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We analyse the force balance on a cylindrical drop in a Hele-Shaw cell, subjected to

a Marangoni flow caused by a surface tension gradient. Depth-averaged Stokes equa-

tions, called Brinkman equations, are introduced and a general closed form solution

is obtained. The validity of the averaging procedure is ascertained by considering a

linear surface tension gradient acting on a cylindrical flattened drop. The Marangoni-

driven flow field and resulting force predicted by the Brinkman model are seen to

match well a full three-dimensional direct numerical simulation. A closed form ex-

pression of the force acting on the drop is obtained, calculated from contributions due

to the normal viscous stress, tangential viscous stress, and pressure fields, integrated

on the drop perimeter. This expression is used to predict the force balance when a sta-

tionary droplet is submitted to both a carrier flow and a Marangoni flow. We show that

previous results in the literature had underestimated by a factor two the Marangoni-

induced force. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878095]

I. INTRODUCTION

Droplet-based microfluidics has developed into a highly active area in recent years, owing to its

ability to answer some major issues facing single phase flows. In particular, the use of droplets reduces

the problem of handling small volumes to the manipulation of a single droplet, which provides an

elegant approach to performing reactions with minute volumes since the contents of a drop can

remain within the drop if the liquids are chosen properly. In addition, the recirculation motion inside

the drop induced by the shear imposed on the immiscible interface through the surrounding carrier

flow can be used to mix the drop contents.

This has renewed interest in Marangoni effects acting on drops, with the active modulation

of surface stresses being proposed as a manipulation tool for droplets either inside or outside

microchannels.1 Lasers were used to locally heat a water-oil interface in the confined geometry

of microchannels and this technique was used to implement all of the necessary operations on

droplets.2–4 In this approach, the heating produced by the focused laser leads to a thermocapillary

stress that is generated on the drop surface. Owing to the low Reynolds numbers, this almost instan-

taneously produces a flow in the inner and outer fluids, while the drop translation is simultaneously

blocked as its interface reaches the laser spot. These experiments therefore demonstrate the produc-

tion of a net force that can balance the viscous drag on a locally heated droplet, generating forces of

a few hundred nano Newtons.5 The direction of the force was found to be pointing away from the

hot spot, similar to the direction observed by Kotz et al.6 and Grigoriev et al.7 in spherical geometry,

but in disagreement with classical results which predict that drops should migrate towards the hot

regions (e.g., Young, Goldstein, and Block8). This was attributed by Verneuil et al.5 to the direction

of the Marangoni rolls, due to the presence of partially soluble surfactants that were depleted by the

laser, while Selva et al.,9 showed that the force oriented towards the cold side was driven in their

experimental setup by the cell deformation in response to thermal stresses.

1070-6631/2014/26(6)/062105/24/$30.00 C©2014 AIP Publishing LLC26, 062105-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  81.65.6.83

On: Fri, 13 Jun 2014 12:10:20

http://dx.doi.org/10.1063/1.4878095
http://dx.doi.org/10.1063/1.4878095
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4878095&domain=pdf&date_stamp=2014-06-13


062105-2 Gallaire et al. Phys. Fluids 26, 062105 (2014)

While these authors confirmed experimentally the Marangoni origin of the force, several ques-

tions remain about the hydrodynamics and the scalings behaviour of such forcing methods. This

leads us to revisit the problem of the force acting on a drop in a Hele-Shaw geometry, treated in the

literature by the work of Nadim et al.,10 Boos and Thess,11 and Bush.12 These three studies addressed

the effect of Marangoni stresses, due to a temperature or surfactant concentration gradient, on the

motion of a flattened drop or bubble. Nadim et al.10 calculated the tangential stress effects caused

by a linear surface temperature distribution on a flat fluid-fluid interface and used this result to

derive the velocity of a circular bubble in a constant temperature gradient. We will show that these

prediction underestimate the real force by a factor two. Boos and Thess11 determined the flow in

detail using depth-averaged (so-called Brinkman) equations and conducted numerical computations

of the velocity field for complex shaped bubbles, using a simplifying boundary layer approximation.

Finally, Bush12 derived an expression for the terminal velocity of a buoyancy driven flattened bubble

and showed that it could be retarded by a secondary solutal Marangoni flow.

The aim of the present study is to calculate the forces acting on a stationary drop or bubble

in a Hele-Shaw cell in the presence of a surface tension gradient and of an external flow, in the

spirit of Hadamard,13 Rybzynski,14 and Young et al.8 This first leads us to generalize Boos and

Thess’s11 solution of the Brinkman equations for an arbitrary general surface tension distribution.

The stress distribution predicted by the depth-averaged procedure inherent to the Brinkman model

is then quantitatively validated by comparison with three-dimensional (3D) numerical computations

of the Stokes equations, enabling us to obtain a generic closed form expression of the force acting

on a stationary droplet. The equilibrium conditions under which the force exerted by the carrier fluid

is exactly cancelled by the Marangoni effect are finally determined.

The governing equations for the inner and outer flows around a flattened drop are posed in

Sec. II and a numerical solution procedure is proposed in Sec. III. The depth-averaged, so-called

Brinkman equations are introduced and solved in Sec. IV in the cases of local or global variations

of surface tension. In Sec. V, the validity of the approach is assessed by comparing the stress

fields predicted theoretically in the frame of the Brinkman approximation with those obtained from

three-dimensional Stokes simulations. This enables determining the generic force expression on a

stationary droplet for any arbitrary flow and allows computing the force caused either by a Marangoni

flow on a stationary drop (Sec. VI) or by an incoming flow on a stationary droplet (Sec. VII). The

tentative application of our approach to translating droplets follows in Sec. VIII before conclusions

and perspectives are drawn in Sec. IX.

II. PROBLEM STATEMENT

Let us consider a cylindrical flattened drop or bubble of radius R̄ and viscosity µ̄1, surrounded

by a stationary or constantly flowing (at velocity Ū∞) fluid of viscosity µ̄2, in a Hele-Shaw cell

of gap h̄ small compared to R̄, as depicted in Figure 1 (dimensional variables are denoted with an

overbar). The two fluids are immiscible and subject to a surface tension γ̄ = γ̄0 + "γ̄ γ which may

vary in space with an amplitude "γ̄ . This surface tension distribution is assumed to remain frozen.

It may result either from a temperature T̄ = T̄0 + "T̄ T or surfactant concentration c̄ = c̄0 + "c̄ c

distribution, the resulting surface tension variation "γ̄ = ḠT "T̄ or "γ̄ = Ḡc "c̄ being obtained

er
eθ

θ

hy

x

z

R

FIG. 1. Schematic of the depth-averaged model: a cylindrical steady drop of radius R in a Hele-Shaw cell of thickness h.
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using a scalar coefficient Ḡc or ḠT . We shall assume the Reynolds number Re = Ū R̄/(µ̄1 + µ̄2)

based on the radius of the drop R̄, the total viscosity µ̄1 + µ̄2, and the characteristic velocity Ū to

be small. Depending on the flow configuration, this reference velocity Ū is either the characteristic

Marangoni velocity Ūm = "γ̄ h̄/R̄(µ̄1 + µ̄2) or the external carrier fluid velocity Ū∞. In order

to non-dimensionalize the equations, we therefore use the radius of the drop R̄ as characteristic

length-scale, the reference time and force scale being (µ̄1+µ̄2)R̄

"γ̄
and "γ̄ R̄ (respectively, R̄/Ū∞ and

R̄(µ̄1 + µ̄2)Ū∞) when the droplet is submitted to Marangoni forcing (respectively, when submitted

to a uniform carrier flow). Nondimensional quantities are denoted without overbar.

