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Abstract. The topology optimization of systems subject to heat and mass transfers shows a wide
potential for designing optimal and innovative structuresin energy engineering. The present
works apply the concepts of the homogenization method to twoconfigurations subject to con-
ductive and convective heat transfers. After recalling some basic principles, a special attention
is given to the numerical approach dealing with multi-objective optimization problems that
naturally occurs in several practical case studies. The twolast sections are dedicated to some
numerical investigations and provide a physical interpretation of the structural features reached
by the optimization process. The main conclusion deals withthe possibility of finding an accept-
able trade-off between different objective functions, forboth conductive and convective shape
optimization problems, provided that the Pareto frontier is convex.
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1 INTRODUCTION

Heat and mass transfers are two physical phenomena at the root of several thermal systems.
Shape and topology optimization problems in connection with this field are investigated through
this proceeding, mainly from a numerical point of view, and aspecial attention is given to two
heat transfer modes, respectively conduction and convection. They are both addressed by means
of the same numerical approach, the so-called homogenization method [1], also referred as the
Solid Isotropic Material with Penalization method (SIMP) [2]. Succinctly, the different shape
optimization problems are transformed into topological ones by conveniently adapting the co-
efficients of the Partial Differential Equations (PDE) involved in their physical modelling. This
allows solving only one set of equations even if the problemsdeal with subdomains character-
ized by different physical properties.

An overview of the main principles, such as the algorithm andsome mathematical back-
ground, is provided in first section. The strategy used to properly handle the multi-objective
nature of heat transfer problems is also detailed. Indeed, from a engineering point of view, most
of industrial problems may be tackled by optimizing severalobjective functions at the same
time, leading to a set of optimal solutions, the so-called Pareto set. However, establishing these
optimal sets is computationally expensive and requires a suitable method to accurately capture
the trade-offs between each solution.

The second and third sections are dedicated to the physical analysis of several numerical re-
sults. First, we consider a topology optimization problem in conduction: it aims at determining
the best shape of a high conductivity layer located above a solid-state finite-size volume gen-
erating heat. This academic case has been introduced by Bejan [3] and has been studied with
several different methods, ranging from physical approaches to genetic algorithms[4, 5, 6]. It
has also been investigated in several articles using methods coming from the topology or shape
optimization theory [7, 8, 9, 10], but without dealing with the multi-objective nature of the
problem.

Secondly, we consider a similar topology optimization problem, but by expanding the physi-
cal modelling to take into account the influence of fluid motions on heat transfer. Consequently,
the problem becomes more complex, since it attempts to establish the distribution of solid and
fluid subdomains optimizing several objective functions subject to the Navier-Stokes and energy
equations. On the one hand, a classical objective aims at minimizing the viscous dissipation oc-
curring through the fluid phase, in order to minimize the power required to set it into motion. On
the other hand, an objective relying on the thermal aspects of the problem pursue to maximize
the heat transfer taking place inside the solid domain.

Minimizing the viscous dissipation of a fluid flow thanks to a topology optimization approach
has initially been investigated by Borrvall and Petersson,in the frame of Stokes flow [11]. This
first work has been followed by several studies using the sameoptimization strategy but with
different physical models, such as Navier-Stokes [12], Darcy-Stokes [13] or unsteady Navier-
Stokes [14]. More recently, several studies have studied the coupling of Navier-Stokes with a
transport equation, such as the energy equation, in order toincrease the performances of thermal
systems [15, 16, 17]. However, only [18, 19] looks at establishing the set of optimal solutions
underlining the trade-off taking place in the design of eachstructure.
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2 ALGORITHM AND BASIC PRINCIPLES

2.1 Topology optimization problem

Fig. 1 pictures two common problems that occur in the enhancements of heat transfer sys-
tems. These both cases are considered under steady-state regime for this whole proceeding. On
the left-hand side, the layout of two solid-state sub-domains, calledΩ0 andΩ1, is optimized
for a given functional. Both solid subdomains are characterized by two different thermal con-
ductivities, respectivelyk0 andk1, and two different heat generation rate, respectivelyq0 and
q1. Since no transport mechanism takes place inside the whole optimization domain, denoted
Ω = Ω0 ∪ Ω1, the stationary heat equation for conduction may accurately describe the temper-
ature behaviour.

