt|$o:t, Zl:t—l)p($0:t|zlzt—1)
p(zt|Z1:t—1>

p(xO:t’ZI:t) =

1
= —P(Zt|$o:t, 21:t—1)p($t|$0:t—1, Z1:t—1)p($0:t—1 |21:t—1)

Z

1
= Ep(zt’mt)p(xt|xt71)p<x0:tfl|let71>

where Z is a normalization constant Z = fp(zt’xt)p(xtmtfl)p(xom—l|21;t71)d$0;t.
In other words, we have a recursive formalism to compute p(zg.|z1.) from
p(To:-1|21:4-1) as in (10):

p($0:t|21:t) X p(zt|37t)p(xt‘xt71)p(x0:t71|Zl:t71) (10)

If we substitute p(xg.¢|z1.4) for p(zo.) and substitute p(z;|x;)p(ze|zi—1) for
p(xilxl, ;) in the SIS/R method presented in section 2.6, and if we follow
the Markov assumption, then the SIS/R method will become the particle
filter as follows

Particle Filter (PF)

Initialization (¢t = 0):
e Sample z}) (i =1,...,N) as

e Compute weights w} (i =1,..., N) as

and normalize the weights.
Iteration (¢t > 1):
e Sample z} (i =1,...,N) as



e Compute weights w! (i =1,..., N) as

W= w p(2t|$g)p<xéle‘,fl)
! -t gzt _y)

and normalize the weights.
e Compute Ns; of wiY via (9). If N.gr < Ny, then resample zi, and w!
(t=1,...,N) as described in section 2.5.

In the particle filter, samples are usually no longer referred to as “sam-
ples” but figuratively as particles. Each particle represents a sample or a
hypothesis for the whole trajectory of the state, i.e. for xg..

Discussion

As we can see in above formalism of the particle filter, there is no specific
condition or assumption imposed on the system model p(x:|z;—1) and the
measurement model p(z;|z;)—they can refer to arbitrary functions, linear
or nonlinear; they can take data of arbitrary statistics, Gaussian or non-
Gaussian, unimodal or multimodal etc—Besides, they are used as “black
boxes”, which brings implementation convenience (recall that the UKF [2]
[3] [1] also possesses this advantage compared with the EKF). Therefore, the
particle filter is a rather generic method and can be used to handle arbi-
trary recursive estimation problems, at least theoretically—why say “theo-
retically”? Reasons will be given latter.

In many applications, we can fairly set the proposal density q(z;|z;_1) to
be the same to the system model density p(z;|x;—1) and this will simplify the
weight update step to

wy = w;_yp(ala)

It is worth noting that setting g(z:|z:—1) to be the same to p(x¢|w;—q) is
not always a desirable choice. In cases where it is difficult to draw samples
according to p(x|z;_1) because of its complexity or where samples drawn
according to p(z;|z,—1) may not well capture areas of large importance, we
had better choose certain proposal density other than p(z|x;_1).
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4 Vehicle Localization In A 2D Case

4.1 Application description

We consider the same application of vehicle localization in a 2D case as
described in [8] [1]. Suppose a vehicle is navigating on a 2D plane and needs
to estimate its pose i.e. the position (z,y) and the orientation . In other
words, we treat the pose of the vehicle as its state to be estimated; this state
is denoted compact as p i.e. p = (z,y,6). The system model is given as the
following kinematic model:

ry =x 1+ v ATcos(0,_1 + ¢, AT/2)
Yy = Y1 + v ATsin(0,_1 + ¢ AT/2) (11)
0, =01+ AT

where AT denotes the system period; v and ¢ denote respectively the speed
and the yawrate of the vehicle. Suppose the vehicle is equipped with devices
that monitor its speed and its yawrate. Speed measurements are denoted as
0, and yawrate measurements are denoted as ngS Their errors are assumed to
follow the Gaussian distribution as Av, ~ N(0,%,) and A¢; ~ N(0,%,).

Suppose the vehicle is also equipped with a component that outputs mea-
surements on the vehicle position (z,y). Let vehicle position measurements
be denoted as z and the measurement model is given as:

z, = Hp; + v (12)
1 0 0
H_{o 1 0]

where v denotes the measurement error which is assumed to follow the Gaus-
sian distribution with zero mean and covariance 3, i.e. v ~ N(0,3,). The
measurement model given in (12) is a partial measurement model.

One can refer to [8] [1] for details of implementing the EKF and the UKF.
Details of implementing the PF are given as follows.

q(x¢|zi—1) is chosen to be the same to p(x¢|r;_1). A total number of
N = 100 samples p’ = (x%,4",0") (i = 1,..., N) are used to characterize the
statistics of the vehicle state. In each iteration, perform
e Sample p! = (2%, y,0!) (i=1,...,N) as

i =2l |+ (0 + Avi)ATcos(0_, + (d}t + AgHAT/2)
Vi =Y+ (0 + Avp)ATsin(0;_, + (¢ + Ad))AT/2)
0p =0;_1+ (¢ + Agy) AT
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where Av; ~ N(0,%,) and A¢; ~ N(0,%4) (i =1,...,N).
e Compute weights w! (i =1,..., N) as

wy = w;_y exp(—5(z — Hp)" X7 (z, — Hpy))
2

and normalize the weights.
e Compute Ns; of wi via (9). If Noyy < Ny, then resample pj, and w;
(t=1,...,N) as described in section 2.5.

