
HAL Id: hal-01054552
https://hal.science/hal-01054552v1

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-grained and Accurate Source Code Differencing
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, Martin

Monperrus

To cite this version:
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, Martin Monperrus. Fine-
grained and Accurate Source Code Differencing. Proceedings of the International Conference on
Automated Software Engineering, 2014, Västeras, Sweden. pp.313-324, �10.1145/2642937.2642982�.
�hal-01054552�

https://hal.science/hal-01054552v1
https://hal.archives-ouvertes.fr

Fine-grained and Accurate Source Code Differencing

Jean-Rémy Falleri
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

falleri@labri.fr

Floréal Morandat
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

fmoranda@labri.fr

Xavier Blanc
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

xblanc@labri.fr

Matias Martinez
INRIA and University of Lille,

France
matias.martinez@inria.fr

Martin Monperrus
INRIA and University of Lille,

France
martin.monperrus@inria.fr

ABSTRACT

At the heart of software evolution is a sequence of edit actions,
called an edit script, made to a source code file. Since software
systems are stored version by version, the edit script has to be
computed from these versions, which is known as a complex
task. Existing approaches usually compute edit scripts at the
text granularity with only add line and delete line actions.
However, inferring syntactic changes from such an edit script
is hard. Since moving code is a frequent action performed
when editing code and it should also be taken into account. In
this paper, we tackle these issues by introducing an algorithm
computing edit scripts at the abstract syntax tree granularity
including move actions. Our objective is to compute edit
scripts that are short and close to the original developer
intent. Our algorithm is implemented in a freely-available
and extensible tool that has been intensively validated.

Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding Tools and Techniques

General Terms: Algorithms, Experimentation

Keywords: Software evolution, Program comprehension,
Tree differencing, AST.

1. INTRODUCTION
The first law of software evolution states that almost all

software systems have to evolve to be satisfactory [19]. Since
this law was formulated, many studies have been performed
to better understand how software systems evolve, and forms
what is called the software evolution research field [21].

There is global software evolution (e.g. evolution of require-
ments, of execution environments, ...) and local software
evolution (evolution of source code files). In this paper, we
focus on the latter, that is on understanding how source code
files evolve. In particular, we focus on edit scripts, that are
sequences of edit actions made to a source code file. Usually,
since software is stored in version control systems, edit scripts

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3013-8/14/09 ...$15.00.

http://dx.doi.org/10.1145/2642937.2642982.

are computed between two versions of a same file. The goal
of an edit script is to accurately reflect the actual change
that has been performed on a file.
Edit scripts are used by developers on a daily basis. For

example, the Unix diff tool takes as input two versions of
a source code file and performs the Myers algorithm [24]
at the text line granularity and returns an edit script indi-
cating which lines have been added or deleted. However,
the limitations of diff are twofold. First, it only computes
additions and deletions and does not consider other kinds of
edit actions such as update and move. Second, it works at a
granularity (the text line) that is both coarse grain and not
aligned with the source code structure: the abstract syntax
tree.
To overcome this main limitation, there are algorithms

that can work at the abstract syntax tree (AST) level [13].
The main advantage in using the AST granularity is that the
edit script directly refers to the structure of the code. For
instance, if an edit action is the addition of a new function

node, it clearly means that a new function has been added
in the code. Despite several key contributions (e.g. [13]), the
problem of computing AST edit scripts is still open, with
two main challenges: handling move actions, and scaling to
fine-grained ASTs with thousands of nodes1. This is where
this paper makes a contribution.

To design our novel algorithm, we take the viewpoint of the
developer: she is never interested in the theoretical shortest
edit script. She is rather interested in having an edit script
that reflects well the actual changes that happened. Thus
our objective is not to find the shortest sequence of actions
between two versions, but a sequence that reflects well the
developer intent. Consequently, we devise an algorithm based
on heuristics that contain pragmatic rules on what a good
edit script is, and as importantly, that is efficient and scales
to large ASTs. This algorithm has been implemented within
a freely-available and extensible tool2.

To sum up, our contributions are:

• a novel efficient AST differencing algorithm that takes
into account move actions, and its implementation;

1The best known algorithm with add, delete and update
actions has a O(n3) time complexity with n being the number
of nodes of the AST [27]. Computing the minimum edit
script that can include move node actions is known to be
NP-hard [4]
2github.com/jrfaller/gumtree

• an automated evaluation of the implementation perfor-
mances on real data;

• a manual evaluation of the results of the algorithm
through the manual assessment of 144 differencing sce-
narios;

• a large-scale automated evaluation of 12 792 differencing
scenarios showing that the results of our algorithm are
more accurate than the related work, even on fine-
grained ASTs.

The rest of this paper is structured as follows: Section 2
presents what is AST differencing. Section 3 describes our
new AST differencing algorithm. Section 4 presents our tool
that implement this new algorithm and its performances.
Section 5 presents an empirical evaluation of our tool. Sec-
tion 6 presents the related work. Finally, Section 7 concludes
and presents the future work.

