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Abstract. The topology optimization of systems subject to heat and treassfers shows a wide
potential for designing optimal and innovative structunesnergy engineering. The present
works apply the concepts of the homogenization method t@dwbgurations subject to con-
ductive and convective heat transfers. After recalling sd@sic principles, a special attention
is given to the numerical approach dealing with multi-olijee optimization problems that
naturally occurs in several practical case studies. The kagb sections are dedicated to some
numerical investigations and provide a physical interptin of the structural features reached
by the optimization process. The main conclusion dealstiveipossibility of finding an accept-
able trade-off between different objective functions,ldoth conductive and convective shape
optimization problems, provided that the Pareto fronteconvex.
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1 INTRODUCTION

Heat and mass transfers are two physical phenomena at thef meveral thermal systems.
Shape and topology optimization problems in connectioh thiis field are investigated through
this proceeding, mainly from a numerical point of view, anspacial attention is given to two
heat transfer modes, respectively conduction and comrectihey are both addressed by means
of the same numerical approach, the so-called homogemizatethod([1], also referred as the
Solid Isotropic Material with Penalization method (SIMR].[ Succinctly, the different shape
optimization problems are transformed into topologica®by conveniently adapting the co-
efficients of the Partial Differential Equations (PDE) ihwed in their physical modelling. This
allows solving only one set of equations even if the problees with subdomains character-
ized by different physical properties.

An overview of the main principles, such as the algorithm anthe mathematical back-
ground, is provided in first section. The strategy used t@@ry handle the multi-objective
nature of heat transfer problems is also detailed. Indeedh & engineering point of view, most
of industrial problems may be tackled by optimizing sevetgjective functions at the same
time, leading to a set of optimal solutions, the so-callegt®eset. However, establishing these
optimal sets is computationally expensive and requirestatda method to accurately capture
the trade-offs between each solution.

The second and third sections are dedicated to the physiabisks of several numerical re-
sults. First, we consider a topology optimization problensanduction: it aims at determining
the best shape of a high conductivity layer located abovdid-state finite-size volume gen-
erating heat. This academic case has been introduced by [B}jand has been studied with
several different methods, ranging from physical appreadh genetic algorithms[4] 5, 6]. It
has also been investigated in several articles using mettmding from the topology or shape
optimization theory|[7, 18,19, 10], but without dealing withet multi-objective nature of the
problem.

Secondly, we consider a similar topology optimization peaf, but by expanding the physi-
cal modelling to take into account the influence of fluid mos@n heat transfer. Consequently,
the problem becomes more complex, since it attempts tolestabe distribution of solid and
fluid subdomains optimizing several objective functionsjsat to the Navier-Stokes and energy
equations. On the one hand, a classical objective aims atzing the viscous dissipation oc-
curring through the fluid phase, in order to minimize the powgguired to set it into motion. On
the other hand, an objective relying on the thermal aspddteeqroblem pursue to maximize
the heat transfer taking place inside the solid domain.

Minimizing the viscous dissipation of a fluid flow thanks tmablogy optimization approach
has initially been investigated by Borrvall and Peterssothe frame of Stokes flow [11]. This
first work has been followed by several studies using the sgptimization strategy but with
different physical models, such as Navier-Stokes [12],cp&tokes|([18] or unsteady Navier-
Stokes|[14]. More recently, several studies have studieddupling of Navier-Stokes with a
transport equation, such as the energy equation, in ordecrtease the performances of thermal
systems([15, 16, 17]. However, only |18,/ 19] looks at essditig the set of optimal solutions
underlining the trade-off taking place in the design of estchcture.
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2 ALGORITHM AND BASIC PRINCIPLES
2.1 Topology optimization problem

Fig.[ pictures two common problems that occur in the enhaeogs of heat transfer sys-
tems. These both cases are considered under steady-giate fer this whole proceeding. On
the left-hand side, the layout of two solid-state sub-dorsacalled(?, and(;, is optimized
for a given functional. Both solid subdomains are charamterby two different thermal con-
ductivities, respectively;, andk;, and two different heat generation rate, respectivygland
¢1. Since no transport mechanism takes place inside the wipbi®iaation domain, denoted
Q = Qg U Q4, the stationary heat equation for conduction may accwyraescribe the temper-
ature behaviour.