By extension, the right-hand side of Fig. 1 illustrates a configuration where a convection
phenomenon occurs in presence of a fluid flow. In this arrangement, one of the previous solid-
state subdomain, for instanceΩ0, is replaced by a fluid phase flowing through the subdomain
denotedΩf . On the other hand, the complementary subdomain remains in asolid state and is
calledΩs. Therefore, it means that the heat flux is conducted troughΩs, then convected by the
flow motion insideΩf , leading to consider a conducto-convection phenomenon over the whole
domainΩ = Ωf ∪ Ωs.
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Figure 1: Conductive (left-hand side) and convective (right-hand side) shape and topology op-
timization problem in the frame of heat transfers.

For both problems, the thermal boundary conditions appliedalong∂Ω, also denotedΓ for
the sake of clarity, are the following:

• the Dirichlet boundary condition, setting a constant temperature along the edgeΓd;

• the Neumann boundary condition, setting a zero normal flux along the edgeΓa. It is
also referred as the adiabatic boundary condition in thermal engineering. By definition, it
means that∇T ·n ≡ ∂T/∂n = 0 wheren is the normal vector to the boundaryΓ pointing
outwards the domainΩ.

In addition, the fluid flow boundary conditions are of two kinds:
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• the walls, such asΓa or Γd are subject to a non-slip boundary conditions, assuming that
u = 0;

• the inlet and outlet flows are set up with a parabolic Poiseuille profile, fulfilling the law
of conservation over the whole domainΩ.

Without giving details of the physical modelling leading tothe different sets of PDE (see [10,
19] for further explanations), the different topology optimization problems may be generically
written as

inf
χω∈Dϕ

J(χω) =

∫

Ω

f(ζ, χω, x)dx

subject to PDE with respect to variablesζ .
(1)

and whereDϕ = {χω ∈ L∞(Ω, {0, 1}), |ω| ≤ ϕ|Ω|}. In this definition,ω is the subdomain
whose is subject to the topology optimization process, thatis Ω1 or Ωf , andχω is its charac-
teristic function. In addition, the feasible regionDϕ is restricted by a volume constraint on
|ω|, expressed as a fractionϕ ∈ [0, 1] of the whole volume domain|Ω|. Indeed, for most opti-
mization problems,ω = Ω is the best trivial solution for several classes of objective functions
J(χω), but is either unrealistic from an engineering point view ortoo expensive due to economic
aspects.

2.2 Algorithm for homogenization method

As pointed out in the introduction, the topology optimization approach aims at conveniently
adapting the coefficients of PDE to solve only one set of equations over the whole domainΩ.
For instance, in the case of the conduction optimization problem, the thermal conductivity over
Ω is given by

k(χΩ1
) = k0 + (k1 − k0)χΩ1

. (2)

This allows solving only one equation without explicitly taking into account the differences
between the subdomainsΩ0 andΩ1, apart from the thermal conductivity computation step.
This idea is also applied to the heat generation rateq or Navier-Stokes equation, as detailed in
the sections 3 and 4.

It is well known that the solutions of such infinite dimensional parametric problem do not
necessarily exist (see [20, 21]), especially in the frame ofheat conduction. To overcome this
difficulty, a relaxation procedure is carried out: it mainlyaims at extending the admissible set
of solutions by replacingχω ∈ L∞(Ω, {0, 1}) by η ∈ L∞(Ω, [0, 1]). From now on, any physical
scalar parameter depending onχω continuously depends on the functionη. This feature can
be exploited to cleverly control the convergence process byadding a penalization parameterp
(see [2]). For example, the same thermal conductivityk now writes

k(η) = k0 + (k1 − k0)η
p with 0 ≤ η ≤ 1 and p ≥ 1. (3)

The penalization parameterp masters the convexity of functionk(η) and allows tuning the
convergence of the optimization problem. Other functions may be considered, while the pe-
nalization parameterp impacts on their convexity (see [19] for further details). Combined with
other numerical tools such as filtering, it allows speeding up or slowing down the convergence
and escaping from some local optima. Note that from this point, since the design parametersη
are continuous, the domainΩ includes “composite” materials, with physical values ranging be-
tween their bounds defined in each subdomainsΩ0 andΩ1. Consequently, one main role of the
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penalization parameter is to ensure that the optimization process converges toward ablack and
whitedesign: it progressively suppresses thegray level by penalizing the objective function.