2. AST DIFFERENCING
Prior to presenting AST differencing, we briefly introduce

the main concepts defining the AST structure. We consider
that an AST is a labeled ordered rooted tree where nodes
may have a string value. Labels of nodes correspond to the
name of their production rule in the grammar, i.e., they
encode the structure. Values of the nodes correspond to the
actual tokens in the code.
More formally, let T be an AST. T is a set of nodes. A

tree T has one node that is root (denoted by root(T)). Each
node t ∈ T has a parent p ∈ T ∪ ∅. The only node that has
∅ for parent is the root. The parent of a node is denoted
by parent(t). Each node t ∈ T has a sequence of children
(children(t)). Each node has a label in a alphabet l ∈ Σ
(label(t) = l). Each node has a string value v ∈ String that
is possibly empty (value(t) = v ∨ ǫ).

As an example, we consider a simple Java source code and
its corresponding AST (see the bottom-left of Figure 1). The
AST of this Java source code contains 19 nodes that corre-
spond to the structure of the Java programming language.
Each node of the AST has therefore a label, which maps to
structural elements of the source code (such as MethodDec-
laration or NumberLiteral), and a value that corresponds
to the actual tokens in the code (such as NumberLiteral

associated to 1). Some values do not encode information and
are therefore discarded, for instance MethodDeclaration has
no interesting token associated to it and thus no value.

ASTs can have different granularities, a node can encode a
whole instruction or finer grain expressions. We believe than
fine-grained ASTs are best for the developers. For instance
the return "Foo!"; statement, can be encoded with a single
node of type Statement and value return "Foo!", or with
two nodes like in our example (see node b). If this statement
is changed to return "Foo!" + i;, only the fine-grained
representation enables to see that the InfixExpression:+

and SimpleName:i nodes are added.
AST differencing is based upon the concept of AST edit

actions. It aims at computing a sequence of edit actions that
transform an AST into another. This sequence is called an
edit script. Regarding our definition of an AST, we consider
the following edit actions:

• updateV alue(t, vn) replaces the old value of t by the
new value vn

• add(t, tp, i, l, v) adds a new node t in the AST. If tp is
not null and i is specified then t is the ith child of tp.
Otherwise t is the new root node and has the previous
root node as its only child. Finally, l is the label of t
and v is the value of t.

• delete(t) removes a leaf node of the AST.

• move(t, tp, i) moves a node t and make it the ith child
of tp. Note that all children of t are moved as well,
therefore this actions moves a whole subtree.

As there are many possible edit scripts that perform the
same transformation, the edit script quality depends on its
length: the shorter the transformation, the better the quality.
Note that finding the shortest transformation is NP-hard
when the move action is taken into consideration.

We then consider in this paper that the AST differencing
problem inputs two ASTs and aims at identifying a short
edit script σ of edit actions (including move) that transforms
a first AST (named t1) into a second one (name t2). The
existing algorithms that perform such an AST differencing
use heuristics to return a short edit script σ. Moreover,
they usually follow a two steps process. First, they establish
mappings (pairs of nodes) between the similar nodes of the
two ASTs. There are two constraints for these mappings: a
given node can only belong to one mapping, and mappings
involve two nodes with identical labels. Second, based on
these mappings, they deduce the edit script that must be
performed on the first AST to obtain the second one. The
first step is the most crucial one because quadratic optimal
algorithms exist for the second step [6, 15]. In the next
section, we will present a new algorithm to compute mappings
between two ASTs.

3. THE GUMTREE ALGORITHM
As explained in the previous section, AST differencing

algorithms work in two steps: establishing mappings then
deducing an edit script. Since an optimal and quadratic
algorithm has already been developed for the second step [6],
we only explain in this section how we look for the mappings
between two ASTs. The output of this algorithm can be then
used by the algorithm of Chawathe et al. [6] to compute the
actual edit script. Our algorithm to compute the mappings
between two ASTs is composed of two successive phases:

1. A greedy top-down algorithm to find isomorphic sub-
trees of decreasing height. Mappings are established
between the nodes of these isomorphic subtrees. They
are called anchors mappings.

2. A bottom-up algorithm where two nodes match (called
a container mapping) if their descendants (children of
the nodes, and their children, and so on) include a large
number of common anchors. When two nodes matches,
we finally apply an optimal algorithm to search for
additional mappings (called recovery mappings) among
their descendants.

This algorithm is inspired by the way developers manually
look at changes between to files. First they search for the
biggest unmodified pieces of code. Then they deduce which
container of code can be mapped together. Finally they look
at precise differences in what is leftover in each container.
To better illustrate our algorithm, we introduce the example
shown in Figure 1.

CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier:private SimpleType: String SimpleName: foo SingleVariableDeclaration Block

SimpleName: String PrimitiveType: int SimpleName: i IfStatement

InfixExpression: == ReturnStatement

SimpleName: i NumberLiteral: 0 StringLiteral:Bar InfixExpression: == ReturnStatement

SimpleName: i PrefixExpression: -

NumberLiteral: 1

StringLiteral:Foo!

CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier: public SimpleType: String SimpleName: foo SingleVariableDeclaration Block

SimpleName: String PrimitiveType: int SimpleName: i IfStatement

InfixExpression: == ReturnStatement

SimpleName: i NumberLiteral: 0 StringLiteral:Foo!

IfStatement

Test.java: source

Test.java: destination

public class Test {
 public String foo(int i) {
 if (i == 0) return "Foo!";
 }
}

public class Test {
 private String foo(int i) {
 if (i == 0) return "Bar";
 else if (i == -1) return "Foo!";
 }
}

a
b

c

Figure 1: Two sample Java files with their corresponding ASTs and mappings. Nodes with a label only are
denoted: Label, nodes with a label and a value are denoted: Label: value. Mappings from the top-down
phase are depicted with long-dotted lines (descendants of these nodes are also mapped but it is omitted to
enhance readability). Mappings from the bottom-up phase are depicted using short-dotted lines (container
mappings) or alternate-dotted lines (recovery mappings). Unmatched nodes are greyed.

3.1 Top-down Phase
The first step of GumTree is a top-down greedy search of

the greatest isomorphic subtrees between T1 and T2. Be-
fore explaining how we proceed, we introduce the notion of
height in a tree. The height of a node t ∈ T is defined as:
1) for a leaf node t, height(t) = 1 and 2) for an internal
node t, height(t) = max({height(c)|c ∈ children(t)}) + 1.
The algorithm uses an auxiliary data structure called height-
indexed priority list. This list contains a sequence of nodes,
ordered by decreasing height. The following functions are
associated with this data-structure. push(t, l) inserts the
node t in the list l. peekMax(l) returns the greatest height
of the list. pop(l) returns and removes from l the set of all
nodes of l having a height equals to peekMax(l). open(t, l)
inserts all the children of t into l. We also define the
dice function that measure the ratio of common descen-
dants between two nodes given a set of mappings M as

dice(t1, t2,M) = 2×|{t1∈s(t1)|(t1,t2)∈M}
|s(t1)|+|s(t2)|

, with s(ti) being the

set of the descendants of node ti. The dice coefficient ranges
in the [0, 1] real interval, a value of 1 indicates that the set
of descendants of t1 is the same as the set of descendants
of t2. The algorithm of the top-down phase of GumTree is
shown in Algorithm 1.

In this algorithm, we map the common subtrees of T1 and
T2 with the greatest height possible. The principle is to start
with the roots (since they have the greatest heights) and to
check if they are isomorphic. If they are not, their children
are then tested. A node is matched as soon as an isomorphic
node is found in the other tree. When a given node can be

matched to several nodes, all the potential mappings are
kept in a dedicated candidate mappings list. This list is
processed after all nodes that are uniquely matched have
been processed; those nodes being directly placed into the
mappings set. The algorithm considers only nodes with a
height greater than minHeight. To process the candidate
mappings, we use the dice function on the parents of each
candidate mapping. The values of this function are used
to sort the candidate mappings list, mappings with greater
values being first. Then, until the candidate mappings list is
empty, we remove the first element, add it in the mappings
set, and we remove from the candidate mappings list the
mappings involving a node of this mapping. On the sample
trees of Figure 1 with a minHeight = 2, Algorithm 1 finds
the mappings shown with dashed lines.

3.2 Bottom-up Phase
Algorithm 2 shows the bottom-up phase, where the map-

pings produced during the top-down phase are taken as input.
First we look for container mappings, that are established
when two nodes have a significant number of matching de-
scendants. For each container mapping found, we look for
recovery mappings, that are searched among the still un-
matched descendants of the mapping’s nodes. To find the
container mappings, the nodes of T1 are processed in post-
order. For each unmatched non-leaf node of T1, we extract
a list of candidate nodes from T2. A node c ∈ T2 is a can-
didate for t1 if label(t1) = label(c), c is unmatched, and t1
and c have some matching descendants. We then select the
candidate t2 ∈ T2 with the greatest dice(t1, t2,M) value. If

Algorithm 1: The algorithm of the top-down phase.