By extension, the right-hand side of FIg. 1 illustrates aficumation where a convection
phenomenon occurs in presence of a fluid flow. In this arraegenone of the previous solid-
state subdomain, for instan€k, is replaced by a fluid phase flowing through the subdomain
denoted2;. On the other hand, the complementary subdomain remainsafichstate and is
called(2,. Therefore, it means that the heat flux is conducted traughhen convected by the
flow motion inside&f2, leading to consider a conducto-convection phenomenontbeevhole
domainQ = Q; U €.

_n oT_
u—O,an—O

convection
solid/fluid
T_g s
on
conduction
solid/solid

Figure 1. Conductive (left-hand side) and convective (Hgand side) shape and topology op-
timization problem in the frame of heat transfers.

For both problems, the thermal boundary conditions ap@iedg of?, also denoted’ for
the sake of clarity, are the following:

e the Dirichlet boundary condition, setting a constant terapee along the edge;;

e the Neumann boundary condition, setting a zero normal florglthe edgd’,. It is
also referred as the adiabatic boundary condition in theemgineering. By definition, it
means thaVT-n = 07T /0On = 0 wheren is the normal vector to the bounddrypointing
outwards the domaifi.

In addition, the fluid flow boundary conditions are of two ksnd
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e the walls, such ak, orI'; are subject to a non-slip boundary conditions, assuming tha
u=_0;

¢ the inlet and outlet flows are set up with a parabolic Poigepilofile, fulfilling the law
of conservation over the whole domdin

Without giving details of the physical modelling leadingie different sets of PDE (see |10,
19] for further explanations), the different topology epization problems may be generically
written as

Xw )

inf J(x.) = /Q J(Cs Xw, x)dz (1)

subjectto PDE with respect to variables

and whereD; = {x, € L*(9Q,{0,1}), |w| < 2|Q|}. In this definition,w is the subdomain
whose is subject to the topology optimization process, ith&; or 2;, andy,, is its charac-
teristic function. In addition, the feasible regi@n; is restricted by a volume constraint on
lw|, expressed as a fractighe [0, 1] of the whole volume domaiff|. Indeed, for most opti-
mization problemsy = 2 is the best trivial solution for several classes of objexfinctions
J(x.), butis either unrealistic from an engineering point viewaar expensive due to economic
aspects.

2.2 Algorithm for homogenization method

As pointed out in the introduction, the topology optimipatapproach aims at conveniently
adapting the coefficients of PDE to solve only one set of egastover the whole domaifi.
For instance, in the case of the conduction optimizatioblgr, the thermal conductivity over
Q is given by

k(xa,) = ko + (k1 — ko)xa, - 2)

This allows solving only one equation without explicithkiag into account the differences
between the subdomaing and(2;, apart from the thermal conductivity computation step.
This idea is also applied to the heat generation gaie Navier-Stokes equation, as detailed in
the sectionE]3 arid 4.

It is well known that the solutions of such infinite dimensabparametric problem do not
necessarily exist (see [20,/21]), especially in the frambezt conduction. To overcome this
difficulty, a relaxation procedure is carried out: it maimlyns at extending the admissible set
of solutions by replacing,, € L>(£,{0,1}) byn € L>(Q, [0, 1]). From now on, any physical
scalar parameter depending @n continuously depends on the functign This feature can
be exploited to cleverly control the convergence procesadaing a penalization parameger
(seel[2]). For example, the same thermal conductiitypw writes

k(n) =ko+ (k1 —ko)n* with 0<n<1 and p>1. 3

The penalization parametgr masters the convexity of functiok(n) and allows tuning the
convergence of the optimization problem. Other functioras/be considered, while the pe-
nalization parameter impacts on their convexity (see [19] for further detailshn@bined with
other numerical tools such as filtering, it allows speedipguslowing down the convergence
and escaping from some local optima. Note that from thistpsince the design parameters
are continuous, the domaihincludes “composite” materials, with physical values riagde-
tween their bounds defined in each subdom&inand(2,. Consequently, one main role of the
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penalization parameter is to ensure that the optimizationgss converges towardck and
whitedesign: it progressively suppresses @inay level by penalizing the objective function.