Behind the non-existence issue, the second advantage of therelaxation step is to allow com-
puting the topology derivative from the parametric formulation. Let denote〈dJ(η), θ〉, the
differential ofJ with respect toη in directionθ. This topology derivative, also referred as sen-
sitivity, is computed thanks to an adjoint state, which may be formulated from either the con-
tinuous or discrete forms of the EDP used as a constraint in problem (1). Such computations
are expensive either from a mathematical or programming point of view: the corresponding
numerical strategies are detailed in [10, 19]and are beyondthe scope of this proceeding for the
purpose of brevity.

The main sequence optimizing the objective functionJ(η) is detailed in Alg. 1 [2]. The
computation of the objective function is not detailed here:the instructionJ ← J(η,p) means
that a finite volume solver computes the solution of the corresponding EDP in order to evaluate
the objective functions. Note that the penalization parameter is a vector from now on: indeed,
different penalizations may be used in agreement with the physical modelling.

The algorithm itself is based on an inner loop, which is nested within an outer loop. The inner
loop aims at solving the optimization problem for a given state of the penalization parameters,
whereas the outer loop controls them and is responsible for the convergence test leading to exit
the whole algorithm.

Ji ← Θ ;
J ← J(η,p0) ;
for j ← 0 to ℓ do

while |J − Ji| ≥ ǫi,j do
Ji ← J ;
compute〈dJ(η), θ〉 ;

compute〈d̃J(ηı), θ〉 with rj ;
computeϕ(η) and〈dϕ(η), θ〉 ;
create MMA subproblem ;
while rIP ≥ ǫIP do

interior-point method iteration ;
end
J ← J(η,pj) ;

end
end

Algorithm 1: Main algorithm for the homogenization method with an inner loop (indexed
with i) nested inside an outer loop (indexed withj).

The inner loop sequentially computes the shape derivative〈dJ(η), θ〉, its numerically filtered
form 〈d̃J(ηı), θ〉, as well as the problem constraints and their gradient, respectively denoted
ϕ(η) and〈dϕ(η), θ〉. These variables becomes the inputs of the Method of Moving Asymptotes
(MMA), which belongs to a comprehensive class of gradient optimization methods based on
conservative convex approximations. MMA has been shown to be particularly efficient for
solving inequality-constrained non-linear programming problems, especially in the frame of
structural and parametric optimization [22, 23]. Once a newstateη have been generated, the set
of EDP is solved again and the algorithm loops until the convergence criterionǫi,j is satisfied.
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The outer loop is indexed by means of an integerj ranging from0 to a fixed number of
iterationsℓ. This index drives three inner different parameters: the residualǫi,j , the penalization
parameterpj , and the radiusrj of the filter applied to the shape derivative. This numericalfilter
is a convolution product involving the field of discrete design parameterηı and writes [2],

〈d̃J(ηı), θ〉 =

N∑
ℓ=1

ηℓ Hℓ 〈dJ(ηℓ), θ〉

ηı
N∑
ℓ=1

Hℓ

(4)

whereN is the number of discrete elements satisfying|xı − xℓ| ≤ r andHℓ = r − |xı − xℓ|.
This step aims at avoiding the so-calledcheckerboardproblems leading to unrealistic optimal
configurations due to the discretization process.