Data: A source tree T1 and a destination tree T2, a minimum
height minHeight, two empty height-indexed priority
lists L1 and L2, an empty list A of candidate
mappings, and an empty set of mappingsM

Result: The set of mappingsM
1 push(root(T1), L1);
2 push(root(T2), L2);
3 while min(peekMax(L1), peekMax(L2)) > minHeight do
4 if peekMax(L1) 6= peekMax(L2) then

5 if peekMax(L1) > peekMax(L2) then

6 foreach t ∈ pop(L1) do open(t, L1);
7 else

8 foreach t ∈ pop(L2) do open(t, L2);

9 else

10 H1 ← pop(L1);
11 H2 ← pop(L2);
12 foreach (t1, t2) ∈ H1 ×H2 do

13 if isomorphic(t1, t2) then

14 if ∃tx ∈ T2 | isomorphic(t1, tx) ∧ tx 6= t2
or ∃tx ∈ T1 | isomorphic(tx, t2) ∧ tx 6= t1
then

15 add(A, (t1, t2));
16 else

17 add all pairs of isomorphic nodes of s(t1)
and s(t2) toM;

18 foreach t1 ∈ H1 | (t1, tx) 6∈ A ∪M do open(t1, L1);
19 foreach t2 ∈ H2 | (tx, t2) 6∈ A ∪M do open(t2, L2);

20 sort (t1, t2) ∈ A using dice(parent(t1), parent(t2),M);
21 while size(A) > 0 do

22 (t1, t2)← remove(A, 0);
23 add all pairs of isomorphic nodes of s(t1) and s(t2) toM;
24 A ← A \ {(t1, tx) ∈ A};
25 A ← A \ {(tx, t2) ∈ A};

dice(t1, t2,M) > minDice, t1 and t2 are matched together.
To search for additional mappings between the descendants
of t1 and t2, we first remove their matched descendants, and
if both resulting subtrees have a size smaller than maxSize,
we apply an algorithm denoted opt that finds a shortest
edit script without move actions. In our implementation we
use the RTED algorithm [27]. The mappings induced from
this edit script are added in M if they involve nodes with
identical labels.
On the sample trees of Figure 1, with minDice = 0.2,

Algorithm 2 finds the container mappings shown using short-
dotted lines. From these container mappings, withmaxSize =
100, several recovery mappings are found, shown with alternate-
dotted lines. Finally, the edit script generated from these
mappings is as follows (nodes a, b and c are shown in Figure 1,
nodes ti are new nodes):

add(t1, a, 1, ReturnStatement, ǫ)

add(t2, t1, 0, StringLitteral, Bar)

add(t3, a, 2, IfStatement, ǫ)

add(t4, t3, 0, InfixExpression,==)

add(t5, t4, 0, SimpleName, i)

add(t6, t4, 1, PrefixExpression,−)

add(t7, t6, 0, NumberLiterral, 1)

move(b, t3, 1)

updateV alue(c, private)

We recommend the following values for the three thresholds
of our algorithm. We recommend minHeight = 2 to avoid
single identifiers to match everywhere. maxSize is used in
the recovery part of Algorithm 2 that can trigger a cubic
algorithm. To avoid long computation times we recommend
to use maxSize = 100. Finally under 50% of common nodes,
two container nodes are probably different. Therefore we
recommend using minDice = 0.5

3.3 Complexity Analysis
Our algorithm has a worst-case complexity of O(n2) where

n = max(|T1|, |T2|). Indeed, Algorithm 1 performs in the
worst-case a Cartesian product of nodes with identical heights.
Since the isomorphism test we use is in O(1) thanks to
hashcodes proposed in [7], the whole algorithm is O(n2).
Moreover with real ASTs this worst-case is very unlikely
to happen. Algorithm 2 also performs a Cartesian product
of unmatched nodes in the worst-case. This operations is
also O(n2) because all sub-operations are bounded, even the
cubic algorithm opt which is only applied on trees smaller
than a fixed size. Finally the algorithm that computes the
edit script from the mappings, described in [6], also has a
O(n2) worst-case complexity.

4. TOOL
The algorithm described in the previous section has been

implemented in a freely-available and extensible tool. AST
differencing requires parsers (that produce the AST repre-
sentation) to support a given programming language. This is
clearly a constraint, since new languages do not work out of
the box. Another interesting challenge faced by such a tool
is that it is used by different actors with different expecta-
tions, such as a developer that wants a neat graphical display
of the edit script to quickly understand it, or a researcher
that wants the results in a structured format that can be
processed automatically. In this section we present our AST
differencing tool, that allows to integrate new programming
languages, differencing algorithms and ways of providing
results.

4.1 Architecture
Our tool uses a pipe and filter architecture shown in Fig-

ure 2. Two input files are transformed into two ASTs by a
parser. Since parser is an abstract module, several concrete

Algorithm 2: The algorithm of the bottom-up phase.

Data: Two trees T1 and T2, a setM of mappings (resulting
from the top-down phase), a threshold minDice and a
maximum tree size maxSize

Result: The set of mappingsM.
1 foreach t1 ∈ T1 | t1 is not matched ∧ t1 has matched

children, in post-order do

2 t2 ← candidate(t1,M);
3 if t2 6= null and dice(t1, t2,M) > minDice then

4 M←M∪ (t1, t2);
5 if max(|s(t1)|, |s(t2)|) < maxSize then

6 R ← opt(t1, t2);
7 foreach (ta, tb) ∈ R do

8 if ta, tb not already mapped and

label(ta) = label(tb) then

9 M←M∪ (ta, tb);

output

CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier: public SimpleType: String SimpleName: foo

SimpleName: String

CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier: public SimpleType: String SimpleName: foo

SimpleName: String

file1.java

file2.java
parser mappings

CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier: public SimpleType: String SimpleName: foo

SimpleName: String
CompilationUnit

TypeDeclaration

Modifier: public SimpleName: Test MethodDeclaration

Modifier: public SimpleType: String SimpleName: foo

SimpleName: String

actions
Insert
Move
Delete
Update
Insert
Delete

...