Behind the non-existence issue, the second advantage @ #xation step is to allow com-
puting the topology derivative from the parametric forntida. Let denote(d.J(n),0), the
differential of J with respect to; in directiond. This topology derivative, also referred as sen-
sitivity, is computed thanks to an adjoint state, which mayfdrmulated from either the con-
tinuous or discrete forms of the EDP used as a constraintablegm [1). Such computations
are expensive either from a mathematical or programmingtpadi view: the corresponding
numerical strategies are detailed/inl[10, 19]and are bettomdcope of this proceeding for the
purpose of brevity.

The main sequence optimizing the objective functitin) is detailed in AlgL1[[2]. The
computation of the objective function is not detailed heres instruction/ < J(n, p) means
that a finite volume solver computes the solution of the gpoading EDP in order to evaluate
the objective functions. Note that the penalization patamis a vector from now on: indeed,
different penalizations may be used in agreement with tlysipal modelling.

The algorithm itself is based on an inner loop, which is reestihin an outer loop. The inner
loop aims at solving the optimization problem for a giveriestaf the penalization parameters,
whereas the outer loop controls them and is responsibléécanvergence test leading to exit
the whole algorithm.

J 3@, po) ;
for j < 0to/do
Wh||E|J — Jz| > €4 do
compute(dJ(n),0) ;
compute{gljl(nl), ) with r; ;
computep(n) and(dy(n), ) ;
create MMA subproblem ;
WhileT’[p > €rp do

\ interior-point method iteration ;
end

J 0, py) ;

end

end
Algorithm 1: Main algorithm for the homogenization method with an inn@vd (indexed
with 7) nested inside an outer loop (indexed widh

The inner loop sequentially computes the shape derivaiivé,), 0), its numerically filtered
form <cfi<v](772), 6), as well as the problem constraints and their gradient,ectsely denoted
»(n) and{dy(n), #). These variables becomes the inputs of the Method of Movsyg#ptotes
(MMA), which belongs to a comprehensive class of gradieninogation methods based on
conservative convex approximations. MMA has been shownetgdrticularly efficient for
solving inequality-constrained non-linear programminghpems, especially in the frame of
structural and parametric optimization [22] 23]. Once a stater have been generated, the set
of EDP is solved again and the algorithm loops until the coysece criterion; ; is satisfied.
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The outer loop is indexed by means of an integeanging from0 to a fixed number of
iterations(. This index drives three inner different parameters: tiseele; ;, the penalization
parametep;, and the radius; of the filter applied to the shape derivative. This numerfittair
is a convolution product involving the field of discrete dgsparameten, and writes([2],

B > e He (1), 0)
(dJ(m),0) = = (4)

N
WZZHZ

(=1

whereN is the number of discrete elements satisfyjrg— x,| < randH, = r — |x, — xy|.
This step aims at avoiding the so-callgteckerboardgproblems leading to unrealistic optimal
configurations due to the discretization process.

2.3 Strategy for bi-objective optimization

For many real optimization problems, the challenge is tgaiatly optimize at least two or
more objective functions in order to reach a configurationdpa trade-off between these sev-
eral objectives. A trade-off means that further optimizatf one objective function decreases
the performances of the other ones. This strategy leads Hiphaisolutions, referred to as the
Pareto front. For instance, if the optimization problemitshjective, it can be written as

inf Jl, inf JQ (5)

x€Dz x€Dz
subject to the EDP of problerh](1). A suitable strategy alfayieaching the Pareto front lies
on a linear combination of both objectives, which is alsownas the aggregated objective
function method. This approach can only generates the gopag of the Pareto frontier:
consequently, this feature is assumed during the compuatdtphase and will be checked af-
terwards. However, before linearly combining the différehjective functions, they must be
rescaled in order that the solutions reach an homogenouddisn along the Pareto frontier.

This rescaling writes

- J—=J

J = —_— 6

7/ (6)

whereJ and.J respectively stands for the inferior and superior boundg &inctions. Con-
sequently, before computing an optimal design for an aggeebobjective function made of
objectives, it is required to solv@ optimization problems. Then, for examplenf= 2, the
Pareto front may be outlined by minimizinbwith several different values of € [0, 1], where

J writes ) )
J(n) = wdi(n) + (1 —w)Ja(n). (7)

3 OPTIMAL SHAPE FOR CONDUCTIVE HEAT TRANSFER

Recalling the notation of Fi¢l] 1, the non-relaxed topologtiraization problem in conduc-

tion writes '
inf J(xa,)

XQI GDG

(8)
subjectto —V - (k(xa,)VT) = q(xa,)

whereDz = {xq, € L*(Q,{0,1}), |©| < ||} and two objective functiond(xq,) are
defined below. The heat equation should be completed withdbhadary conditions introduced
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in sectiorl 1. This problem aims at finding the optimal shape laiyh-conductivity layer made
of expensive raw material, such as copper for instance. ddfitthe volume constraing, the
best trivial solution for most of objective functions is tover the whole domaif2 with such
material.