2.3 Strategy for bi-objective optimization

For many real optimization problems, the challenge is to conjointly optimize at least two or
more objective functions in order to reach a configuration being a trade-off between these sev-
eral objectives. A trade-off means that further optimization of one objective function decreases
the performances of the other ones. This strategy leads to multiple solutions, referred to as the
Pareto front. For instance, if the optimization problem is bi-objective, it can be written as

inf
χ∈Dϕ

J1, inf
χ∈Dϕ

J2 (5)

subject to the EDP of problem (1). A suitable strategy allowing reaching the Pareto front lies
on a linear combination of both objectives, which is also known as the aggregated objective
function method. This approach can only generates the convex part of the Pareto frontier:
consequently, this feature is assumed during the computational phase and will be checked af-
terwards. However, before linearly combining the different objective functions, they must be
rescaled in order that the solutions reach an homogenous distribution along the Pareto frontier.
This rescaling writes

Ĵ =
J − J

J − J
(6)

whereJ andJ respectively stands for the inferior and superior bounds ofJ functions. Con-
sequently, before computing an optimal design for an aggregated objective function made ofn
objectives, it is required to solve2n optimization problems. Then, for example ifn = 2, the
Pareto front may be outlined by minimizingJ with several different values ofw ∈ [0, 1], where
J writes

J(η) = wĴ1(η) + (1− w)Ĵ2(η). (7)

3 OPTIMAL SHAPE FOR CONDUCTIVE HEAT TRANSFER

Recalling the notation of Fig. 1, the non-relaxed topology optimization problem in conduc-
tion writes

inf
χΩ1

∈Dϕ

J(χΩ1
)

subject to −∇ · (k(χΩ1
)∇T ) = q(χΩ1

)

(8)

whereDϕ = {χΩ1
∈ L∞(Ω, {0, 1}), |Ω1| ≤ ϕ|Ω|} and two objective functionsJ(χΩ1

) are
defined below. The heat equation should be completed with theboundary conditions introduced
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in section 1. This problem aims at finding the optimal shape ofa high-conductivity layer made
of expensive raw material, such as copper for instance. Without the volume constraintϕ, the
best trivial solution for most of objective functions is to cover the whole domainΩ with such
material.

3.1 Objective functions

This problem has been mainly studied to address the efficientcooling of small electronic
devices. Such components require high-conductivity networks cleverly allocated over their
printed circuit board, since the more they are miniaturized, the more their heat generation rate
increases. One obvious objective function deals with the minimization of the mean temperature
over the domainΩ, in order to prevent damaging the electronic components dueto overheating
phenomena. This objective function simply writes

J1(χΩ1
) =

1

|Ω|

∫

Ω

TdΩ. (9)

A less straightforward goal aims at ensuring that the temperature field over the components
remains as homogeneous as possible. This requirement comesfrom the necessity of the elec-
tronic device to communicate with its different sections. Since the computational frequency is
directly linked with the silicon temperature, it is required to keep it as constant as possible in
order to avoid any overload within the communication process. Consequently the second ob-
jective functional corresponds to the minimization of the temperature variance over the whole
domainΩ and writes

J2(χΩ1
) =

1

|Ω|

∫

Ω

(T − J1(χΩ1
))2 dx =

1

|Ω|

∫

Ω

T 2dx− J2

1
(χΩ1

). (10)

Even though both expressions are strictly equivalent, the last one is more efficient to work with,
especially for computing the adjoint expression and the topology derivative〈dJ2(χΩ), θ〉.

3.2 Numerical results

The numerical case investigated is well-known as the volume-to-point heat conduction prob-
lem [3]. It has been initially disclosed in 1997 and has been defined as:

Consider a finite-size volume in which heat is being generated at every point, and
which is cooled through a small patch (heat sink) located on its boundary. A finite
amount of high conductivity (kp) material is available. Determine the optimal dis-
tribution ofkp material through the given volume such that the highest temperature
is minimized.