With the assumption of a low Reynolds number, the equations of motion reduce to the 3D Stokes

equations,

µi"V
(i) = ∇ Pi , (1)

∇.V(i) = 0, (2)

where the pressure is denoted by Pi and where the index i = 1, 2 refers to fluids 1 and 2.

With the exception of Sec. VIII (where the results are extended tentatively to moving droplets),

the present study focuses on stationary droplets. In this situation, the droplets adopt toroidal-like

shapes with the geometric details of the rim depending on the wetting properties. For droplet wetting

the channel walls, the droplet is directly in contact with the solid walls and the rim geometry is set by

the contact angle. For non-wetting droplets, a thin molecular film is caused by the disjunction

pressure and the rim has a shape that becomes asymptotically close to a semi-circle of radius of

curvature equal to the half-height of the channel h/2 as h/R tends to 0. The existence of this curved

rim is neglected in the present study, following Boos and Thess11 and Bush.12 The droplet interface

thereby reduces to a flattened cylinder which we further assume to be circular, assuming that the

capillary number is sufficiently low for the droplet not to depart from its equilibrium shape in absence

of flow. Although this assumption of a prescribed shape of the interface precludes the imposition of

the normal stress boundary condition, it is a reasonable assumption as long as the capillary number

is small enough.

In addition, observe that this classical assumption in low-Reynolds number two-phase

flows8, 13, 14 can in certain cases be validated a posteriori. Such a “unique result”15 happens for

the low Reynolds translational motion of a spherical droplet or its motion under a linear surface

tension gradient, where it was checked8, 13, 14 that the spherical shape does indeed ensure the local

normal stress balance along the interface. It can be shown however, that in the present case of a

pancake droplet flowing in a Hele-Shaw cell, the circular shape does not ensure the local normal

stress balance.

The remaining boundary conditions consist of impermeability and continuity of both tangential

velocities and tangential shear stresses, where tk (k = 1, 2) denote the two unit tangent vectors and

T
(i) the stress tensors

V
(i)

∣

∣

z=±1/2
= 0, (3)

V
(i).n

∣

∣

r=1
= 0, (4)

V
(1).tk

∣

∣

r=1
= V

(2).tk

∣

∣

r=1
, (5)

tk .T
(1).n

∣

∣

r=1
= tk .T

(2).n
∣

∣

r=1
+ ∇γ .tk . (6)

III. A REFERENCE NUMERICAL SOLUTION

With the aim to validate in Sec. V the depth-averaged model used in the remainder of the study,

let us first obtain in this section a reference direct numerical simulation of the 3D Stokes equations.
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We consider the effect of an imposed surface tension profile, generated, for example, by an imposed

temperature field. We assume for the sake of clarity that the surface tension along the interface γ (θ )

is an even function (we anticipate in this way the null contribution of the odd part of the function to

the net x-directed force). Its gradient may then be decomposed onto the sine modes only (calculations

can be extended to cosine modes contributions in a straightforward manner)

dγ

dθ
=

∞
∑

n=1

an sin(nθ ), (7)

where

an =
1

π

∫ 2π

0

dγ

dθ
sin(nθ )dθ . (8)

In this section, we solve numerically the 3D Stokes equations (2)–(6) in the case of a linear surface

tension gradient acting on a cylindrical interface (γ (r, z, θ ) = cos (θ )). We take advantage of the

following (so-called n = 1) azimuthal dependences:

V (i)
r (r, z, θ ) = v(i)

r (r, z) cos(θ ), (9)

V
(i)
θ (r, z, θ ) = v

(i)
θ (r, z) sin(θ ), (10)

V (i)
z (r, z, θ ) = v(i)

z (r, z) cos(θ ), (11)

P (i)(r, z, θ ) = q (i)(r, z) cos(θ ) + P
(i)
0 , (12)

to transform the 3D stokes equations exactly into the 3C-2D (three components and two dimensions)

n = 1-Stokes equations given as

∂

∂r

(

1

r

∂rv(i)
r

∂r

)

−
v(i)

r

r2
−

2v
(i)
θ

r2
+

∂2v(i)
r

∂z2
=

∂q (i)

∂r
, (13)

∂

∂r

(

1

r

∂rv
(i)
θ

∂r

)

−
v

(i)
θ

r2
−

2v(i)
r

r2
+

∂2v
(i)
θ

∂z2
= −

q (i)

r
, (14)

1

r

∂

∂r

(

r
∂v(i)

z

∂r

)

−
v(i)

z

r2
+

∂2v(i)
z

∂z2
=

∂q (i)

∂z
, (15)

1

r

∂

∂r

(

rv(i)
r

)

+
v

(i)
θ

r
+

∂v(i)
z

∂z
= 0, (16)

with suitable boundary conditions derived from Eqs. (3)–(6). Observe that the pressure references

P
(i)
0 in the two fluids are arbitrary since the normal dynamic boundary condition is not imposed.

Similar decompositions can be applied to the different elements of the viscous stress tensors, for

instance, the tangential stress component T
(i)

rθ (r, z, θ ) = t
(i)
rθ (r, z) sin(θ ).

We use the FreeFem++ software (http://www.freefem.org) to generate a two-dimensional

triangulation of the azimuthal plane with the Delaunay–Voronoi algorithm. The mesh refinement is

controlled by the vertex densities imposed on both external and internal boundaries. All equations are

numerically solved by a finite-element method using two meshes, one for the interior domain and one

for the exterior domain. Each set of equations is first multiplied by r to avoid the singularity on the r

= 0 axis. The associated variational formulation is then derived and spatially discretized onto a basis

of Arnold-Brezzi-Fortin MINI-elements,16, 17 with 4-node P
1b

elements for the velocity components

and 3-node P1 elements for the pressure. The sparse matrices resulting from the projection of these

variational formulations onto the basis of finite elements are built with the FreeFem++ software.

The reference results presented in the following have been obtained for interior and exterior meshes,

respectively, made of 91 656 triangles and 520 204 triangles, and have been checked to be converged

with respect to mesh-refinement.
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FIG. 2. (a) Transverse tangential velocity profile v
(i)
θ (1, z); empty (resp. full) symbols correspond to the inner (resp. outer)

fluid i = 1 (resp. i = 2). (b) Reconstruction of the tangential velocity field V
(i)
θ (1, z, θ ) on the inner and outer surfaces of the

drop, as obtained by solving the exact 3C-2D n = 1 Stokes equations; h = 0.1, a1 = 1, µ1 = 3/4, and µ2 = 1/4.

Our approach consists of solving back and forth the n = 1-Stokes equations in each domain.

Starting from a guess solution, we solve first the equations in the interior domain 1 with the stress

along the interface being imposed by the outer fluid. Then, we solve back the equations in the

exterior domain 2 with the stress being now imposed by the inner fluid. We repeat the computations

until the following criterion ‖v1 − v2‖I nter f ace < 10−3 is satisfied, thereby assuring continuity of

the tangential and axial velocities. This simple, segregated scheme was found to converge rapidly

(within 5 iterations) for the linear set of equations at hand.

Simulations were run for different parameters, and always showed that the out of plane z

component of the velocity v(i)
z was at least one order of magnitude smaller than the in-plane

components of the velocity. Figure 2(a) depicts the interfacial tangential velocity profiles v
(1)
θ (1, z) =

v
(2)
θ (1, z), obtained for h = 0.1, a1 = 1, µ1 = 3/4, and µ2 = 1/4. They display a characteristic

parabolic-like profile. In addition, a two-dimensional reconstruction of the surface inner and outer

velocities is shown in Figure 2(b).

The Marangoni stress discontinuity (here nondimensionalized to 1) is recovered by subtracting

the outer shear from the inner one, as seen in Figure 3(a), which depicts the interfacial tangential

shear stress profiles t
(1)
r,θ (1, z) and t

(2)
r,θ (1, z), except in the extreme vicinity of the walls. The associ-

ated two-dimensional reconstructions of the surface inner and outer shear stresses are depicted in

Figure 3(b).