3.1 Objectivefunctions

This problem has been mainly studied to address the effic@oling of small electronic
devices. Such components require high-conductivity netsvaleverly allocated over their
printed circuit board, since the more they are miniaturized more their heat generation rate
increases. One obvious objective function deals with th@mikzation of the mean temperature
over the domairf2, in order to prevent damaging the electronic componentsaloeerheating
phenomena. This objective function simply writes

meﬂn::TéT/QTUQ. ©)

A less straightforward goal aims at ensuring that the teatpes field over the components
remains as homogeneous as possible. This requirement dmneshe necessity of the elec-
tronic device to communicate with its different sectionsic® the computational frequency is
directly linked with the silicon temperature, it is requr®o keep it as constant as possible in
order to avoid any overload within the communication preceSonsequently the second ob-
jective functional corresponds to the minimization of teenperature variance over the whole
domain() and writes

1 9 B 1 9 9
bWMZKﬂL@—LWM)M—KﬁLTM—AWM- (10)

Even though both expressions are strictly equivalent,akiedne is more efficient to work with,
especially for computing the adjoint expression and theltyy derivative(dJ>(xq), 0).

3.2 Numerical results

The numerical case investigated is well-known as the voltorgoint heat conduction prob-
lem [3]. It has been initially disclosed in 1997 and has besfinéd as:

Consider a finite-size volume in which heat is being gendratesvery point, and
which is cooled through a small patch (heat sink) located®haundary. A finite
amount of high conductivityk(,) material is available. Determine the optimal dis-
tribution of k£, material through the given volume such that the highest &zatpre

is minimized.

Since all calculations are run under steady-state comditid means that the whole heat
produced by the volume is evacuated through the small helat # is worth noting that the
material generating heaf)) and high conductivity materialy;) are viewed as homogenous
and isotropic, without temperature effect on their resgeatonductivity. The geometrical and
physical parameters are displayed on Eig. 2 for an arbit&tyibution of2; and are set as
follow:

e the thermal conductivities are constant, with= 1 1W/(m?.K) andk, = 100 W/(m?*. K);

e the heat generation rates are assumed to be equal and ¢ovitttag = ¢, = 10 kW /m?;
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e all structures have a square aspect ratie<( H = 0.1 m), with a heat sink located in the
middle of their left-hand side;

¢ with the exception of the heat sink which is characterized Byrichlet boundary condi-
tion (7, = 0°C), all the other boundaries are adiaba¥¢I( - n = 0).

Figure 2: Academic study case aiming at cooling down a fisite- volume generating heat,
closed by adiabatic boundary conditions with the excepbiba small heat sink. This one is
characterized by a Dirichlet boundary condition, at terapee7,, located in the middle of the
left-hand side boundary condition with a lendih

The results of the bi-objective optimization problem, adlwas the influence of the vol-
ume constraint, are pictured on Hig. 3. For each volume cainstp = 0.1 andp = 0.125,
multi-objective optimizations have been run by discretigzi < [0, 1] with 101 elements, after
rescaling each objective function according to Eq. (6).. Bidisplays a few results, sorted by
volume constraint and weighting:

e Each column displays the structures reached from the twerdiit volume constraints
with a constant weightingu. Concretely, adding more high-conductivity material
leads to strengthen the main V-shape, while adding new emstlales to the existing
high conductivity paths.

e Each row shows the evolution of solutions for= 0, 0.5 and1, i.e. from minimizing
the temperature variance to minimizing the mean tempegaiver(). The main point
is structural: the discontinuities existing for the sturets reached from the temperature
variance minimization are quickly reattached to the maae tias clearly underlined by

Figs.[3b and 3e.