Figure 2: Our pipe and filter architecture. Abstract
modules are greyed.

implementations can be furnished (such as Java or C). These
two ASTs are then given to an abstract mappings module
that computes as output a set of mappings. Since this module
is also abstract, several concrete algorithms (such as GumTree

or ChangeDistiller [13]) can be provided. Finally this set of
mappings is given to an actions module that computes the
actual edit script. The input files, ASTs, mappings, and edit
script are finally given to an abstract output module. Since
this module is abstract, several outputs can be provided (e.g.,
XML, JSON, ...). Note that all the data structures are given
to the output module; it can therefore operate on any of
them (for instance it can produce the XML of an AST or of
an edit script).

Using this architecture, we have been able to integrate the
Java (using the Eclipse JDT parser), JavaScript (using the
Mozilla Rhino parser), R (using the FastR parser [17]) and
C (using the Coccinelle parser [26]) programming languages.
We have also integrated the GumTree, ChangeDistiller [13],
XYDiff [8] and RTED [27] algorithms. Finally we can produce
the following outputs: a graphviz representation of an AST,
a XML representation of an AST, a web-based view of an
edit script (shown in Figure 3), and a XML representation
of an edit script.

4.2 Runtime Performances
In this section, we want to assess the runtime performances

of our tool on real data. As explained in the previous sec-
tion, our tool applies the differencing algorithm on ASTs
parsed from two versions of a source code file. We have

Figure 3: The web-based diff view of our tool.

integrated several parsers into our tools. We use the Java

and JavaScript parsers in this section.
To gather representative data to assess our tool, we se-

lected arbitrarily two mature, popular and medium-to-large
sized projects. For the Java language, we use Jenkins (a
continuous integration server) and for JavaScript we use
JQuery (a DOM manipulation library). We arbitrarily se-
lected a complete release of each project, and extracted each
file modification performed in the commits corresponding to
this release. In Jenkins, we use the release 1.509.4 → 1.532.2
where we extracted 1 144 modifications. In JQuery, we use
the revision 1.8.0 → 1.9.0 where we extracted 650 modifica-
tions. Each modification consists in a pair of files (previous
version and next version). They have been extracted thanks
to the Harmony platform [12].

In this performance study, we want to assess two important
aspects: running time and memory consumption. We use
a MacBook Pro retina with a 2.7GHz Intel Core i7 with 16
Gb of RAM. To have reference measures, we use three other
tools in addition to our tool. The complete list of tools we
use is:

• A classical text diff tool, that computes an edit script
with add and delete actions on text lines. As explained
in Section 6, this tool is very fast and therefore repre-
sents the lower bound for a code differencing algorithm.
In our experiment, we use the Google implementation3.

• The parser included in GumTree which only parse the
two files involved in the modification without apply-
ing AST differencing algorithms. As parsing the files
is mandatory to perform AST differencing, it repre-
sents the lower bound for an AST differencing algo-
rithm. In our experiment, we use Eclipse JDT parser
to parse Java files, and Mozilla Rhino parser to parse
JavaScript files.

• The GumTree algorithm (including parsing), with the
following thresholds: minHeight = 2, minDice = 0.5
and maxHeight = 100.

• The RTED algorithm (including parsing), that computes
an edit script on an AST with add, update and delete
actions. As explained in Section 6, RTED has a cubic
worst-case complexity (n3). Therefore it represents an
upper bound for AST differencing. In our experiment
we use the implementation provided by Pawlik et al.4

in our framework.

We only compare GumTree to text diff and RTED because
we have re-implemented the other algorithms included in our
tool by following the description of the articles, but with
no particular care for optimization. Therefore, reporting
memory consumption or running times for these algorithms
would not be fair.