Since all calculations are run under steady-state conditions, it means that the whole heat
produced by the volume is evacuated through the small heat sink. It is worth noting that the
material generating heat (Ω0) and high conductivity material (Ω1) are viewed as homogenous
and isotropic, without temperature effect on their respective conductivity. The geometrical and
physical parameters are displayed on Fig. 2 for an arbitrarydistribution ofΩ1 and are set as
follow:

• the thermal conductivities are constant, withk0 = 1W/(m2.K) andk1 = 100W/(m2.K);

• the heat generation rates are assumed to be equal and constant with q0 = q1 = 10 kW/m2;
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• all structures have a square aspect ratio (L = H = 0.1m), with a heat sink located in the
middle of their left-hand side;

• with the exception of the heat sink which is characterized bya Dirichlet boundary condi-
tion (Td = 0 ◦C), all the other boundaries are adiabatic (∇T · n = 0).

!1 

k0, q0 

L

HTd

k1, q1

!0

D

Figure 2: Academic study case aiming at cooling down a finite-size volume generating heat,
closed by adiabatic boundary conditions with the exceptionof a small heat sink. This one is
characterized by a Dirichlet boundary condition, at temperatureTd, located in the middle of the
left-hand side boundary condition with a lengthD.

The results of the bi-objective optimization problem, as well as the influence of the vol-
ume constraint, are pictured on Fig. 3. For each volume constraint,ϕ = 0.1 andϕ = 0.125,
multi-objective optimizations have been run by discretizingw ∈ [0, 1] with 101 elements, after
rescaling each objective function according to Eq. (6). Fig. 3 displays a few results, sorted by
volume constraint and weighting:

• Each column displays the structures reached from the two different volume constraints
with a constant weightingw. Concretely, adding more high-conductivity materialk1
leads to strengthen the main V-shape, while adding new smaller scales to the existing
high conductivity paths.

• Each row shows the evolution of solutions forw = 0, 0.5 and1, i.e. from minimizing
the temperature variance to minimizing the mean temperature overΩ. The main point
is structural: the discontinuities existing for the structures reached from the temperature
variance minimization are quickly reattached to the main tree, as clearly underlined by
Figs. 3b and 3e.

The main structural difference between mean and variance temperature minimization lies on
the discontinuity of the variance configuration displayed on Figs. 3a and 3d, compared to the
uninterrupted connection ofk1 elements in Figs. 3c and 3f. Fig. 4 shows a deeper analysis of
this specific feature from a physical point of view, by manually degrading the optimal solution
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(a)w = 0 andϕ = 0.1 (b)w = 0.5 andϕ = 0.1 (c)w = 1 andϕ = 0.1

(d)w = 0 andϕ = 0.125 (e)w = 0.5 andϕ = 0.125 (f) w = 1 andϕ = 0.125

Figure 3: Numerical results for the topology optimization of two subdomainsΩ0 andΩ1 made
of different thermal conductivitiesk0 andk1 for the finite-size volume generating heat case. The
solutions on each row correspond to two different volume constraints, respectivelyϕ = 0.1 and
ϕ = 0.125. The solutions on each column are computed with different weighting when linearly
combining the functionalsJ = wĴ1 + (1− w)Ĵ2.

(Fig. 4a). In the absence of discontinuous structures, two vertical temperature gradients take
place between the heat sink and the northern and southern areas 4b. Therefore, the two dis-
continuous high conductivity strips allow draining the heat flux towards the heat sink, without
evacuating it. Indeed, if those were linked to the mainΩ1 structure, such as done in Fig. 4c,
both temperature gradients would appear again because the cold area next to the heat sink would
spread through the domainΩ0. Consequently, it would not contribute to make homogeneous
the temperature field.

The Pareto Fronts, reached from the101 different weightings ofJ1(η) andJ2(η) objective
functions, are displayed in Fig. 5. Those are plotted for three different volume constraints,
respectivelyϕ = 0.1 (◦), ϕ = 0.125 (+) andϕ = 0.15 (•). From a thermal point of view,
it underlines the impact of addingk1 material, decreasing both objective functionsJ1(η) and
J2(η) and shifting the Pareto frontiers towards its origin. This transformation takes place inside
the white area in Fig. 5, since both limits of Pareto frontiers stand for the single objective min-
imization ofJ1(η) or J2(η): these two values decrease when enlarging the volume constraint,
constricting the front within a smaller space.