The main structural difference between mean and variamgpdeature minimization lies on
the discontinuity of the variance configuration displayedrigs.[3a an@_3d, compared to the
uninterrupted connection df; elements in Figs. 3c and|3f. Fig. 4 shows a deeper analysis of
this specific feature from a physical point of view, by mahudegrading the optimal solution
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/
—-l-.\“ —
(8w =0andy =0.1 (b)w =0.5andp = 0.1 (c)w=1landp =0.1
P
——
(d)w = 0andyp = 0.125 (e)w =0.5andy = 0.125 (flw=1andp = 0.125

Figure 3: Numerical results for the topology optimizatidriwwo subdomaing$), and¢2; made

of different thermal conductivitielg, andk; for the finite-size volume generating heat case. The
solutions on each row correspond to two different volumest@mts, respectively = 0.1 and

» = 0.125. The solutions on each column are computed with differengeng when linearly
combining the functionald = w.J; + (1 — w).J,.

(Fig.[4a). In the absence of discontinuous structures, ®rtical temperature gradients take
place between the heat sink and the northern and southeas[4be Therefore, the two dis-
continuous high conductivity strips allow draining the thiéax towards the heat sink, without
evacuating it. Indeed, if those were linked to the m@instructure, such as done in Figl 4c,
both temperature gradients would appear again becauseltharea next to the heat sink would
spread through the domain,. Consequently, it would not contribute to make homogeneous
the temperature field.

The Pareto Fronts, reached from th#l different weightings of/, (n) and.J;(n) objective
functions, are displayed in Figl 5. Those are plotted foee¢hdifferent volume constraints,
respectivelyp = 0.1 (o), = 0.125 (+) andp = 0.15 (e). From a thermal point of view,
it underlines the impact of adding material, decreasing both objective functiof$,) and
J>(n) and shifting the Pareto frontiers towards its origin. Théssformation takes place inside
the white area in Fid.15, since both limits of Pareto frorstistand for the single objective min-
imization of J;(n) or Jy(n): these two values decrease when enlarging the volume egntstr
constricting the front within a smaller space.

Another point highlighted by Fid.5 is the optimality of a feelutions, thanks to the convex
shape of the Pareto frontiers. For each front, the weightargundw = 0.5 provide struc-
tures having both/, (n) and.J;() minima close to their single objective minimization. This
behaviour is obvious fols = 0.15 (), whereJ;, = 4.0°C and J, = 0.97°C?, compared
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(a) Optimized solution [z = (b) Optimized solution with man- (c) Optimized solution with man-
2,33°C?). ually deleted branchesJ{ = ually connected branches( =
2,68°C?). 2,76°C?).

Figure 4: Optimality analysis of non-connected patteregined in structures minimizing the
functional Js.

with their respective single objective valdg = 3.9°C' J, = 0.74°C?. In other words, this
configuration takes advantage of both optimal design featcomputed withv = 0 andw = 1.
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Figure 5: Pareto frontiers af; (x-axis) and/, (y-axis) minimization problem established for 3

different volume constraints = 10% (o), = 12.5% (+) andp = 15% (e) for the finite-size
volume generating heat case.

4 OPTIMAL SHAPE FOR CONVECTIVE HEAT TRANSFER

From now on, the domaif? is made of a fluid and solid subdomains, respectively denoted
2y and (). Fluid is assumed to be Newtonian and incompressible, uadgnar regime. It
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is characterized by its dynamic viscosjty its thermal heat capacity,, its densityp and its
thermal conductivityk;. Conversely, solid subdomain are only characterized witheamal
conductivityk,. The approach chosen here locally adds an internal fridbore between the
fluid and a small obstacle in the same way as the Darcy’s lahinvét porous media [11]. This
new inverse permeability coefficient, denotedranges from 0 to a sufficiently large value to
create a momentum sink modelling the behaviour of solid sotains. As previously explained,
this additional term allows solving only one set of equagifor both subdomains, if the and
k coefficients of Navier-Stokes and energy transport eqastave properly fitted. Following
the assumptions made in this section, the optimizationlprolvrites
inf  J(u,P,T)
XQfEDE
subjectto V-u=0 (11)
plu-V)u+a(x,)u=—-VP+pViu
pCp(u- V)T =V - (k(x.)VT)

whereD, = {xq, € L>(,{0,1}), || <$|Q|} anda(xq,) andk(xq,) are domain depen-
dent. The boundary conditions detailed in sedfion 1 have @daled to the constraint definition
as well. The functions: and% behaves in the following way: & € Qy, thena(1l) = 0 and
k(1) = ky. Conversely, itk € €, thena(0) — oo andk(0) = k,. Further details about the
definition of & andk can be found in[19]. Also note that different paramegei@e also used
for penalizing these both parameters.

