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A Brief Tutorial On Recursive Estimation
With Examples From Intelligent Vehicle

Applications (Part III): Handling Nonlinear
Estimation Problems And The Unscented

Kalman Filter

Hao Li

Abstract

This is the third article of the series “A brief tutorial on recursive

estimation”. In this article, we focus on the problem of how to handle
model nonlinearity (concerning both the system model and the mea-
surement model) in recursive estimation. We will review an important
variant of the KF, i.e. the unscented Kalman filter (UKF), which is
dedicated to nonlinear estimation problems.

Keywords: recursive estimation, model nonlinearity, unscented Kalman
filter (UKF), intelligent vehicles

1 Introduction

This is the third article of the series “A brief tutorial on recursive estimation”
initiated by [1]. In this article, we focus on the problem of how to handle
model nonlinearity (concerning both the system model and the measure-
ment model) in recursive estimation.

A question arises naturally: what is nonlinearity? It means the opposite
of linearity. Then what is linearity? Simply speaking, linearity refers to
a kind of relationship between two variables where one variable changes in
proportion to the change of the other. For example, in equations y = 3.14x
and y = x+2.78, the relationship between x and y is linear—it is worth noting
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that the meaning of the “variable” mentioned here is rather general; it can
refer to a vector, a matrix, a polynomial, a functional etc—Any relationship
that can not be expressed as a linear relationship is nonlinear.

On can often encounter the concept of linearity in literature. Why does
linearity attract so much attention from researchers? Because linearity pos-
sesses many desirable characteristics which make problems with linear re-
lationships comparatively easy to handle. For estimation problems, an im-
portant characteristic of linearity is: a Gaussian distribution, after a linear
transformation, is still a Gaussian distribution; besides, we can conveniently
and precisely compute the Gaussian distribution after the transformation
from that before the transformation. This desirable characteristic is a basis
for the famous Kalman filter [2].

For many estimation problems, the system model and the measurement
model are nonlinear. In the context of intelligent vehicles, the application
of vehicle localization in a 2D case as presented in [1] is an example where
the system model is nonlinear. To handle the model nonlinearity, be it the
nonlinearity of the system model or of the measurement model, one may
linearize the system model and the measurement model locally and then
apply the original Kalman filter to the locally linearized system. This is the
basic spirit of the extended Kalman filter (EKF) [3].

However, the local linearization strategy in the EKF has its drawbacks.
Here, we would highlight one point: it may result in inconsistent statistics
[4]—Consistency means that for an estimate the estimated covariance ma-
trix is no smaller than the true covariance of the estimated state vector—We
give a simple example here:

Consider the one-dimensional function f(x) = x2 and let the system
model be xt = f(xt−1); suppose last estimate is x̂t−1 = 0 with certain vari-
ance (i.e. covariance for multivariate state cases) Σ̂t−1 > 0. We perform the
prediction step as in the EKF, with local linearization of f at x̂t−1 = 0, and
we have x̄t = f(x̂t−1) = 0 and Σ̄t = f ′(x̂t−1)Σ̂t−1f

′(x̂t−1) = 0. Attention!
The predicted variance Σ̄t becomes zero! This predicted variance is appar-
ently smaller than the true variance of xt and hence the prediction result
is inconsistent—It is worth noting that this kind of inconsistency caused by
local linearization of the system model is essentially different from the incon-
sistency caused by inappropriate fusion of correlated data: the former kind
of inconsistency can be regarded as being due to a kind of model mismatch,
whereas the latter kind of inconsistency is due to the fusion itself; one can
refer to [5] [6] [7] for data fusion methods that handle the latter kind of
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inconsistency.
In order to handle inconsistent statistics that harass the EKF in nonlinear

estimation, Julier and Uhlmann proposed in [4] [8] a useful variant of the KF,
i.e. the unscented Kalman filter (UKF), which plays an important role in
the KF family since its birth. In this article, we review the UKF, explain
its idea of handling nonlinear factors in the estimation, and demonstrate its
advantage over the EKF with an example of vehicle localization.