Another point highlighted by Fig. 5 is the optimality of a fewsolutions, thanks to the convex
shape of the Pareto frontiers. For each front, the weightings aroundw = 0.5 provide struc-
tures having bothJ1(η) andJ2(η) minima close to their single objective minimization. This
behaviour is obvious forϕ = 0.15 (•), whereJ1 = 4.0 ◦C andJ2 = 0.97 ◦C2, compared



Gilles MARCK, Yannick PRIVAT

(a) Optimized solution (J2 =
2, 33 ◦C2).

(b) Optimized solution with man-
ually deleted branches (J2 =
2, 68 ◦C2).

(c) Optimized solution with man-
ually connected branches(J2 =
2, 76 ◦C2).

Figure 4: Optimality analysis of non-connected patterns reached in structures minimizing the
functionalJ2.

with their respective single objective valueJ1 = 3.9 ◦C J2 = 0.74 ◦C2. In other words, this
configuration takes advantage of both optimal design features computed withw = 0 andw = 1.

T
em

pe
ra

tu
re

 v
ar

ia
nc

e 
[°

C
2 ]

Temperature average [°C]

w=0

w=1

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 3.5  4  4.5  5  5.5  6  6.5  7  7.5

Figure 5: Pareto frontiers ofJ1 (x-axis) andJ2 (y-axis) minimization problem established for 3
different volume constraints:ϕ = 10% (◦), ϕ = 12.5% (+) andϕ = 15% (•) for the finite-size
volume generating heat case.

4 OPTIMAL SHAPE FOR CONVECTIVE HEAT TRANSFER

From now on, the domainΩ is made of a fluid and solid subdomains, respectively denoted
Ωf andΩs. Fluid is assumed to be Newtonian and incompressible, underlaminar regime. It
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is characterized by its dynamic viscosityµ, its thermal heat capacityCp, its densityρ and its
thermal conductivitykf . Conversely, solid subdomain are only characterized with athermal
conductivityks. The approach chosen here locally adds an internal frictionforce between the
fluid and a small obstacle in the same way as the Darcy’s law within a porous media [11]. This
new inverse permeability coefficient, denotedα, ranges from 0 to a sufficiently large value to
create a momentum sink modelling the behaviour of solid subdomains. As previously explained,
this additional term allows solving only one set of equations for both subdomains, if theα and
k coefficients of Navier-Stokes and energy transport equations are properly fitted. Following
the assumptions made in this section, the optimization problem writes

inf
χΩf

∈Dϕ

J(u, P, T )

subject to ∇ · u = 0

ρ(u · ∇)u+ α(χω)u = −∇P + µ∇2
u

ρCp(u · ∇)T = ∇ · (k(χω)∇T )

(11)

whereDϕ = {χΩf
∈ L∞(Ω, {0, 1}), |Ωf | ≤ ϕ|Ω|} andα(χΩf

) andk(χΩf
) are domain depen-

dent. The boundary conditions detailed in section 1 have to be added to the constraint definition
as well. The functionsα andk behaves in the following way: ifx ∈ Ωf , thenα(1) = 0 and
k(1) = kf . Conversely, ifx ∈ Ωs, thenα(0) → ∞ andk(0) = ks. Further details about the
definition ofα andk can be found in [19]. Also note that different parametersp are also used
for penalizing these both parameters.

The Navier-Stokes and energy equations are discretized with the finite volume method, and
computed with the so-called SIMPLER algorithm, which allows solving the pressure-velocity
coupling [24]. Furthermore, an additional correction is included to properly take into account
the viscous dissipation caused by the wall shear stress along the solid domain (see [19] for
details).

4.1 Objective functions

The heat and mass transfer optimization problem introducedas so far is function of a generic
objective function depending explicitly onu, P andT , and implicitly onχΩf

. This section aims
at defining the physical goals pursue by the optimization process and gives them a mathematical
formulation.