The interfacial pressures depicted in Figure 4 highlight the invariance of the 3D pressure field

with respect to z. For completeness, the normal viscous stress components on the interface are

also reported in Figure 5 where they are seen to be one order of magnitude less than the pressure

stresses.

IV. DEPTH-AVERAGED MODELLING

Classically, the smallness of the aspect ratio h = h̄/R̄ is exploited to separate the wall nor-

mal dependance (i.e., in the direction z) of all the velocity fields from its in-plane averaged

value

V
(i)(x, y, z) = u

(i)(x, y)

(

6z(h − z)

h2

)

. (17)
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FIG. 3. (a) Transverse tangential stress profile t
(1)
r,θ (1, z) (empty symbols for the inner fluid) and t

(2)
r,θ (1, z) (full symbols for

the outer fluid); (b) Reconstruction of the tangential stress fields T
(i)

r,θ (1, θ, z) on the “inner” and “outer” surfaces of the drop;

h = 0.1, a1 = 1, µ1 = 3/4, and µ2 = 1/4.

At leading order, the pressure does not depend on z and the z-component of the velocity may be

neglected, yielding the depth-averaged equations

µi

(

"‖ − 12/h2
)

u
(i) = ∇‖ pi , (18)

∇‖.u
(i) = 0, (19)

where "‖ =

(

∂2

∂x2 + ∂2

∂y2

)

is the in-plane Laplacian and ∇‖ =

(

∂
∂x

, ∂
∂y

)

the in-plane gradient. Equa-

tions (18) and (19) are called Brinkman equations;12 they combine the classical Darcy approximation

of Hele-Shaw flows with the next order O
(

h̄2

R̄2

)

Stokes correction. Despite its lower order, it is ju-

dicious, although mathematically disputable,18 to include this term in order to satisfy Marangoni

boundary conditions.

-0.5 -0.25 0 0.25 0.5
0

0.3

0.6

0.9

-0.7 0.7

z

x y
R

-0.8 0.8
(a) (b)

FIG. 4. (a) Transverse pressure profile q(1)(1, z) and q(2)(1, z). (b) Reconstruction of the pressure fields P(i)(1, z, θ ) on the

inner and outer surfaces of the drop; h = 0.1, a1 = 1, µ1 = 3/4, and µ2 = 1/4.
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FIG. 5. (a) Transverse normal viscous stress profile t
(1)
r,r (1, z) and t

(2)
r,r (1, z); (b) Reconstruction of the normal viscous stress

field T
(i)

rr (1, z, θ ) on the inner and outer surfaces of the drop; h = 0.1, a1 = 1, µ1 = 3/4, and µ2 = 1/4.

It is natural at this stage to introduce depth-averaged in-plane streamfunctions ψ (i) such that

u
(i)
θ = −

∂ψ (i)

∂r
, (20)

u(i)
r =

1

r

∂ψ (i)

∂θ
, (21)

which allow rephrasing (18) in cylindrical coordinates (see Boos and Thess11 for details) as
(

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂θ2

) (

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂θ2
− k2

)

ψ (i) = 0, (22)

where we have introduced the aspect ratio k =
√

12R̄/h̄, assumed to be large. The above equations

are valid in each fluid and are closed by suitable boundary conditions on the interface. The kinematic

boundary conditions at r = 1 impose equal normal velocities along the interface

ψ (1)
∣

∣

r=1
= ψ (2)

∣

∣

r=1
, (23)

as well as the continuity of the tangential velocity

∂ψ (1)

∂r

∣

∣

∣

∣

r=1

=
∂ψ (2)

∂r

∣

∣

∣

∣

r=1

. (24)

Except in Sec. VIII, the droplet is considered at rest, which further allows to specify (23) to

ψ (1)
∣

∣

r=1
= ψ (2)

∣

∣

r=1
= 0. (25)

The tangential dynamic boundary condition, which accounts for the Marangoni effect, writes τ
(1)
1,θ =

τ
(2)
1,θ + 1

r

dγ

dθ

∣

∣

∣

r=1
, where τ is the depth-averaged viscous stress tensor, and can be re-expressed as

µ1 r
∂

∂r

(

u
(1)
θ

r

)
∣

∣

∣

∣

∣

r=1

− µ2 r
∂

∂r

(

u
(2)
θ

r

)
∣

∣

∣

∣

∣

r=1

=
1

r

dγ

dθ

∣

∣

∣

∣

r=1

. (26)

The normal dynamic boundary condition cannot be imposed since the geometry of the bubble is

taken as fixed. The outer potential flow has to be matched far from the drop (r → ∞) while regularity

conditions are imposed on the axis (r = 0).

The bi-harmonic-like equation (22) is linear and its solution is the suitable linear combination of

its four fundamental solutions which satisfy the boundary conditions (23)–(26) in each fluid. These
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solutions consist of the two classical solutions of the Laplace equation in circular geometry, rnsin (nθ )

and r−nsin (nθ ), as well as the two eigenfunctions of the same Laplace equation with eigenvalues

k2, namely, the two modified Bessel functions In(kr) and Kn(kr). The aspect ratio k =
√

12R̄/h̄,

which is assumed to be large, is the inverse of the screening length of the exponential decay of the

modified Bessel functions. Enforcing the far field boundary condition rules out the two fundamental

solutions that diverge at r → ∞ in fluid 2. In a similar manner, enforcing a regularity condition

on the axis rules out the two fundamental solutions diverging for r → 0 in fluid 1. Imposing the

boundary condition (23) at the interface, the solutions of the governing equations may therefore be

chosen of the form

ψ (1)(r, θ ) =

∞
∑

n=1

bn

(

In(kr )

In(k)
− rn

)

sin(nθ ) (27)

and

ψ (2)(r, θ ) =

∞
∑

n=1

cn

(

Kn(kr )

Kn(k)
−

1

rn

)

sin(nθ ). (28)

The constants are determined by the two remaining boundary conditions (24) and (26), as detailed

in Appendix A,

bn =
In(k)Kn−1(k)

dn

an, (29)

cn = −
Kn(k)In+1(k)

dn

an, (30)

dn = −In+1(k)µ2

[

2kKn−1(k) + k2 Kn(k)
]

+ Kn−1(k)µ1

[

2k In+1(k) − k2 In(k)
]

. (31)

The expressions (27)–(31) are the analytical solution and iso-values of the streamfunction

and can be easily plotted to evidence the streamlines of the thus obtained flow fields. A typical

streamfunction field is depicted in Fig. 6 in the case of a steady state Gaussian surface tension

distribution γ (x, y) = exp[−((x − 1)2 + y2)/w2], where w corresponds to the typical size of the

gradient. Note that the flow is pulled along the interface away from the low surface tension region,
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FIG. 6. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) and a localized Marangoni effect of Gaussian type;

w = 0.4; µ1 = µ2 = 0.5. The large arrow shows the direction of the net force acting on the drop. As in subsequent figures,

dark curves refer to positive values of the streamfunction and therefore clockwise rotating streamlines while light curves

refer to negative values of the streamfunction and therefore counter-clockwise rotating streamlines.
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FIG. 7. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) and a constant surface tension gradient along x; µ1 =

µ2 = 0.5. The H and L labels correspond to the high and low surface tension regions, respectively. The large arrow represents

the direction of the total Marangoni force acting on the drop.

while being pushed towards the high surface tension point. In Baroud et al.2 and Verneuil et al.,5

such Marangoni-driven flow patterns were observed and the increase of surface tension at the hot

point was attributed to surfactant depletion through the laser. The solution for a surface tension

deficit at the hot point (as would be expected by a pure thermocapillary effect) is simply obtained

by inverting the sign of the arrows on the streamfunction contours, owing to the linearity of the

underlying equations.