2 The Unscented Kalman Filter (UKF)

2.1 Review of the Kalman filter (KF)

We have already reviewed in [1] formulas of the KF and explained its essence
from “information” perspective—the KF, in essence, is a fusion method that
forms the fusion estimate by a linear weighted combination of source
estimates—Here, we first review again the formulas of the KF that we have
already reviewed and then review another formalism of the KF. The KF can
be given as (see [1]):
Prediction:

x̄t = Ax̂t−1 +Bût (1)

Σ̄t = AΣ̂t−1A
T +BΣ̂uB

T +Σǫ

Update:

K = Σ̄tH
T (HΣ̄tH

T +Σγ)
−1

x̂t = x̄t +K(zt −Hx̄t) (2)

Σ̂t = (I−KH)Σ̄t

2.1.1 Concepts related to the KF

We review several concepts related to the formulas (1) and (2) in the KF.

Prediction:
Predicted (a priori) state estimate: x̄t in (1).
Predicted (a priori) covariance estimate: Σ̄t in (1).
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Update:
Predicted (a priori) measurement: the expectation (or mean) of

the measurement predicted with a priori state distribution according to the
measurement model; denoted as ẑt.

Innovation or measurement residual: the difference between the
measurement zt and the predicted measurement; denoted as ŷt i.e. ŷt =
zt − ẑt.

Innovation covariance: the covariance of the innovation; denoted as
Σyy.

(State-measurement) cross covariance: the cross covariance between
the predicted state estimate x̄t and the predicted measurement ẑt; denoted
as Σxz.

Kalman gain: K in (2).
Updated (a posteriori) state estimate: x̂t in (2).
Updated (a posteriori) covariance estimate: Σ̂t in (2).

2.1.2 Another formalism of the KF

It seems that above concepts “predicted measurement”, “innovation”, “in-
novation covariance”, and “cross covariance” are not related to the KF. To
understand their roles in the KF, we have to note following equations (valid
for cases of a linear measurement model).

Given a linear measurement model with the observation matrix H, the
predicted measurement is given as ẑt = Hx̄t. Then we have the innovation
as ŷt = zt −Hx̄t and derive the innovation covariance as:

Σyy = E[(∆zt −∆ẑt)(∆zt −∆ẑt)
T ]

= E[(∆zt −H∆x̄t)(∆zt −H∆x̄t)
T ]

= E[∆zt∆zTt ] +HE[∆x̄t∆x̄T
t ]H

T

= Σγ +HΣ̄tH
T

In above derivation, the notation ∆ represents “error” (a random variable).
For example, ∆x̂ means χ − x̂, where χ represents the random variable as-
sociated with the estimate x̂. We can derive the cross covariance as:

Σxz = E[∆x̄t∆ẑTt ]

= E[∆x̄t∆x̄T
t H

T ]

= Σ̄tH
T
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Besides, we have the following relationship:

KHΣ̄t = KΣyyΣ
−1

yy HΣ̄t

= KΣyyK
T

With above equations, we can reformulate the update procedures (2) in
the KF as in (3):

K = ΣxzΣ
−1

yy

ŷt = zt − ẑt

x̂t = x̄t +Kŷt (3)

Σ̂t = Σ̄t −KΣyyK
T

From (3) we can see how the concepts “predicted measurement”, “inno-
vation”, “innovation covariance”, and “cross covariance” are related to the
KF. We can also notice the generality of the formalism (3) which does not
contain factors that are necessarily based on assumptions of model linearity.
Let the system model be represented abstractly as f and the measurement
model be represented abstractly as h (be them linear or nonlinear):

xt = f(xt−1,ut)

zt = h(xt)

We further assume that we have suitable models to compute the pre-
dicted state, the predicted state covariance, the predicted measurement co-
variance, and the cross covariance, which are denoted as gx, gxx, gzz, and gxz
respectively—It is worth noting that the state predicted with x̂t−1 and ût via
f is not necessarily to be the mean of the predicted distribution (though for
linear systems it is)—Then we can reformulate the KF in a rather generic
way as in (4) and (5):