For the memory consumption, we ensure that the tools
can run using 4Gb of RAM, a common amount of memory
in modern computers. To that extent, we use a Java virtual
machine bound to 4Gb of memory. We run each tool on each
modification, and count the number of modifications leading
to an out of memory error. In this experiment the only tool
that underwent out of memory errors is RTED with 82 errors

3code.google.com/p/google-diff-match-patch
4www.inf.unibz.it/dis/projects/tree-edit-distance

(around 5% of the modifications). Even though this number
is not so high, it still shows that the complexity of RTED

lead to a very expensive memory consumption in some cases.
For the running time we perform two experiments. In the

first experiment, we investigate if the tools are capable of
computing an edit script of a modification in less than 10
seconds. After 10 seconds, we believe that the tools will
not be used interactively by developers. To that extent, we
run each tool on each modification and count the number
of cases where the execution lasted more than 10 seconds.
In this experiment, only RTED underwent such cases, 206
times (around 12% of the cases with no out of memory error).
Therefore, on our data, RTED is not capable of computing
an edit script for around 17% of the cases, which is a large
number of cases. It clearly shows that the complexity of this
algorithm is not suitable to real data.
In the second experiment, we compare the running times

of the tools. To compute the running times, we compute
the edit scripts ten times for each modification, and we
retain the median of these values. To avoid noise in the
measures, we ensure that the Java virtual machine is hot
by running each algorithm a hundred times on a random
modification, i.e., that no more dynamic loading is involved
and that the JIT compiler has compiled and installed the
code corresponding to hot-spots. We also pre-load all files
involved in the modifications to avoid IO latencies. To be
able to compare the tools on the same dataset, we discarded
all the modifications that led to a out of memory error or an
execution timeout (execution lasting more than 10 seconds)
for at least one tool. To present the values, we use the
running time of text diff as a reference value, since it is the
faster existing tool. Therefore for each modification, we
divide the running time of Parsing, GumTree and RTED tools
by the running time of the text diff tool. This ratio represent
the number of times that the tool is slower than performing
a text differencing. We then present the boxplots of the
distributions of these resulting ratios.

Figure 4 shows the results of the second experiment. The
first interesting conclusion is that just parsing the files is
significantly longer than performing a text differencing: the
median of parsing time ratios is 10. Additionally, we see
that computing an edit script with GumTree is only slightly
slower than just parsing the files (median at 18 for Jenkins
and 30 for JQuery). The difference between Jenkins and
JQuery medians indicates that JavaScript ASTs are likely
to contain more nodes than Java ASTs. Finally we see
that RTED is significantly slower than just parsing the files
(median at 298 for Jenkins and 2 654 for JQuery). The
difference between the two medians is also observed for the
RTED tool.
As a conclusion, we clearly see that text diff tool is by

far the fastest. However, performing AST differencing with
GumTree induces only a small overhead over parsing the files.
It means that our algorithm is fast and can therefore be
applied on real data. The mean running times of GumTree

are 20 milliseconds on Jenkins and 74 milliseconds on JQuery.
Our experiments also confirm that using RTED on real data
induces a huge overhead compared to text diff.

5. EVALUATION
We now present the empirical evaluation of GumTree. Our

goal is to answer the following research questions: RQ1) Does
GumTree produce tree differences that are correct and better

●●

●

●

●

●
●

●●
●●
●

●

●●
●

●

●

●

●

●●
●●
●●●●●

●
●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

●
●●●●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

●
●●

●

●
●●●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

●

●

●

●

●

●

●●●
●●
●

●●

●

●

●

●

●
●●

●

●
●●●

●

●

●●●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

●
●

●●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0 ●●

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Parsing GumTree RTED

Figure 4: Distribution of the running time ratios of
the tools. For each tool, the left boxplot shows the
ratios for Jenkins, and right one for JQuery. The
running time ratio is the running time of the tool
divided by the running time of text diff. It represents
the number of times it is slower than text diff.

than Unix diff (5.1)? RQ2) Does GumTree maximize the num-
ber of mappings and minimize the edit script size compared
to the existing algorithms (5.2)? RQ3) Does GumTree detect
move operations better than ChangeDistiller (5.3)? We discuss
the threats to the validity of our results in 5.4.

5.1 Manual Evaluation
First, we consider the viewpoint of the developer. For

her, what matters is that the computed edit script is good
to understand the essence of a commit. In this perspective,
we have developed an experiment that has two main goals:
1. to evaluate the correctness of GumTree, and 2. to compare
GumTree against text line-based differencing.

5.1.1 Overview

The experiment consists in the manual evaluation of file
differences, i.e. on the manual assessment of a file pair
difference (the difference between the version before and the
version after the commit). These file differences are computed
using two techniques; GumTree and a state of the art text
differencing tool5. We will refer to the text differencing
tool as diff, and to GumTree as GT. For each file pair of a
dataset, the outputs from both approaches are given to a
human evaluator. He/she compares both outputs and then
answers to the following questions: Is the GumTree output
correct? and Which technique yield the most understandable
differencing information: GumTree or diff?.

For example, the revision 1.15 of the class ARecord of the
DNSJava project6 introduces a new parameter (int index)
in the method called rrToWire. The diff output is a source
code hunk pair: the left hunk is composed of the line cor-

5mergely.com
6sf.net/projects/dnsjava

responding of the previous method signature—the entire
line—from the revision 1.14. The right hunk corresponds
to the updated method signature from revision 1.15. The
GumTree output states that there are one new parameter type
and one new parameter name. In this case, the evaluator may
decide that GumTree more precisely localizes and describes
the change introduced by the revision 1.15 compared to Unix
diff.