At this stage, we may check for agreement with the solution of Boos and Thess,11 which is

found by retaining only the first mode of the Fourier series (i.e., taking n = 1), shown in Fig. 7 (note

the typographic mistake in their expression (4.22) corresponding to our Eq. (31)). Here, we consider

a drop submitted to a constant surface tension gradient ∇γ = ex, i.e., γ = cos (θ ), generated by a

linear temperature or surfactant concentration distribution.

Note that in both the localized and linear heating cases, the result of Boos and Thess11 are

recovered, with the variations of the velocities in the radial direction occurring on a length scale

imposed by the channel height. In Figures 6 and 7, this may be inferred from the radial spacing

between the streamlines which increases in the case h = 0.4 compared to h = 0.1. The typical

length scale in the azimuthal direction, on the other hand, is given by the form of the surface tension

variation, determined by w in the case of the Gaussian surface tension distribution and R in the linear

case.

V. MODEL VALIDATION

Although the Brinkman equations have been validated for single phase pressure driven flow

in high aspect ratio rectangular channels,18 the only validation test of the Brinkman equations for

the modelling of two-phase flows was conducted, to the authors’ knowledge, by Boos and Thess.11

They considered the flow driven by a one-dimensional constant gradient of surface tension along an

infinite flat interface perpendicular to the channel walls and found an analytical solution in the form

of a series expansion, as already established by Nadim et al.10 They compared the interface velocity

obtained by solving Brinkman equations with this exact three-dimensional solution and showed that

the agreement improved as the aspect ratio k increased.

Note however that this flow, which is driven by a one-dimensional constant gradient of surface

tension along an infinite flat interface, is particular in that the pressure contribution and the viscous

normal stress vanish exactly on the interface. The entire flow solution is in fact at constant pressure.
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It is therefore natural that a description based exclusively on the tangential shear stress contribution

provides the correct force balance on the interface, as noticed by Nadim et al.10 These authors further

used this observation as the basis of a general expression of the Marangoni force solely based on the

tangential shear stress and applied it to the determination of the force acting on a Marangoni-driven

drop. We will show that this constitutes an erroneous extrapolation since in these more general

geometries, the Marangoni effect generates a pressure field that also contributes to the net force

acting on the drop.

Despite this single point of validation, the suitability of the Brinkman model to quantitatively

describe surface tension driven phenomena and in particular stress calculations can be questioned

since the underlying assumption of scale separation is not verified near the interface. As previ-

ously noted by Thompson19 considering the flow in a Hele-Shaw cell around a thin solid cylinder,

asymptotic matching must be performed between an “outer” flow far from the interface governed

by the 2D Darcy equation and an “inner” flow near the interface, which remain inherently three-

dimensional.

In the absence of an equivalent analysis for Marangoni flows, and despite recent preliminary

attempts,20 we resort to an a posteriori validation of the depth-averaged model: the solution of

Brinkman’s equations is compared to the full 3D reference numerical simulation conducted in

Sec. III. From first sight, the constant pressure across the channel (Figure 4) together with parabolic-

like tangential velocity profiles and the extremely small transverse velocity components observed

in these 3C-2D Stokes calculations (Figure 2), show that the key assumptions underlying Brinkman

equations appear to hold for pure Marangoni flow description.

More quantitative comparisons can be obtained by plotting the radial profile of the mean

tangential velocity obtained from the Brinkman equations uθ (r, θ = π /2) and the a posteriori depth-

average of the 3D Stokes simulations 〈Vθ (r, z, θ = π/2)〉 = 1/h
∫ h

z=0
Vθ (r, z, θ = π/2)dz, where θ

has been set to the arbitrary value of π /2 to factorize out the sinusoidal azimuthal dependence (one

has therefore 〈Vθ (r, z, θ = π/2)〉 = 〈vθ (r, z)〉). As shown in Figure 8(a), the overall agreement is

remarkable. The estimation given by Nadim et al.,10 uNadim

θ (r = 1, θ = π/2) = h
1.842µ

dγ

dx
also agrees

well with the numerical solution, as shown by the filled circle in Figure 8(a). The radial velocity

profile averaged a posteriori in the Stokes simulations and the solution of the Brinkman equations

shows the same remarkable agreement (Figure 8(b)).

In addition, the shear and normal stresses are compared in Figure 9, displaying a very good

agreement. The pressure distribution is particularly well captured, on both sides of the interface, as

seen in Figure 9(b), where the normal viscous stress contribution is also displayed and seen to be

one order of magnitude less than the pressure contribution.
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FIG. 8. Comparison of the depth-averaged fields resulting from the Stokes simulations (solid lines) and their counterparts

directly obtained by solving the Brinkman equations (circles). (a) Radial distribution of the mean tangential velocity 〈v(i)
θ (r, z)〉

and the Brinkman solution u
(i)
θ (r, θ = π/2) (the filled circle denotes the prediction from Nadim’s formula8); (b) Radial

distribution of the mean tangential velocity 〈v(i)
r (r, z)〉 and the Brinkman solution u

(i)
r (r, θ = 0); h = 0.1, a1 = 1, µ1 = 3/4,

and µ2 = 1/4.
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FIG. 9. Comparison of the depth-averaged fields resulting from the 3D Stokes simulations (solid lines) and their counterparts

directly obtained by solving the Brinkman equations (circles). (a) Radial distribution of the mean tangential shear stress

〈t (i)
r,θ (r, z)〉 and the Brinkman solution τ

(i)
r,θ (r, θ = π/2) ; (b) Radial distribution of the mean pressure 〈q(i)(r, z)〉 and viscous

normal stress 〈t (i)
r,r (r, z)〉 and the respective Brinkman solutions p(i)(r, θ = 0), τ

(i)
r,r (r, θ = 0); h = 0.1, a1 = 1, µ1 = 3/4, and

µ2 = 1/4.

Although the presented computations do not bring a mathematical proof of the validity of the

Brinkman equations for two-phase flows in Hele-Shaw cells, they may be considered as a reasonable

validation of the depth-averaged model, not only as far as the qualitative behavior of the flow is

concerned, but also regarding the quantitative pressure and viscous stresses close to the interface.

These results also show that the contribution from the pressure field is of comparable magnitude

as the tangential stress, as clearly evidenced by comparison of Figures 3 and 4 or of Figures 9(a)

and 9(b), while the viscous part of the normal stress on the other hand is one order of magnitude

(h/R) smaller. This result has two consequences: (i) the pressure contribution should be included in

force calculations on an interface in general, (ii) the determination of this pressure field requires the

computation of the full flow field.

VI. FORCE DUE TO THE MARANGONI FLOW

We now wish to evaluate the total force induced by the Marangoni flow on the drop. Three stress

terms are exerted by the outer fluid on the cylindrical interface: the pressure field p as well as the

viscous shear stresses in the tangential and normal directions, namely, τrθ = µ2

(

∂u
(2)
r

∂θ
+

∂u
(2)
θ

∂r
− u

(2)
θ

r

)

and τrr = 2µ2
∂u

(2)
r

∂r
. Another force is applied by the walls onto the drop as a consequence of the

friction at the walls, if we consider that the drop is in contact with the plates (wetting drop). If the

drop is non-wetting, then the wetting film can be assumed to be thin enough for the shear to be

entirely transmitted throughout its negligible thickness, retrieving the previous situation. In any case,

the resulting x-component of the total force on the drop is given by the projections of the former

three contributions, integrated along the azimuthal direction and the latter contribution integrated on

the two circular contact areas between the cylindrical drop and the walls.