Prediction:

x̄t = gx(x̂t−1, ût, f) (4)

Σ̄t = gxx(x̂t−1, ût, Σ̂t−1, Σ̂u, f)
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Update:

Σxz = gxz(x̄t, Σ̄t, h)

Σyy = Σγ + gzz(x̄t, Σ̄t, h)

K = ΣxzΣ
−1

yy

ŷt = zt − ẑt

x̂t = x̄t +Kŷt (5)

Σ̂t = Σ̄t −KΣyyK
T

Above formalism in (4) and (5) holds for arbitrary f and h and the key
problem is how do we know the functions gx, gxx, gzz, and gxz? The essential
difference among different variants of the KF consists in how they define
these functions. For the EKF, gx is defined as f ; gxx, gzz, and gxz are derived
from f and h using the local linearization technique. However, gx, gxx, gzz,
and gxz obtained in this way may result in inconsistent statistics [4], which
degrade the ability of the EKF to handle nonlinear estimation problems.
How to define gx, gxx, gzz, and gxz better and use them in the generic KF
formalism (4) and (5) is the motivation of Julier and Uhlmann to propose
the UKF in [4] [8].We review the UKF in the next section.

2.2 The unscented transformation (UT)

As we have explained previously, variants of the KF differ from each other
in how they define the functions gx, gxx, gzz, and gxz. So our review here
focuses on how these functions are defined in the UKF, i.e. how the predicted
state, the predicted state covariance, the innovation covariance, and the cross
covariance are computed in the UKF. The idea of the UKF which is based
on the unscented transformation (UT) [9] can be summarized as:

First, we create a set of sample points to approximate the distribution
characterized by the state estimate x̂t−1 and the covariance estimate Σ̂t−1.
These points are called sigma points [4] [8]. For each sigma point, we can
have a predicted state point and a predicted measurement point accordingly
by substituting the sigma point into the system model and the measurement
model. We use statistics of the predicted state points and the predicted
measurement points to approximate the predicted state x̄t, the predicted
state covariance Σ̄t, the innovation covariance Σyy, and the cross covariance
Σxz—With Σ̄t, Σ̄t, Σyy, and Σxz available, we can then update the estimate
via (5).
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2.2.1 Create the sigma points

The n-dimensional random variable x with mean x̄ and covariance Σxx is
approximated by 2n+ 1 weighted points {xi,wi} (i = 0, 1, ..., 2n):

x0 = x̄ w0 = κ/(n+ κ)

xj = x̄+ (
√

(n+ κ)Σxx)j wj = 1/2(n+ κ)

xj+n = x̄− (
√

(n+ κ)Σxx)j wj+n = 1/2(n+ κ) (6)

where
√

(n+ κ)Σxx with the square root symbol
√

does not really denote
the square root matrix of the matrix (n + κ)Σxx; it represents a kind of
“quasi” square root of (n+ κ)Σxx satisfying

√

(n+ κ)Σxx

√

(n+ κ)Σxx

T
= (n+ κ)Σxx

j = 1, 2, ..., n and (
√

(n+ κ)Σxx)j denotes the j-th column of the matrix
√

(n+ κ)Σxx. One can easily verify

E[x] ≈
2n
∑

i=0

wixi = x̄

E[(x− x̄)(x− x̄)T ] ≈
2n
∑

i=0

wi(x− x̄i)(x− x̄i)
T = Σxx

This shows that the mean and the covariance of the sigma points coincide
exactly with x̄ and Σxx. One can compute

√

(n+ κ)Σxx by performing the
Cholesky decomposition [10] [11] on (n+ κ)Σxx.

In the estimation, the sigma points are created from the augmented
state vector x̂a

t−1 which means the state vector plus the system input er-
ror vector and the system model error vector and from the corresponding
augmented state covariance Σ̂a

t−1:

x̂a
t−1 =





x̂t−1

0
0





Σ̂a
t−1 =





Σ̂t−1 0 0

0 Σ̂u 0
0 0 Σǫ




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Here we assume the state error, the system input error, and the system model
error are mutually independent. Let the sigma points created from x̂a

t−1 and

Σ̂a
t−1 according to (6) be denoted as x̂a

t−1,i (i = 0, 1, ..., 2n).