5.1.2 Experiment Setup

A commit is composed of a set of modified files. After a
commit, each modified file is said to have a new Revision.
In our experiment, each file pair corresponds to consecutive
file revisions. We used stratified sampling to randomly select
revisions from the software history of 16 open source projects
(from [23]). We only consider revisions with few source
code changes (those revisions for which the ChangeDistiller

differencing algorithm states that there is only one single
source code change). We pick 10 items (file pairs) per project
(if 10 simple revisions are found otherwise less). In total, the
dataset contains 144 transactions.
Then, we create an evaluation item for each pair of files

of the evaluation dataset. An evaluation item contains: the
GumTree output between the revision pair of the transac-
tion, the diff output between the same pair, and the commit
message associated with the transaction.
The diff output shows two files (i.e. called left and right)

and highlights the changes made per line. In particular,
it highlights the lines deleted from the left file, the lines
added from right file. Note that we have configured diff to
discard whitespaces. The GumTree output (shown in Figure 1)
highlights the added, deleted, updated and moved AST nodes.
The commit message describes the intention of the change, it
sometimes help to meaningfully assess the relevance of both
differencing algorithms.
The 144 evaluation items were independently evaluated

by three authors of this paper called the raters. All 3 raters
evaluated all the edit scripts of 144 file pairs at the AST
and line level (i.e. 288 outputs). This makes a total of
3× 2× 144 = 864 ratings. The rater has to answer to the
following questions:

• Question #1: Does GumTree do a good job?
The possible answers are:

1. GumTree does a good job: it helps to understand
the change.

2. GumTree does a bad job.

3. Neutral.

• Question #2: Is GumTree better than diff?
The possible answers are:

1. GumTree is better.

2. diff is better.

3. GumTree is equivalent to diff.

Optionally, the rater could write a comment to explain
his decision. Those comments are used to identify buggy or
corner cases where GumTree could be improved.

Full (3/3) Majority (2/3)

#1
GT does good job 122 137
GT does not good job 3 3
Neutral 0 1

#2
GT better 28 66
Diff better 3 12
Equivalent 45 61

Table 1: Agreements of the manual inspection of
the 144 transactions by three raters for Question #1
(top) and Question #2 (bottom).

5.1.3 Experiment Result

Table 1 (top) presents the number of agreements for the
first question. Let us consider question #1, the three raters
fully agreed for 122/144 (84.7%) file pairs to say that GumTree

does a good job in explaining the change. If we consider
the majority (at least 2/3 agree), it has been assessed that
GumTree has a good output for 137/144 file pairs (95.1%) .

Table 1 (bottom) presents the number of agreements for the
second question. In 28/144 (19,4%) evaluation items, there
was a full agreement to say that GumTree better highlights the
changes between two files. In 45/144 (31%) items the raters
fully agreed the GumTree’s output is as good as the one of diff

to explain the change. This shows that intuitively, GumTree

is a tool that has added value compared to diff. Beyond
those raw numbers let us now measure the statistical level
of agreement.

5.1.4 Statistics

Let us assume that pi measures the degree of agreement for
a single item (in our case in { 1

3
, 2
3
, 3
3
}. The overall agreement

P̄ [9] is the average over pi where in i ∈ {1, . . . , 144}. The
coefficient κ (Kappa) [9, 16] measures the confidence in the
agreement level by removing the chance factor7

1. For Question #1:
We have P̄ = 0.905. Using the scale introduced by [18],
this value means there is an almost perfect agreement.
The κ degree of agreement in our study is 0.321, a
value distant from the critical value, that is 0. The null
hypothesis is rejected, the observed agreement was not
due to chance.

2. For Question #2:
We have P̄ = 0.674. Using the mentioned scale, this
value means there is a substantial overall agreement
between the rates. The κ degree of agreement in our
study is 0.426, far higher that the critical value. The
null hypothesis is rejected, the observed agreement was
not due to chance.

5.1.5 Conclusion

The manual rating of 144 revisions by 3 independent raters
shows that 1) GumTree can be used to compare two Java files
in order to understand the essence of the change and 2) its
output is sometimes more understandable than the one from
diff. There is a statistically significant level of agreement
between raters for both results.

7Some degree of agreement is expected when the ratings are
purely random [9, 16].

5.2 Automatic Evaluation
We are now confident that GumTree is good from the view-

point of a human developer. We now assess whether GumTree

maximizes the number of mappings and minimizes the edit
script. Compared to the previous manual evaluation, this
evaluation is fully automatic. Consequently, it can be per-
formed on a large scale.