First, the objective functionJ1(η) is relative to minimizing the mechanic power dissipated
by the fluid through the domainΩ and can be computed thanks to the total pressure losses as

J1(u, P ) = −

∫

Γ

(
P +

1

2
ρ|u|2

)
(u · n) dx, (12)

whereΓ is the boundary ofΩ domain. This objective is similar to minimizing the mechanical
power spent to set the fluid into motion. Secondly, the objective functionJ2 aims at maximizing
the thermal power recovered from the domainΩ, by means of the inlet and outlet flow boundary
conditions. This net thermal power is given by

J2(u, T ) = ρCp

∫

Γ

T (u · n) dx (13)

Therefore, the challenge is to conjointly optimizeJ1 andJ2 in order to reach a configuration
being a trade-off between both objectives: this means that further maximization of the thermal
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power extracted by the fluid involves increasing the mechanical losses, and conversely. This
problematic is really similar to the one encounters in the optimization of thermal heat exchang-
ers, where manufacturers seek for the highest thermal transfer rates, while spending the lowest
pumping power as possible.

For such bi-objective problem, the aggregated objective functionJ(η) now writes

J(u, P, T ) = (1− w)Ĵ1(u, P )− wĴ2(u, T ). (14)

Note that the thermal objectivêJ2 is negatively weighted because it has to be maximized.

4.2 Numerical results

The study case is a square-shaped domain of sideℓ = 0.1m, displayed in Fig. 6. The
inlet and outlet flows are horizontally lined up in front of each other, with the same Poiseuille
u−velocity profiles. The inlet flow temperature is set toTi = 0 ◦C and the vertical walls are
assumed to be adiabatic. The horizontal walls closing the domain are subject to a constant
temperatureTw = 10 ◦C. The Reynolds number of this system, computed on the basis ofthe
characteristic dimensionℓ/5 and the average inlet velocity, isRe = 3. The thermal parameters
are the following:ks = 10W/(m.K), kf = 1.0W/(m.K), andCp = 5.0 kJ/(kg.K). The
domain is discretized with100× 100 design elements and the volume constraint isϕ = 0.4.

Figure 7 displays the bi-objective optimization results that are reached by gradually increas-
ing the weightingw. Four main classes of solution can be distinguished from their respective
topology:

• For w = 0, the fluid is transported through a direct pipe, as expected from a physical
point of view.

• For 0.06 ≤ w ≤ 0.12, a solid core takes place at the center of the domain, splitting the
fluid subdomain into a lower and an upper flows, as shown from Figures 7b to 7d. This
moves both flows towards the lower and upper walls at constanttemperatureTw, heating
up the fluid without the temperature losses induced by the heat flux conduction through
the solid domain. The more thew weighting increases, the more the central core width
increases.

• For 0.26 ≤ w ≤ 0.60, the central core is vertically split into several sub-cores, as shown
from Figures 7e to 7g. This behavior breaks the horizontal temperature gradient through
the solid core, by inserting one or more strips of fluid actinglike a heat insulation material.
Further details about this phenomenon are provided below.

• For w = 0.75, the surface of solid and fluid interfaces closed to the boundary condi-
tionsTw are artificially increased by small solid inserts. This feature increases the main
surfaces taking part into the heat transfer process.

Figure 8 displays the results forw = 0, minimizing the power lost by viscous dissipation
within the fluid domain. As underlined by Figure 8a, the flow straightforwardly joins the inlet
and outlet boundary conditions, with the largest fluid domain as possible. This aims at letting
Ωf being as wide as allowed by the constraintϕ(η) ≤ ϕ in order to minimize the shears inside
the fluid flow. Figure 8b gives details about the pressure fieldwithin theΩf domain, which
mainly follows an horizontal gradient. Figure 8c highlights both physical configurations for the
heat transfer:
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Figure 6: Academic study case aiming at maximizing the fluid outlet temperature, while mini-
mizing the viscous dissipation through the fluid flow. Inlet and outlet flow boundary conditions
face each other and are assumed to be driven by a Poiseuille flow. In addition, the vertical walls
are adiabatic (∇T · n = 0) and the upper and lower walls are set to a constant temperatureTw.
Solid domain is pictured in black and indexed withs, whereas the fluid phase is pictured in
white and indexed withf .