2.2.2 Compute the predicted mean and the predicted covariance

Compute the predicted state points with the sigma points x̂a
t−1,i (i = 0, 1, ..., 2n)

according to the system model:

x̄t,i = f(x̂a
t−1,i, ût)

Then the predicted mean is computed as

x̄t =
2n
∑

i=0

wix̄t,i (7)

and the predicted covariance is computed as

Σ̄t =
2n
∑

i=0

wi(x̄t,i − x̄t)(x̄t,i − x̄t)
T (8)

The idea of (7) and (8) is to use the statistics of the predicted state points
to approximate the a priori state and covariance.

2.2.3 Compute the predicted measurement, the innovation covari-
ance, and the cross covariance

The predicted measurement points are computed with the predicted state
points x̄t,i (i = 0, 1, ..., 2n) as

ẑt,i = h(x̄t,i)

The predicted measurement i.e. the mean of the predicted measurement
points is computed as

ẑt =
2n
∑

i=0

wiẑt,i

Then the innovation covariance is computed as

Σyy = Σγ +
2n
∑

i=0

wi(ẑt,i − ẑt)(ẑt,i − ẑt)
T (9)
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and the cross covariance is computed as

Σxz =
2n
∑

i=0

wi(x̄t,i − x̄t)(ẑt,i − ẑt)
T (10)

2.3 Why “unscented”?

One may pose the question: why is the UKF called “unscented”? The cre-
ator of the unscented transformation, Uhlmann, might have certain special
inspiration as he gave his method this name in [9]. In our understanding,
we see it as a nice figurative expression. The word root “scented” means
literally “emitting something (usually a nice odor)”. From this sense we can
“deduce” an implicit fact that a scented object is also an object which gradu-
ally “loses” something as it emits this thing. So the term “unscented” in the
UKF implies that something is well kept without being gradually lost in the
estimation. Then what is this thing not lost? The answer is true statistics
of the state (which may be gradually lost if the EKF is used).

Besides, as already mentioned, “scented” usually implies “emitting some-
thing desirable” in opposition to a similar word “stinky” which means “emit-
ting something undesirable and offensive”. As true statistics of the state are
something desirable (like the desirable thing contained in a scented object),
it is apparently more proper to call the UKF as it is than to call it in some
way such as the “unstinky” KF.

2.4 Summary of the UKF

We have reviewed the key idea of the UKF in previous subsections; here, we
give a complete summary of the UKF.

Prediction:
1. Create the sigma points x̂a

t−1,i (i = 0, 1, ..., 2n) from the augmented
state vector x̂a

t−1 and from the corresponding augmented state covari-

ance Σ̂a
t−1 according to (11):

x̂a
t−1,0 = x̂a

t−1 w0 = κ/(n+ κ)

x̂a
t−1,j = x̂a

t−1 + (

√

(n+ κ)Σ̂a
t−1)j wj = 1/2(n+ κ)

x̂a
t−1,j+n = x̂a

t−1 − (

√

(n+ κ)Σ̂a
t−1)j wj+n = 1/2(n+ κ) (11)

9



x̂a
t−1 =





x̂t−1

0
0





Σ̂a
t−1 =





Σ̂t−1 0 0

0 Σ̂u 0
0 0 Σǫ





2. Compute the predicted state points with the sigma points x̂a
t−1,i (i =

0, 1, ..., 2n) according to the system model:

x̄t,i = f(x̂a
t−1,i, ût)

3. Compute the predicted mean x̄t as

x̄t =
2n
∑

i=0

wix̄t,i

4. Compute the predicted covariance Σ̄t as

Σ̄t =
2n
∑

i=0

wi(x̄t,i − x̄t)(x̄t,i − x̄t)
T

Update:
5. Compute the predicted measurement points ẑt,i (i = 0, 1, ..., 2n) with

the predicted state points x̄t,i (i = 0, 1, ..., 2n) as

ẑt,i = h(x̄t,i)