The viscous tangential shear force reduces to

Ft = µ2h

∫ 2π

0

(

−
∂u(2)

r

∂θ
− r

∂u
(2)
θ

∂r
+ u

(2)
θ

)

sin(θ )dθ

∣

∣

∣

∣

∣

r=1

, (32)

whereas the viscous normal force is recast, using the continuity equation on the drop interface and

integrations by parts, as

Fn = 2µ2h

∫ 2π

0

(

∂u(2)
r

∂θ
− u

(2)
θ

)

sin(θ )dθ

∣

∣

∣

∣

r=1

. (33)
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Similarly, the pressure force is given by

Fp = h

∫ 2π

0

− p(2)
∣

∣

r=1
cos(θ )rdθ = h

∫ 2π

0

∂p(2)

∂θ

∣

∣

∣

∣

r=1

sin(θ )rdθ . (34)

The term ∂p(2)/∂θ may be retrieved from the tangential component of the Brinkman equations

µ2

[(

1

r

∂

∂r
r

∂

∂r
−

1

r2
+

1

r2

∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2

∂u(2)
r

∂θ

]

=
1

r

∂p(2)

∂θ
. (35)

The pressure force becomes, after a double integration by parts,

Fp = µ2h

∫ 2π

0

(

2

r2

∂u(2)
r

∂θ
+

(

∂2

∂r2
+

1

r

∂

∂r
−

2

r2
− k2

)

u
(2)
θ

)

sin(θ )r2dθ

∣

∣

∣

∣

r=1

. (36)

Let us now evaluate the viscous friction force of the two plates on the drop

F f = −
∫ 2π

0

∫ 1

0

12µ1

h

(

u(1)
r cos(θ ) − u

(1)
θ sin(θ )

)

rdθdr. (37)

An integration by parts finally leads to

F f = −µ1

12

h

∫ 2π

0

rψ (1) sin(θ )
∣

∣

r=1
dθ . (38)

The final expression for the nondimensional force is obtained by summing the four different contri-

butions found in Eqs. (32), (33), (36), and (38), Fm = Ft + Fn + Fp + Ff

Fm = µ2h

∫ 2π

0

(

3

r2

∂u(2)
r

∂θ
+

(

∂2

∂r2
− k2 −

3

r2

)

u
(2)
θ −

k2

R2r

µ1

µ2

ψ (1)

)

sin(θ )r2dθ

∣

∣

∣

∣

r=1

. (39)

This expression shows, as a consequence of the orthogonality properties of the sine functions, that

only the first component of the Fourier series matters as far as the evaluation of the force is concerned,

since all other contributions vanish in the integration once multiplied by sin (θ ). The expressions of

Appendix A can then be used to evaluate the various components of the force

Ft = πhµ2c1

(

2kK0(k)

K1(k)
+ k2

)

, (40)

Fn = −πhµ2c1

2kK0(k)

K1(k)
, (41)

Fp = πhµ2c1k2, (42)

F f = 0, (43)

Fm = 2πhµ2c1k2, (44)

where c1 is given by Eq. (30).

Note first that Ff = 0 as a consequence of the zero average flux in the x direction in the droplet,

by construction. Observe also that the normal viscous force Fn is one order of k smaller than the

tangential viscous force Ft, as a consequence of the continuity relation ∂ur

∂r

∣

∣

r=1
∼ 1

r

∂uθ

∂θ

∣

∣

r=1
and the

separation of scales along the azimuthal and radial directions away from the interface. The above

expressions further show that the total force (Fm) is approximately twice as large as the force due to

the tangential shear stress (Ft) and exactly twice as large as the result of the total viscous stress (Ft +

Fn) and, equivalently, twice as large as the pressure contribution. Using the asymptotic expansions

of (30) and (31) for n = 1, one is led to c1 = a1

k2 + O
(

1
k3

)

, which yields

Fm ≃ 2hµ2

∫ 2π

0

dγ

dθ
sin(θ )dθ, (45)
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or, in dimensional terms,

F̄m ≃ 2h̄
µ̄2

µ̄1 + µ̄2

∫ 2π

0

dγ̄

dθ
sin(θ )dθ . (46)

These forms of the total force may be evaluated for the two cases treated above. For instance, in the

case of a temperature induced Gaussian surface tension distribution, as that plotted in Figure 6, one

finds

F̄m ≃ −
2
√

π"T̄ ḠT h̄ w̄ µ̄2

R̄(µ̄1 + µ̄2)
, (47)

in agreement with the scaling law of Baroud et al.2 Note the sign of the force which is directed away

from the high surface tension region. In the case of a linear surface tension gradient10–12 shown in

Figure 7, a1 = 1 and

F̄m = −2π h̄
µ̄2

µ̄1 + µ̄2

"T̄ ḠT , (48)

which is twice the force predicted by Nadim et al.,10 who neglected the contribution of the normal

stress to the force. Finally, we insist that the linearity of the Stokes equation implies that only

the sign of the force will change if the sign of the surface tension dependence on temperature is

inverted.

VII. A STATIONARY DROP IN A UNIFORM ADVECTION FLOW

We will now derive the force imposed on a drop by a uniform advection flow of velocity Ū∞ in

Hele-Shaw geometry. Recall that we non-dimensionalize the equations with R̄/Ū∞ as a time scale

and R̄(µ̄1 + µ̄2)Ū∞ as force scale. The solutions satisfying the far field boundary condition and the

regularity condition on the axis may be written as the sum of a potential flow ψp around the drop

(and a corresponding velocity field up), violating the continuity of tangential velocity and tangential

shear stress along the interface of the drop, and a correction flow of Brinkman’s type which restores

this balance

ψ (1) = B

(

I1(kr )

I1(k)
− r

)

sin(θ ), (49)

ψ (2) =

(

C

(

K1(kr )

K1(k)
−

1

r

)

+ ψ p

)

sin(θ ), (50)

ψ p = r −
1

r
, (51)

B =

(

−2µ2(kK1(k) + 2K0(k)) + 4µ2 K0(k)

d1

)

I1(k), (52)

C =

(

2µ1(−k I1(k) + 2I2(k)) − 4µ2 I2(k)

d1

)

K1(k), (53)

with d1 given by expression (31). The determination of the constants B and C is the topic of

Appendix B. It may be further shown that the asymptotic expansion of C is

C =
2µ1

k
+

4 − 9µ1 + 6µ2
1

k2
+ O

(

1

k3

)

. (54)

The amplitude of this constant C has an influence on the typical flow fields, depicted in Figure 10.

Since C < 2
k−1

at leading order, the radial part of ψ (2) increases monotonically with r. This pre-

vents the formation of recirculation zones in the outer fluid that are observed in presence of ad-

ditional soluto-capillary flow.12 Since u
p
r

∣

∣

r=1
= 0, u

p

θ

∣

∣

r=1
= −2 sin(θ ), and

∂2u
p

θ

∂r2

∣

∣

∣

r=1
= −6 sin(θ ),
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FIG. 10. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) in presence of an outer uniform flow; µ1 = µ2 =

0.5. The large arrow represents the net force, which is due to the drag acting on the drop.

plugging-in the flow fields of Eq. (50) into the general expression for the force (39) yields the force

F∞ that acts on the drop owing to the external flow

F∞ = πhµ22k2(1 + C). (55)

Using the asymptotic estimate (54) yields a dimensionless drag force, at leading order

F∞ ≃ πhµ22k2

(

1 +
2µ1

k
+

4 − 9µ1 + 6µ2
1

k2

)

. (56)

This expression shows that taking into account the tangential stress condition along the interface

increases the drag force on the drop or bubble by two lower order terms in comparison to the case

of a solid disk (F̄∞ = 24πŪ∞µ̄2
R̄2

h̄
). Note that at fixed outer viscosity µ̄2, the drag force is an

increasing function of the inner viscosity.