The Navier-Stokes and energy equations are discretizétthetfinite volume method, and
computed with the so-called SIMPLER algorithm, which akosolving the pressure-velocity
coupling [24]. Furthermore, an additional correction isluded to properly take into account
the viscous dissipation caused by the wall shear stresg dlensolid domain (seé [19] for
details).

4.1 Objective functions

The heat and mass transfer optimization problem introdasesb far is function of a generic
objective function depending explicitly an P andT’, and implicitly onyq,. This section aims
at defining the physical goals pursue by the optimizatioc@ss and gives them a mathematical
formulation.

First, the objective function’; (n) is relative to minimizing the mechanic power dissipated
by the fluid through the domatii and can be computed thanks to the total pressure losses as

Ji(u, P) = _/F (P+ %p\uﬁ) (u-n)de, (12)

wherel is the boundary of2 domain. This objective is similar to minimizing the mecheaati
power spent to set the fluid into motion. Secondly, the objedtinction./, aims at maximizing
the thermal power recovered from the dom@irby means of the inlet and outlet flow boundary
conditions. This net thermal power is given by

Jo(u,T) = pC’p/FT(u -m)dx (13)

Therefore, the challenge is to conjointly optimiZeand J, in order to reach a configuration
being a trade-off between both objectives: this means thiitdr maximization of the thermal
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power extracted by the fluid involves increasing the medanosses, and conversely. This
problematic is really similar to the one encounters in thignoigation of thermal heat exchang-
ers, where manufacturers seek for the highest thermalffénarsges, while spending the lowest
pumping power as possible.

For such bi-objective problem, the aggregated objectinetion.J (1) now writes

J(u, P, T) = (1 —w)J(u, P) — wis(u,T). (14)
Note that the thermal objectivg is negatively weighted because it has to be maximized.

4.2 Numerical results

The study case is a square-shaped domain of &ide 0.1 m, displayed in Fig[l6. The
inlet and outlet flows are horizontally lined up in front ofcheother, with the same Poiseuille
u—Vvelocity profiles. The inlet flow temperature is setffo= 0°C and the vertical walls are
assumed to be adiabatic. The horizontal walls closing theailo are subject to a constant
temperaturd,, = 10°C. The Reynolds number of this system, computed on the basieof
characteristic dimensiofy5 and the average inlet velocity, i# = 3. The thermal parameters
are the following:k, = 10W/(m.K), ky = 1L.OW/(m.K), andC, = 5.0kJ/(kg.K). The
domain is discretized with00 x 100 design elements and the volume constraif is 0.4.

FigurelT displays the bi-objective optimization resultttare reached by gradually increas-
ing the weightingw. Four main classes of solution can be distinguished fronm thepective

topology:

e Forw = 0, the fluid is transported through a direct pipe, as expectaa fa physical
point of view.

e For0.06 < w < 0.12, a solid core takes place at the center of the domain, sigjithe
fluid subdomain into a lower and an upper flows, as shown fragured_7b t@_7d. This
moves both flows towards the lower and upper walls at congtamperaturd’,, heating
up the fluid without the temperature losses induced by thefheaconduction through
the solid domain. The more the weighting increases, the more the central core width
increases.

e For0.26 < w < 0.60, the central core is vertically split into several sub-spies shown
from Figured 7l tp 1g. This behavior breaks the horizontaperature gradient through
the solid core, by inserting one or more strips of fluid actikga heat insulation material.
Further details about this phenomenon are provided below.

e Forw = 0.75, the surface of solid and fluid interfaces closed to the banndondi-
tionsT,, are artificially increased by small solid inserts. This teatincreases the main
surfaces taking part into the heat transfer process.