6. Compute the predicted measurement ẑt as

ẑt =
2n
∑

i=0

wiẑt,i

7. Compute the innovation covariance Σyy as

Σyy = Σγ +
2n
∑

i=0

wi(ẑt,i − ẑt)(ẑt,i − ẑt)
T
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8. Compute the cross covariance Σxz as

Σxz =
2n
∑

i=0

wi(x̄t,i − x̄t)(ẑt,i − ẑt)
T

9. Compute the a posteriori state estimate and the a posteriori covariance
estimate as

K = ΣxzΣ
−1

yy

ŷt = zt − ẑt

x̂t = x̄t +Kŷt

Σ̂t = Σ̄t −KΣyyK
T

3 Vehicle Localization In A 2D Case

3.1 Application description

We consider the same application of vehicle localization in a 2D case as
described in [1]. Suppose a vehicle is navigating on a 2D plane and needs
to estimate its pose i.e. the position (x, y) and the orientation θ. In other
words, we treat the pose of the vehicle as its state to be estimated; this state
is denoted compact as p i.e. p = (x, y, θ). The system model is given as the
following kinematic model:







xt = xt−1 + vt∆Tcos(θt−1 + φt∆T/2)
yt = yt−1 + vt∆Tsin(θt−1 + φt∆T/2)
θt = θt−1 + φt∆T

(12)

where ∆T denotes the system period; v and φ denote respectively the speed
and the yawrate of the vehicle. Suppose the vehicle is equipped with devices
that monitor its speed and its yawrate. Speed measurements are denoted as
v̂, and yawrate measurements are denoted as φ̂. Their errors are assumed to
follow the Gaussian distribution as ∆vt ∼ N(0,Σv) and ∆φt ∼ N(0,Σφ).

Suppose the vehicle is also equipped with a component that outputs mea-
surements on the vehicle position (x, y)—vehicle position measurements may
be provided by commonly used GPSs [12] [13] or by some ad hoc techniques
[14] [15] [16]. Here we eliminate any consideration of ad hoc factors and just
suppose abstractly that we have vehicle position measurements with certain
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level of accuracy. Our intention is not to validate the feasibility of certain
concrete solution for certain concrete application, but to give a fair compar-
ison between performances of the EKF and the UKF. So what we have to
guarantee in the tests is that the EKF and the UKF are applied to the same
data, whereas how these data may be actually provided in real practice is
out of our focus here—Let vehicle position measurements be denoted as z
and the measurement model is given as:

zt = Hpt + γt (13)

H =

[

1 0 0
0 1 0

]

where γ denotes the measurement error which is assumed to follow the Gaus-
sian distribution with zero mean and covariance Σγ, i.e. γ ∼ N(0,Σγ). The
measurement model given in (13) is a partial measurement model.

The system model (12) is a nonlinear model with respect to the vehicle
orientation θ and the yawrate input φ. To implement the EKF, this nonlinear
system model needs to be locally linearized and the locally linearized system
model is rewritten as follows:





xt

yt
θt



 ≈





x̄t

ȳt
θ̄t



+A(pt−1,ut)





∆xt−1

∆yt−1

∆θt−1



+B(pt−1,ut)

[

∆vt
∆φt

]

(14)







x̄t = xt−1 + vt∆Tcos(θt−1 + φt∆T/2)
ȳt = yt−1 + vt∆Tsin(θt−1 + φt∆T/2)
θ̄t = θt−1 + φt∆T

A(pt−1,ut) =





1 0 −vt∆Tsin(θt−1 + φt∆T/2)
0 1 vt∆Tcos(θt−1 + φt∆T/2)
0 0 1





B(pt−1,ut) =





∆Tcos(θt−1 + φt∆T/2) −vt∆T 2sin(θt−1 + φt∆T/2)/2
∆Tsin(θt−1 + φt∆T/2) vt∆T 2cos(θt−1 + φt∆T/2)/2