(a) w = 0.0 (b) w = 0.03 (c) w = 0.06 (d) w = 0.12

(e) w = 0.26 (f) w = 0.28 (g) w = 0.60 (h) w = 0.75

Figure 7: Optimal structures depending onw weighting.
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(a) 0 ≤ |u| ≤ 1× 10−3 m/s (b) −2.1 ≤ P ≤ 0× 10−3 Pa (c) 0 ≤ T ≤ 10 ◦C

Figure 8: Minimization of the viscous dissipation inΩ for w = 0. The different state variables
are pictured from left to right: velocity magnitude (a), pressure (b) and temperature (c).

• conduction within the solid domain, which mainly remains attemperatures close toTw;

• conducto-convection within the fluid flow, which mainly transports the energy in its lower
and upper boundary layers.

Figure 9 demonstrates the interest of splitting the centralcore in several different parts. Since
kf < ks, the fluid areas having a zero-velocity field can be seen as an insulation material from
the heat flux point of view. From a conductive point of view, the fluid strips act as large thermal
resistances for the heat flowing through the solid core. The central field temperature is deeply
affected by these discontinuities, as underlined by Figs. 9a and 9b. The temperature profile
along thex−axis also shows the temperature gaps resulting from the “insulating fluid material”
between each subcore, as plotted on Fig. 9e.

Without the strips of fluid, an horizontal temperature gradient would take place through the
core, driving the heat flux from the near outlet flow area to thenear inlet one (see Figs. 9c
and 9d). Consequently, the outlet flow would be cooled by conduction through the central core,
penalizing the objective functionJ2. In other words, dividing the central part allows the tem-
perature homogenization for each of its subset by restricting heat conduction, and ensures that
both extreme parts are mainly under the influence of their closest thermal boundary condition.

One other interesting point underlined by Figure 9a is the presence of homogenized areas
along the fluid/solid interfaces. Indeed, even if this solution seems to be fully converged, the
solid boundaries remain rough: they are made of an artificialporous media. The split core may
also be seen as a numerical manifestation of the homogenization process, since a core made of
an infinite succession of vertical solid and fluid layers would perform better than any other one,
for the same reasons as those aforementioned.

5 CONCLUSION

In this proceeding, we show that topology optimization may be successfully applied for
the optimization of heat and mass transfers, mainly for the conductive and convective modes. It
also underlines that multi-objective optimization is a reasonable method to tackle such problems
and that interesting structural trade-offs between the different objectives could be reached. The
numerical investigations reveal that most optimized structures are not trivial from a structural
point of view, especially when they reached non-connected patterns.

The convective test case illustrates the main problematic of heat and mass transfers, consist-
ing in increasing the thermal heat exchange with the fluid, while reducing as far as possible the
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Figure 9: Analysis of the core fragmentation from a thermal point of view.
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Figure 10: Pareto front corresponding to the minimization of J1 (x-axis) and the maximization
of J2 (y-axis) established for the volume constraintϕ = 0.4.

power required to set it in motion. In this case, the aggregated objective function is proven to
be a suitable approach, since the Pareto front of the problemis almost fully convex.

However, the topology optimization method, that transforms a shape optimization problem
into a parametric one, raises several theoretical and numerical issues, such as the well-known
homogenization phenomenon detailed in [1]. The numerical observation of this anomaly is
made possible thanks to the problem relaxation, but should also be investigated from a theo-
retical point of view. It is worth nothing that the numericalexperiments tend to show that the
more the weighting of the thermal objective is larger, the more the homogenization process be-
come prominent. Further works have to be done in order to propose adequate remedies for this
problem.
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auxÉchangeurs de Chaleur. PhD thesis, Mines ParisTech University, 2012.



Gilles MARCK, Yannick PRIVAT

[19] G. Marck, M. Nemer, and J.-L. Harion. Topology Optimization of Heat and Mass Transfer
Problems: Laminar Flow.Numerical Heat Transfer, Part B: Fundamentals, 63(6):508–
539, June 2013.

[20] A. Henrot and M. Pierre.Variation et optimisation de formes: Une analyse géoḿetrique.
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