The linearity of the Stokes equation enables one to determine the incoming velocity at which

the drag force and the Marangoni force exactly balance by simply adding up the solution for a

stationary droplet in uniform flow to the solution for the Marangoni induced flow derived previously.

At leading order, the total force becomes

F̄ ≃ µ̄2Ū∞π2k2h̄ − 2h̄
µ̄2

µ̄1 + µ̄2

∫ 2π

0

"γ̄
dγ

dθ
sin(θ )dθ . (57)

The drop therefore remains stationary in the oncoming stream of speed Ū∞ if

∫ 2π

0

"γ̄
dγ

dθ
sin(θ )dθ = k2Ū∞π (µ̄1 + µ̄2). (58)

It is important to note here that while the global force balance is ensured, it can be shown that the

local normal stress balance is not satisfied, even in the situation of a linear surface tension gradient.

This contrasts with the “unique” situation15 of spherical droplets in unbounded flows, suggesting

that actual pancake droplets held by a surface tension gradient against the flow in a Hele-Shaw cell

will deform.

Typical flow fields of a drop in a uniform flow counterbalanced by a localized surface tension

gradient are depicted in Figure 11. This flow field compares favourably with the experimental

streamlines observed by Baroud et al.2 and Verneuil et al.5 inside and outside the droplet (in these

experiments, the flow along the interface was directed towards the focal point of the laser, where the

local surface tension increase was caused by the depletion of surfactant molecules from the water-oil
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FIG. 11. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop held stationary in a constant outer flow

with localized surface tension gradient; w̄ = 0.4; µ1 = µ2 = 0.5.
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FIG. 12. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop held stationary in an outer flow through

a linear surface tension gradient; µ1 = µ2 = 0.5.

interface5). In doing so, the Marangoni flow significantly modifies the streamlines, entraining fluid

that was originally far from the drop into the hot region, as shown in Fig. 11. This leading-order

modification of the flow field can have a significant effect on the transport of solutes in the outer

flow, as well as the transport of surfactant molecules along the surface of the drop, as long as the

solutal Peclet number is non-zero.

The case of a constant surface tension gradient holding a drop stationary is shown in

Figure 12. The addition of the Marangoni flow causes the outer streamlines to become straight,

giving the impression that the drop becomes “cloaking” to the flow in the far-field.

VIII. TRANSLATING DROPLETS

With these expressions at hand, it is tempting to apply them to moving droplets translating at

a typical velocity Ūd . Although such an approach has been followed by Taylor and Saffmann,21

Nadim et al.,10 and Bush12 among others, it hinges onto dynamic contact line issues for wetting

droplets and the presence of curved dynamic wetting films for non-wetting droplets.
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In this latter case, it is known since Bretherton,22 Foster and Burgess,23 and Park and Homsy24

that viscous dissipation in the dynamic meniscus region induces a second source of drag on a moving

drop, that scales like F̄ca ∼ γ̄ R̄Ca2/3, where the capillary number Ca is defined as Ca =
µ̄2Ūd

γ̄
. This

scaling can be obtained by a Landau-Levich type balance between capillary and viscous forces in

the thin films that lubricate the drop motion. The relative strength of F̄ca with respect to the forces

that can be calculated by neglecting the thin films F̄D ∼ h̄µ̄2Ūdπk2 is given by F̄ca/F̄D ∼ Ca−1/3k,

showing that, despite the vanishing thickness of the capillary films, their contribution to the drag

forces dominates at low capillary numbers.24

This dynamic wetting film effect, associated to the curvature variations in the dynamic meniscus

regions, cannot be modelled in the present depth-averaged approach assuming a frozen flattened

circular cylindrical interface. Still, for the purpose of comparison with previous findings10, 12, 21 and

with these strong limitations in mind, we now turn to the case of translating droplets.

A. Translating drop in a quiescent outer fluid

Let us embark in the reference frame of the lab with fixed walls and consider a translating drop

at velocity −Ūd in a stationary outer fluid. Using a similar method, it can be shown that the flow

becomes

ψ (1) =

(

B ′
(

I1(kr )

I1(k)
− r

)

− r

)

sin(θ ), (59)

and

ψ (2) =

(

C ′
(

K1(kr )

K1(k)
−

1

r

)

−
1

r

)

sin(θ ), (60)

with

B ′ =

(

−2µ2(kK1(k) + 2K0(k)) + (3µ2 + µ1)K0(k)

d1

)

I1(k), (61)

C ′ =

(

2µ1(−k I1(k) + 2I2(k)) − (3µ2 + µ1)I2(k)

d1

)

K1(k), (62)

as detailed in Appendix C. Typical flow fields in the reference frame of the laboratory are depicted

in Figure 13.
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FIG. 13. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop translating downwards, shown in the

reference frame of the laboratory; µ1 = µ2 = 0.5. The arrow shows the direction of the net force due to the drag force.
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Since ∂u
pot
r

∂θ

∣

∣

∣

r=1
= sin θ , ψ (1)|r = 1 = −sin (θ ), u

pot

θ

∣

∣

r=1
= − sin(θ ) and

∂2u
pot

θ

∂r2

∣

∣

∣

r=1
= −6 sin(θ ),

inserting Eqs. (59) and (60) into the general expression for the force (39) yields

Fd = µ2hπ (2C ′k2 + k2) + hk2πµ1, (63)

which gives, using C ′ =
2µ1

k
+

3−7µ1+6µ2
1

k2 + O
(

1
k3

)

,

Fd ≃ πhµ2k2

(

1 +
4µ1

k
+

6 − 14µ1 + 12µ2
1

k2

)

+ πhµ1k2. (64)

This expression, once made dimensional, becomes

F̄d = h̄µ̄2Ūdπk2 + h̄µ̄1Ūdπk2 + h̄
4µ̄2µ̄1

µ̄1 + µ̄2

Ūdπk + O(1). (65)

It may be compared at leading order to expression (32) of Nadim et al.10 The first two terms

correspond exactly to their findings while the third one, though of the correct order of magnitude

reveals a discrepancy in the prefactor, since ours is
√

12/1.842 ≈ 1.9 larger. Similar to the pure

Marangoni flow described in Sec. VI, the Brinkman model takes into account the pressure correction

caused by imposition of the depth-averaged tangential velocity and stress continuities, which is

neglected by Nadim et al.10

B. Translating drop in a uniform flow

As a next application of the flow patterns and forces derived in this section, let us now con-

sider a moving drop at velocity Ūd in an outer stream of velocity Ū∞. Linear superposition of

Eqs. (56) and (65) yields

F̄ ≃
(

2µ̄2Ū∞ − (µ̄1 + µ̄2)Ūd

)

πk2h̄. (66)

In the case of a gas bubble (µ̄1 ≪ µ̄2), the dynamical equilibrium is reached when

Ūd = 2Ū∞, (67)

recovering the famous result of Taylor and Saffman21 by an alternative method.

C. Marangoni-driven self-propelled drop in a quiescent outer fluid

The next application considered is that of a Marangoni-driven self-propelled drop either is a

constant surface tension gradient, a situation widely discussed in square and round capillaries,25, 26

or in a more general surface tension distribution. Combining the drag force (65) and the Marangoni

driving force (46), one is led to

F̄ = h̄(µ̄2 + µ̄1)Ūdπk2 + 4h̄
µ̄2µ̄1

µ̄1 + µ̄2

Ūdπk − 2h̄
µ̄2

µ̄1 + µ̄2

∫ 2π

0

dγ̄

dθ
sin(θ )dθ . (68)

The cancellation of the force gives the final velocity of the drop,

Ūd = −
2µ̄2

∫ 2π

0
γ̄ cos(θ )dθ

π
(

k2(µ̄1 + µ̄2)2 + 4kµ̄2µ̄1

) , (69)

to be compared with the prediction of Nadim et al.10

ŪNadim = −
µ̄2

∫ 2π

0
γ̄ cos(θ )dθ

π

(

k2(µ̄1 + µ̄2)2 + 4kµ̄2µ̄1

√
12/1.842

) . (70)

The two differences with the expressions of Nadim et al.10 already found in expressions (46) and (65)

are combined in the resulting expression for the terminal velocity. Typical streamlines of these

compound flows are depicted in Figures 14 and 15.
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FIG. 14. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) of a translating drop propelled by a following

localized Marangoni force; w̄ = 0.4; µ1 = µ2 = 0.5.