0 ∆T





where ut = (vt, φt). The matrices A(pt−1,ut) and B(pt−1,ut) are actually
the Jacobian matrices of the state evolution function (specified in (12)) with
respect to pt−1 and ut respectively. With this locally linearized system model
(14) and the measurement model (13), we can apply the EKF and details
can be referred to in [1].
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To apply the UKF, we are exempt from the trouble of locally linearizing
the system model; we can just treat the system model (12) and the measure-
ment model (13) as black boxes. The UKF is carried out as follows:

Prediction:
1. Create the sigma points p̂a

t−1,i = [p̂t−1,i,∆vt,i,∆φt,i]
T (i = 0, 1, ..., 2n)

from the augmented state vector p̂a
t−1 and the corresponding augmented

state covariance Σ̂a
t−1 via (15):

p̂a
t−1,0 = p̂a

t−1 w0 = κ/(n+ κ)

p̂a
t−1,j = p̂a

t−1 + (

√

(n+ κ)Σ̂a
t−1)j wj = 1/2(n+ κ)

p̂a
t−1,j+n = p̂a

t−1 − (

√

(n+ κ)Σ̂a
t−1)j wj+n = 1/2(n+ κ) (15)

p̂a
t−1 =





p̂t−1

0
0





Σ̂a
t−1 =





Σ̂t−1 0 0
0 Σv 0
0 0 Σφ





Here we only consider the system input error while neglecting the system
model error. As stated in [4] [8], carefully tuning the parameter κ may
enhance the performance of the UKF. In the tests, our focus was not on
examining the optimal performance of the UKF, but on comparison between
the performances of the UKF and the EKF. So we simply set κ to 1/2 (so
that the weights for the sigma points are the same)—if the UKF with a κ
not carefully tuned can achieve better performance than the EKF does, then
the UKF with a carefully tuned κ will achieve even better performance.

2. Compute the predicted state points p̄t,i = [x̄t,i, ȳt,i, θ̄t,i]
T with the sigma

points p̂a
t−1,i (i = 0, 1, ..., 2n) according to the system model (12):







x̄t,i = x̂t−1,i + (v̂t +∆vt,i)∆Tcos(θ̂t−1,i + (φ̂t +∆φt,i)∆T/2)

ȳt,i = ŷt−1,i + (v̂t +∆vt,i)∆Tsin(θ̂t−1,i + (φ̂t +∆φt,i)∆T/2)

θ̄t,i = θ̂t−1,i + (φ̂t +∆φt,i)∆T
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3. Compute the predicted mean p̄t as

p̄t =
2n
∑

i=0

wip̄t,i

4. Compute the predicted covariance Σ̄t as

Σ̄t =
2n
∑

i=0

wi(p̄t,i − p̄t)(p̄t,i − p̄t)
T

Update:
5. Compute the predicted measurement points ẑt,i (i = 0, 1, ..., 2n) with

the predicted state points p̄t,i (i = 0, 1, ..., 2n) as

ẑt,i = Hp̄t,i

6. Compute the predicted measurement ẑt as

ẑt =
2n
∑

i=0

wiẑt,i

7. Compute the innovation covariance Σyy as

Σyy = Σγ +
2n
∑

i=0

wi(ẑt,i − ẑt)(ẑt,i − ẑt)
T

8. Compute the cross covariance Σpz as

Σpz =
2n
∑

i=0

wi(p̄t,i − p̄t)(ẑt,i − ẑt)
T

9. Compute the a posteriori state estimate and the a posteriori covariance
estimate as

K = ΣpzΣ
−1

yy

ŷt = zt − ẑt

p̂t = p̄t +Kŷt

Σ̂t = Σ̄t −KΣyyK
T
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3.2 Simulation

We tested performances of the EKF and the UKF using same synthetic data
generated according to the system model (12) and the measurement model
(13). In the simulation, let ∆T = 1(s); let Σv = 0.12(m2/s2); let Σφ =
0.12(rad2/s2); let Σγ = diag(2.02, 2.02)(m2). Set the ground-truth p0 =
[0(m), 0(m),−π/2(rad)]T ; vt = 10(m/s) and φt = 0.0(rad/s). The speed
measurements and the yawrate measurements were synthesized according to
v̂t ∼ N(vt,Σv) and φ̂t ∼ N(φt,Σφ). The vehicle position measurements were
synthesized according to zt ∼ N(pt,Σγ).