Figure[8 displays the results far = 0, minimizing the power lost by viscous dissipation
within the fluid domain. As underlined by Figurel 8a, the flonagghtforwardly joins the inlet
and outlet boundary conditions, with the largest fluid dones possible. This aims at letting
(2¢ being as wide as allowed by the constrait) < © in order to minimize the shears inside
the fluid flow. Figure 8b gives details about the pressure figttlin the (2, domain, which
mainly follows an horizontal gradient. Figurel 8c highliglioth physical configurations for the
heat transfer:
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Figure 6: Academic study case aiming at maximizing the flwitled temperature, while mini-
mizing the viscous dissipation through the fluid flow. Inledautlet flow boundary conditions
face each other and are assumed to be driven by a Poiseunldriladdition, the vertical walls
are adiabatic\V'7" - n = 0) and the upper and lower walls are set to a constant tempefBtu
Solid domain is pictured in black and indexed withwhereas the fluid phase is pictured in

white and indexed witlf.

=IOIO

(@) w = 0.0 (b) w = 0.03 (c) w=0.06 (d) w=0.12
(e) w=0.26 () w =028 (@) w = 0.60 (h) w=0.75

Figure 7: Optimal structures dependingwmweighting.
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@ 0<|u <1x10"3m/s (b) =21 < P<0x 1073 Pa (c0o<T<10°C

Figure 8: Minimization of the viscous dissipation{infor w = 0. The different state variables
are pictured from left to right: velocity magnitude (a), ggare (b) and temperature (c).

e conduction within the solid domain, which mainly remaingeahperatures close @,;

e conducto-convection within the fluid flow, which mainly teports the energy in its lower
and upper boundary layers.

Figurd 9 demonstrates the interest of splitting the centwd in several different parts. Since
ks < ks, the fluid areas having a zero-velocity field can be seen assatation material from
the heat flux point of view. From a conductive point of vieve ftuid strips act as large thermal
resistances for the heat flowing through the solid core. EBméral field temperature is deeply
affected by these discontinuities, as underlined by Figsaif®d 9b. The temperature profile
along ther—axis also shows the temperature gaps resulting from thalatiag fluid material”
between each subcore, as plotted on[Eig. 9e.

Without the strips of fluid, an horizontal temperature geativwould take place through the
core, driving the heat flux from the near outlet flow area torbkar inlet one (see Figs.]19c
and 9d). Consequently, the outlet flow would be cooled by aotidn through the central core,
penalizing the objective functios,. In other words, dividing the central part allows the tem-
perature homogenization for each of its subset by restgdieat conduction, and ensures that
both extreme parts are mainly under the influence of thegadbthermal boundary condition.

One other interesting point underlined by Figlré 9a is tles@nce of homogenized areas
along the fluid/solid interfaces. Indeed, even if this solutseems to be fully converged, the
solid boundaries remain rough: they are made of an artifi@edus media. The split core may
also be seen as a numerical manifestation of the homogmmzabcess, since a core made of
an infinite succession of vertical solid and fluid layers vdoqoperform better than any other one,
for the same reasons as those aforementioned.

5 CONCLUSION

In this proceeding, we show that topology optimization maysiccessfully applied for
the optimization of heat and mass transfers, mainly for trelactive and convective modes. It
also underlines that multi-objective optimization is as@aable method to tackle such problems
and that interesting structural trade-offs between themiht objectives could be reached. The
numerical investigations reveal that most optimized stn&s are not trivial from a structural
point of view, especially when they reached non-connecétttps.

The convective test case illustrates the main probleméteat and mass transfers, consist-
ing in increasing the thermal heat exchange with the fluidlerdeducing as far as possible the
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(e) Horizontal temperature profile fgr= 0.5¢.

Figure 9: Analysis of the core fragmentation from a thernaahpof view.
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Figure 10: Pareto front corresponding to the minimizatibao(x-axis) and the maximization
of J, (y-axis) established for the volume constraint 0.4.

power required to set it in motion. In this case, the aggesjabjective function is proven to
be a suitable approach, since the Pareto front of the proislammost fully convex.

However, the topology optimization method, that transfemarshape optimization problem
into a parametric one, raises several theoretical and noahésues, such as the well-known
homogenization phenomenon detailed(in [1]. The numeribakoration of this anomaly is
made possible thanks to the problem relaxation, but shdattlze investigated from a theo-
retical point of view. It is worth nothing that the numeri@dperiments tend to show that the
more the weighting of the thermal objective is larger, theertbe homogenization process be-
come prominent. Further works have to be done in order toqge®pdequate remedies for this
problem.
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