4.2 Simulation

We tested performances of the EKF, the UKF, and the PF using same syn-
thetic data generated according to the system model (11) and the measure-
ment model (12). In the simulation, let AT = 1(s); let ¥, = 0.2%(m?/s?);
let Xy = 0.05%(rad?/s%); let ¥, = diag(5.0%,5.0%)(m?). Set the ground-truth
po = [0(m),0(m),0(rad)|’; v; = 10(m/s) and ¢; = 0.0(rad/s). The speed
measurements and the yawrate measurements were synthesized according to
0y ~ N (v, 2,) and ¢ft ~ N (¢, 24). The vehicle position measurements were
synthesized according to z; ~ N(p;, 3,).

The EKF, the UKF, and the PF were applied to the same synthetic data
and their estimates on the vehicle state were obtained respectively. The
results of 100 Monte Carlo trials are shown in Fig.3 and Fig.4, in both of
which the red lines , the blue lines, and the green lines represent respectively
the errors of the PF estimates (after convergence), those of the UKF estimates
(after convergence), and those of the EKF estimates (after convergence). The
black crosses in Fig.3 represent the position measurement errors.

As we can see, the PF performed similarly with the EKF and the UKF,
yet slightly outperformed by the latter two. As discussed in section 3, the
particle filter is a rather generic method and can be used to handle arbitrary
recursive estimation problems; one may ask why the PF performed worse
(though slightly) than the two KFs which are even less generic than the PF.
One crucial reason lies in the number of particles V.

In fact, the ubiquitous applicability of the PF relies on an ideal condition
that N is as large as possible i.e. N — oo. In real practice, however, we
can never achieve this. For example, in the tests we used only 100 particles.
Using limited number of particles to approximate the state statistics will
inevitably result in approximation error. On the other hand, despite its
performance slightly inferior to those of the KFs in above tests, the PF still

17
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fulfilled the estimation task well and performed similarly with the KF's on the
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whole. This shows that probabilistic methods can be effective in handling
estimation problems.

4.3 Discussion

Theoretically, the PF can be used to handle arbitrary recursive estimation
problems. We have already posed the question: why say “theoretically”?
The reason lies in the dimension of the state. In above application example,
the vehicle state has a dimension of only three (i.e. has three dimensions), so
the practice of using a set of particles to approximate the state statistics is
tractable. Imagine we need to estimate a state with fifty dimensions—note
that a dimension of fifty is still moderate for many applications—Further sup-
pose we only need two particles to “cover” the statistics on each dimension,
one for the area above the mean, and one for the area below the mean—this
is a rather rough approximation, just like we use a positive number and a
negative number to approximate the entire real axis—then we need a total
number of 250 particles to cover all the fifty dimensions.

What does this 2°° mean? It means that we need at least 2°° ~ 100...00
(there are 15 zeros at the end) operations to evaluate the weights of the
particles at only one iteration. Given a normal 4G CPU and suppose it
performs one operation at each system period, then 2°° operations will take
about three days of computation!

Whereas an recursive estimation problem with a state of fifty dimensions
is still tractable for the KF, it is already far beyond the capability of the PF as
shown above. Generally, computational inefficiency is a disadvantage of the
PF compared with the KF. Besides, as demonstrated in previous test results,
the PF may be outperformed by the KF in handling estimation problems of
unimodal data statistics.

Then what is the utility of the PF (family) compared with the KF (fam-
ily)? The true power or advantage of the PF consists in its ability to handle
multimodal ambiguity. For example, suppose we have two (or even more)
measurement outputs or detected positives at the same time and these two
measurement outputs are both plausible. We know there can be only one
true positive where the other (or others) is (or are) false positives. To apply
the KF, first we need to decide (usually using certain data association
technique) which measurement output is the true one. However, what if our
decision or data association is wrong? This can happen and can mislead the
estimation result.
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On the other hand, to apply the PF, we do not need to make a decisive
choice at the moment; we can model the two (or several) plausible measure-
ment outputs with a two-modal (or multimodal) distribution and perform
the PF as we normally do. Although particles which coincide with both
plausible measurement outputs can survive for the moment, particles that
coincide with the true measurement output tend to survive finally because
true measurement outputs usually possess more temporal consistency than
false positives do. One can refer to [9] for a good demonstration of how the
PF gradually removes multimodal ambiguity. Because of its advantage, the
PF has been used in plenty of intelligent vehicle applications, such as lane
detection [10] [11] [12], vehicle localization [13] [14] etc.

One may ask: if false positives are temporally even more consistent than
true measurements, will the PF still succeed in the estimation? The answer
is no. The estimates may be misled by the false positives because the PF
does not know a priori whether they are true or false. In such case, however,

one had better reflect on the quality of their measuring component instead
of on the PF.

5 Conclusion

In this fourth article of the series “A brief tutorial on recursive estimation”,
we focus on the particle filter (PF) a.k.a. a sequential Monte Carlo method.
We have explained the basic Monte Carlo method, the importance sampling
(IS) method, the sequential sampling (SS) method, and the sequential im-
portance sampling (SIS) method (which can be treated as a combination of
the IS method and the SS method). We have also reviewed the degeneracy
problem and the resampling method that handles this problem. Based on the
sequential importance sampling method with resampling (SIS/R), we have
reviewed the formalism of the PF.

The PF has the potential to handle recursive estimation problems with
an system model and a measurement model of arbitrary types and with data
statistics of arbitrary types. On the other hand, the PF is not computa-
tionally efficient compared with the KF (including its variants). Besides, the
PF may be outperformed by the KF due to the approximation error of its
particles. Thus, we had better not exaggerate the applicability of the PF just
because of its generic formalism. If we intend to use the PF in certain appli-
cation, we had better bear in mind its true power, especially its potential to
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handle multimodal ambiguity.
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