The EKF and the UKF were applied to the same synthetic data and their
estimates on the vehicle state were obtained respectively. The results of 100
Monte Carlo trials are shown in Fig.1 and Fig.2, in both of which the red
lines and the blue lines represent respectively the errors of the EKF estimates
(after convergence) and those of the UKF estimates (after convergence). The
black crosses in Fig.1 represent the position measurement errors.
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Figure 1: Position estimate errors for 100 Monte Carlo trials

As shown in Fig.1, the position estimates provided by both the EKF and
the UKF were considerably more accurate than the position measurements,
whereas the UKF brought marginal improvement on position estimate ac-
curacy further compared with the EKF. As shown in Fig.2, the UKF also
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Figure 2: Orientation estimate errors for 100 Monte Carlo trials

brought marginal improvement on orientation estimate accuracy compared
with the EKF.

3.3 Discussion

The simulation results presented in the previous subsection demonstrate
the advantage of the UKF over the EKF in handling nonlinear estima-
tion problems—It is worth noting that nolinearity mentioned here does not
necessarily refer to the evolution of the state, but refer to the system model
and the measurement model. For example, in previously presented simula-
tion, we deliberately set the yawrate ground-truth φ to be zero, so that the
vehicle was actually set to be moving on a straight line. However, the sys-
tem model that describes the vehicle movement with potential state errors
and system input errors taken into account is nonlinear, so the presented
estimation problem is still nonlinear.

It is also worth noting that we should not exaggerate the advantage of
the UKF over the EKF. In the example given previously, compared with the
EKF, the marginal improvement brought by the UKF is slight (yet existing).
For linear estimation problems, the UKF and the EKF will have same per-
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formances. In fact, the more exists nonlinearity in an estimation problem,
the more noticeable may be the advantage of the UKF over the EKF.

One implementation convenience brought by the UKF is that for imple-
menting the UKF we no longer have the trouble of explicitly computing the
Jacobian matrices of the system model function and the measurement model
function as we do for implementing the EKF. In the formalism of the UKF,
the system model and the measurement model are totally treated as black
boxes. Although the formalism of the UKF seems to possess more formulas
than that of the EKF, its implementation is actually easier than that the
EKF.

So, on one hand, the UKF tends to perform at least no worse than the
EKF. On the other hand, it is easier to implement the UKF than to imple-
ment the EKF. This is why Julier and Uhlmann advocate ubiquitous use of
the UKF in applications where the EKF may be used. The UKF do have
aroused more and more interests of researchers; examples of its application
in the intelligent vehicle domain can be referred to in [17] [18] [19].

If the UKF has disadvantages compared with the EKF, one point may
be that the UKF is not as deterministic as the EKF because it contains
heuristic factors. Another point may be that its mechanism of uncertainty
propagation is not as intuitive as that of the EKF.

4 Conclusion

In this article i.e. the third article of the series “A brief tutorial on recur-
sive estimation”, we have reviewed an important variant of the KF, i.e. the
unscented Kalman filter (UKF), for its advantage over the extended Kalman
filter (EKF) in handling nonlinear estimation problems. First, we have revis-
ited the formalism of the KF. Then, we have reviewed a more generic formal-
ism of the KF. Based on the generic formalism of the KF, we have explained
the key idea of the unscented Kalman filter. We have also give simulation
based comparison between performances of the UKF and the EKF.

Besides the UKF, another powerful method for handling nonlinear estima-
tion problems is the particle filter, explanations on which will be postponed
to a further article of the series.
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