D. Marangoni retardation of buoyancy driven droplets

In the case of a gas bubble, µ̄1 = 0 and a constant retarding surface tension gradient, Eq. (64)

yields

F̄ = h̄µ̄2Ūdπk2 + 6h̄µ̄2Ūdπ − 2h̄

∫ 2π

0

dγ̄

dθ
sin(θ )dθ, (71)

introducing the notation of Bush12 T =
"γ̄

µ̄Ūd

F̄ = h̄µ̄2Ūdπ
(

k2 + (6 + 2T )
)

. (72)
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FIG. 15. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) of a translating drop propelled by a constant surface

tension gradient; µ1 = µ2 = 0.5.
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Balancing this drag force with a buoyancy force in an inclined Hele-Shaw cell yields the terminal

velocity

Ūd ≃
h̄2ḡ sin(α)

12µ̄2

(

1 − (6 + 2T )/k2
)

(73)

whereas Eq. (5.23) of Bush12 yields

ŪBush ≃
h̄2ḡ sin(α)

12µ̄2

(

1 − (2 + T )/k2
)

. (74)

It should be noted that we obtain the same scalings as Bush12 by a completely different method,

with a different prefactor however. We may speculate that this discrepancy could be related to the

asymptotic expansions used by Bush12 for the domain integration of the viscous dissipation around

the bubble, whereas the present analysis makes use of the exact Bessel functions.

IX. SUMMARY AND DISCUSSION

In summary, we have proposed a thorough analysis of Marangoni induced forces on drops in a

Hele-Shaw geometry. The decomposition of the flow field into Fourier modes provides a standard

method to solve for the streamfunction and the forces in a general context, as long as the form of the

surface tension profile is known. This analysis unifies the two approaches of Nadim et al.,10 Boos

and Thess,11 and Bush12 through a rigorous approach analogous to the analysis of a spherical drop

of Hadamard13 and Rybzynski.14

Two characteristic cases were studied in detail: (i) that of a localized forcing which might

correspond to heating from a laser source or a local variation of surfactant concentration and (ii) the

more classical case of a constant temperature gradient. The extension of the method presented here

to any Marangoni stress is straight-forward.

With thermocapillary applications in mind, one may ask what typical temperature distribution

is the most efficient to block a drop. Examination of Eq. (47) shows that for the same maximum

temperature difference "T, Fm scales like w implying that the strength of the force increases with

the width of the hot spot. For a fixed laser power P however, assuming that the hot spot size w scales

like the laser width, "T ∝ P
πw2 and the resulting force is inversely proportional to the spot width.

This suggests that a tighter laser focusing leads to an increased blocking efficiency. This result is

consistent with the measurements of the dependence on beam waist discussed in Baroud et al.3 and

Verneuil et al.5

For a typical microfluidic application, consider the case of a water drop of radius 150 µm and

height 50 µm, with a maximum surface tension difference of 25 mN/m. Using the viscosities of

water (µ1 = 10−3 Pa s) and hexadecane as the external fluid (µ2 ≃ 3 × 10−3 Pa s) and taking

w = 50 µm, we may calculate the forces acting on the drop. The Marangoni force due to a localized

forcing may be evaluated from Eq. (47) as Fm ≃ 10−6 N, showing that the characteristic forces

are on the order of a micro-Newton. In the same conditions, the drag force caused by a uniform

stream at 1 cm/s may be evaluated from the dimensional version of Eq. (56) given at leading order

by F∞ = 24πUµ2
R2

h
to also be on the order of a micro-Newton, indicating that the drop can be

stopped under these conditions.

The equilibria calculated above all hinge on assuming a circular drop in an infinite medium,

which allows analytical solutions to be found. In practical situations however, the actual shape of the

drop will be governed by the presence of walls and shear flows and these departures from circularity

and confinement will alter the relative contributions of the stress fields. In particular, Verneuil et al.5

measured the force acting on a drop simultaneously with the internal velocity field. The values of

the interface velocity were found to be insufficient to account for the magnitude of the net force, a

result that was attributed to the confinement within the microchannel, since the shear stress between

the elongated drops and the lateral walls was found to provide a source for the observed force

magnitudes.

This experiment motivates the development of numerical methods for solving Brinkman’s

equations in complex geometries. As the value of the capillary number is increased further, the drop
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shape will significantly depart from circularity and this will couple back to the flow fields. Further

refinement of the model will need to be made to account for these shape variations.

As discussed in Sec. VIII, further extensions of the model should take into account finite

capillary number effects when droplets are translating, including the significant curvature imbalance

between the advancing and receding menisci for non-wetting droplets and contact angle hysteresis

for the wetting case.

Finally, the transport of solutes can also be determined from the knowledge of flow fields.

In the case of active molecules such as surfactants, this transport will feed back on the surface

tension distribution. Future numerical solutions of these coupled problems will allow quantitative

predictions on microfluidic thermocapillary manipulations.

As a last word of caution, it should be mentioned that Lee et al.20 have recently observed

experimentally strong deviations from parabolic profiles in the vicinity of the interface using a

geometrical anchor holding the droplet in place.27 Such a situation, in which Brinkman equations

are likely to become invalid, was observed to happen when the Marangoni effect was pulling on the

interface in the opposite direction as that of the carrier flow, which fundamentally differs from the

presently considered case where the surface tension gradient pushes the fluid in the direction of the

external flow, as required by the zero force balance.
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APPENDIX A: MARANGONI FLOW

Starting with streamfunctions of the form given in Sec. III

ψ (2) =

∞
∑

n=1

cn

(

Kn(kr )

Kn(k)
−

1

rn

)

sin(nθ ), (A1)

ψ (1) =

∞
∑

n=1

bn

(

In(kr )

In(k)
− rn

)

sin(nθ ), (A2)

the tangential velocities are easily expressed

u
(2)
θ =

∞
∑

n=1

cn

(

−
K ′

n(kr )

Kn(k)
−

n

rn+1

)

sin(nθ ), (A3)

u
(2)
θ =

∞
∑

n=1

cn

(

k
Kn−1(kr )

Kn(k)
+

n

r

Kn(kr )

Kn(k)
−

n

rn+1

)

sin(nθ ), (A4)

u
(1)
θ =

∞
∑

n=1

bn

(

−
I ′
n(kr )

In(k)
+ nrn−1

)

sin(nθ ), (A5)

u
(1)
θ =

∞
∑

n=1

bn

(

−k
In+1(kr )

In(k)
−

n

r

In(kr )

Kn(k)
+ nrn−1

)

sin(nθ ). (A6)

The radial velocities are

u(2)
r =

∞
∑

n=1

cn

(

n

r

Kn(kr )

Kn(k)
−

n

rn+1

)

cos(nθ ), (A7)

u(1)
r =

∞
∑

n=1

bn

n

r

(

In(kr )

In(k)
− nrn−1

)

cos(nθ ), (A8)
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retrieving the pressure

µ2

[(

1

r

∂

∂r
r

∂

∂r
−

1

r2
+

1

r2

∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2

∂u(2)
r

∂θ

]

=
1

r

∂p(2)

∂θ
, (A9)

µ2

[(

1

r

∂

∂r
+

∂2

∂r2
−

1

r2
+

1

r2

∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2

∂u(2)
r

∂θ

]

=
1

r

∂p(2)

∂θ
, (A10)

requires

∂u
(2)
θ

∂r
=

∞
∑

n=1

cn

(

−k2 Kn(kr )

Kn(k)
−

k

r

Kn−1(kr )

Kn(k)
−

n(n + 1)

r2

Kn(kr )

Kn(k)
+

n(n + 1)

rn+2

)

sin(nθ ), (A11)

∂2u
(2)
θ

∂r2
=

∞
∑

n=1

cn

(

k3 Kn−1(kr )

Kn(k)
+

(n + 1)k2

r

Kn(kr )

Kn(k)
+

(n2 + 2)k

r2

Kn−1(kr )

Kn(k)
(A12)

+
n(n + 1)(n + 2)

r3

Kn(kr )

Kn(k)
−

n(n + 1)(n + 2)

rn+3

)

sin(nθ ),

∂u
(1)
θ

∂r
=

∞
∑

n=1

bn

(

−k2 In(kr )

In(k)
+

k

r

In+1(kr )

In(k)
−

n(n − 1)

r2

In(kr )

In(k)
+ n(n − 1)rn−2

)

sin(nθ ),

(A13)

∂2u
(1)
θ

∂r2
=

∞
∑

n=1

bn

(

−k3 In+1(kr )

In(k)
−

(n − 1)k2

r

In(kr )

In(k)
−

(n2 + 2)k

r2

In+1(kr )

In(k)
(A14)

−
n(n − 1)(n − 2)

r3

In(kr )

In(k)
+ n(n − 1)(n − 2)rn−3

)

sin(nθ ),

and the associated shear stresses are given by

∂u
(2)
θ /r

∂r
=

∞
∑

n=1

cn

(

1

r

K ′
n(kr )

Kn(k)
+

n

rn+2
−

K ′′
n (kr )

Kn(k)
+

n(n + 1)

rn+2

)

sin(nθ ), (A15)

∂u
(2)
θ /r

∂r
=

∞
∑

n=1

bn

(

1

r

I ′
n(kr )

In(k)
− nrn−2 −

I ′′
n (kr )

In(k)
+ n(n − 1)rn−2

)

sin(nθ ). (A16)

Imposing the continuity of tangential velocity as well as the Marangoni shear stress discontinuity

yields as boundary conditions

bn

(

−
I ′
n(k)

In(k)
+ n

)

= cn

(

−
K ′

n(k)

Kn(k)
− n

)

, (A17)

µ1bn

(

I ′
n(k)

In(k)
−

I ′′
n (k)

In(k)
+ n(n − 2)

)

− µ̄2cn

(

K ′
n(k)

Kn(k)
−

K ′′
n (k)

Kn(k)
+ n(n + 2)

)

= an. (A18)

Using the following Bessel relations:

In(kr )′ = k In+1(kr ) +
n

r
In(kr ), (A19)

Kn(kr )′ = −kKn−1(kr ) −
n

r
Kn(kr ), (A20)

In(kr )′′ = k2 In(kr ) −
k

r
In+1(kr ) +

n(n − 1)

r2
In(kr ), (A21)

Kn(kr )′′ = k2 Kn(kr ) +
k

r
Kn−1(kr ) +

n(n + 1)

r2
Kn(kr ), (A22)
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the 2 × 2 linear system becomes





−k In+1(k)/In(k) −kKn−1(k)/Kn(k)

µ̄1(
−k2 In (k)+2k In+1(k)

In (k)
) µ2(

k2 Kn (k)+2kKn−1(k)

Kn
(k))





(

bn

cn

)

=

(

0

an

)

, (A23)

or in synthetic form

Mn

(

bn

cn

)

=

(

0

an

)

. (A24)

The solution of this system is then given by

(

bn

cn

)

=

(

Kn−1(k)an

dn

− In+1(k)an

dn

)

(A25)

with

dn = −µ2 In+1(k)
(

k2 Kn(k) + 2kKn−1(k)
)

+ µ1 Kn−1(k)
(

−k2 In(k) + 2k In+1(k)
)

. (A26)

Now specifying to the case n = 1, all the necessary expressions required for the determination of

the forces are obtained

u
(2)
θ =

c1

K1(k)

(

kK0(kr ) +
K1(kr )

r
−

K1(k)

r2

)

sin(θ ), (A27)

∂u
(2)
θ

∂r
= −

c1

K1(k)

(

k2 K1(kr ) +
kK0(kr )

r
+

2K1(kr )

r2
−

2K1(k)

r3

)

sin(θ ), (A28)

∂2u
(2)
θ

∂r2
=

c1

K1(k)

(

k3 K0(kr ) +
2k2 K1(kr )

r
+

3kK0(kr )

r2
+

6K1(kr )

r3
− 6

K1(k

r4

)

sin(θ ). (A29)

Their evaluation on the boundary yields

u
(2)
θ

∣

∣

∣

r=1
=

c1kK0(k)

K1(k)
sin(θ ), (A30)

∂u
(2)
θ

∂r

∣

∣

∣

∣

∣

r=1

= −
c1(k2 K1(k) + kK0(k))

K1(k)
sin(θ ), (A31)

∂2u
(2)
θ

∂r2

∣

∣

∣

∣

∣

r=1

=
c1(k3 K0(k) + 2k2 K1(k)) + 3kK0(k)

K1(k)
sin(θ ). (A32)

APPENDIX B: STATIONARY DROP IN UNIFORM FLOW

As detailed in Sec. V, the solutions satisfying the far field boundary condition and the regularity

condition on the axis are

ψ (1) =

(

Ar + B
I1(kr )

I1(k)

)

sin(θ ), (B1)

ψ (2) =

(

D/r + r + C
K1(kr )

K1(k)

)

sin(θ ). (B2)

The boundary condition ψ (1) = ψ (2) = 0 yields

A + B = 0; D + 1 + C = 0. (B3)
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The flow therefore appears as the sum of a Marangoni flow, similar to that studied in Appendix A,

and a potential flow

ψ (1) = B

(

I1(kr )

I1(k)
− r

)

sin(θ ), (B4)

ψ (2) =

(

C

(

K1(kr )

K1(k)
−

1

r

)

+ ψ p

)

sin(θ ), (B5)

with

ψ p = r −
1

r
. (B6)

Since

u
p

θ =

(

1 +
1

r2

)

sin(θ ) and r
∂u

p

θ /r

∂r
=

(

−
1

r
−

3

r3

)

sin(θ ), (B7)

B and C are given by the two remaining boundary conditions, i.e., the continuity of tangential

velocity and tangential shear stress, by a linear system analogous to the one solved in Appendix A

with a different R.H.S.,

M1

(

B

C

)

=

(

−2

4µ2

)

. (B8)

The solution of this system is

B =

(

−2µ2(kK1(k) + 2K0(k)) + 4µ2 K0(k)

d1

)

I1(k), (B9)

C =

(

2µ1(−k I1(k) + 2I2(k)) − 4µ2 I2(k)

d1

)

K1(k). (B10)

APPENDIX C: TRANSLATING DROP

When a translating drop is considered as in Sec. VI, one gets similarly

M1

(

B ′

C ′

)

=

(

−2

3µ2 + µ1

)

. (C1)

The solution of this system is

B ′ =

(

−2µ2(kK1(k) + 2K0(k)) + (3µ2 + µ1)K0(k)

d1

)

I1(k), (C2)

C ′ =

(

2µ1(−k I1(k) + 2I2(k)) − (3µ2 + µ1)I2(k)

d1

)

K1(k). (C3)
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