5.2.1 Goal and measures

The goal of this experiment is to measure the performance
of tree differencing algorithms with respect to:

1. the number of mappings;

2. the edit script size;

We compare GumTree against the two major differencing
algorithms (as of today): ChangeDistiller [13] and RTED [27].
Other algorithms exist but they have less impact compared
to those two (in terms of publication visibility or citations).
For a description of ChangeDistiller and RTED, please refer to
Section 6.
As explained in Section 6, ChangeDistiller uses a simplified

ASTs where the leaf nodes are code statements. Therefore, we
compute the metrics for both simplified ASTs (as described
in [13]) and raw ASTs generated by the Eclipse JDT parser.
In the remainder of the section these granularities are called
respectively CDG (ChangeDistiller granularity) and JDTG
(Eclipse JDT granularity). Our motivation is to compare
GumTree and ChangeDistiller algorithms, even on CDG ASTs:
it would have been unfair to claim anything on ASTs that
would be different from those for which ChangeDistiller is
designed and optimized. Since the goal of GumTree is to work
on fine-grained ASTs, we evaluate the performance metrics
on this granularity as well. Finally for the sake of comparison,
we also evaluate RTED on fine grain AST, since that is the
granularity GumTree is designed for.

5.2.2 Procedure

The experiment consists in comparing source code file
pairs using several AST differencing algorithms. We take
a sample of 1 000 revision pairs from 16 Java open source
projects of the CVS-Vintage dataset [23]. For revision pairs,
we create 4 tree representations (before and after the commit
and for both kinds of ASTs we consider). Then, we run
the competing tree differencing algorithms for each pair of
ASTs. Finally, we measure the execution time, we count
the mapped nodes, and we save the edit scripts. For sake
of performance, we discard the revision pairs of large source
code file, i.e. whose tree representations have more than
3 000 nodes (mainly because the ChangeDistiller algorithm is
too slow for large ASTs). In total, this results in 12 792
evaluation cases.
Replication information: For GumTree, we use the fol-

lowing thresholds: minHeight = 2, minDice = 0.5 and
maxSize = 100. For ChangeDistiller, we use a label similarity
threshold of 0.5. For unmatched nodes, we use two similarity
thresholds: 0.6 for inner nodes with more than 4 children
and 0.4 for the rest.

5.2.3 Experiment Result

The results are presented in Table 2. The upper part of the
table presents the performance comparison of ChangeDistiller

and GumTree at CDG granularity; while the middle part

C
D
G

GT better CD better Equiv.

Mappings 4007 (31.32%) 542 (4.24%) 8243 (64.44%)
ES size 4938 (38.6%) 412 (3.22%) 7442 (58.18%)

J
D
T
G

GT better CD better Equiv.

Mappings 8378 (65.49%) 203 (1.59%) 4211 (32.92%)
ES size 10358 (80.97%) 175 (1.37%) 2259 (17.66%)

GT better RTED better Equiv.

Mappings 2806 (21.94%) 1234 (9.65%) 8752 (68.42%)
ES size 3020 (23.61%) 2193 (17.14%) 7579 (59.25%)

Table 2: Number of cases where GumTree is better
(resp. worse and equivalent) than ChangeDistiller (top,
middle) and RTED (bottom) for 2 metrics, number
of mappings and edit script size (ES size), at the
CDG granularity (top) and JDTG granularity (mid-
dle, bottom).

shows them at the JDTG granularity (finer grain, more AST
nodes). Finally the lower part compares GumTree and RTED

differencing algorithms at the JDTG granularity. Each cell of
these tables presents the number of cases where an approach
is better than the other for a given AST granularity and
measure. We now analyze the experimental results by metric.

Mappings.
As explained in Section 2, finding the mappings is the most

important step in an AST differencing algorithm. Finding
more mappings increases the odds of deducing a short edit
script. Considering the CDG granularity, in 4 007 (31.32%)
cases, GumTree matches more nodes than ChangeDistiller. Then,
in 8 243 cases (64.44%) both approaches find the same num-
ber of mappings. At the JDTG granularity (finer grain),
in 8 378 (65.49%) cases, GumTree matches more nodes than
ChangeDistiller. In 4 211 cases (32.92 %) the number of map-
pings is the same. At both granularities, GumTree matches
more nodes than ChangeDistiller.
When comparing GT against RTED, in most of the cases

8 752, (68.42%) the same number of mappings is found. How-
ever, GumTree finds more mappings, which is twice many
better than the opposite 2 806 (21.94%) vs 1 234 (9.65%).

Edit Script Size.
Once the mappings are found, an edit script is computed.

The length of the edit script is a proxy to the cognitive load
for a developer to understand the essence of a commit. Hence,
the goal is to minimize the size of edit scripts.

Considering the CDG granularity, the size of edit scripts of
GT and ChangeDistiller are the same in 7 442 cases (58.18%).
In 4 938 (38.6%) cases, the edit script from ChangeDistiller is
longer than the one of GumTree (i.e. GumTree is generally
better). For the JDTG granularity, it is the same, ChangeDis-

tiller often produces bigger scripts: in 10 358 (80.97%) cases
(versus 175 cases (1.37%) where it performs better than
GumTree).
The comparison between GT and RTED shows in most

of the cases (59.25%) the edit script size is the same, and
in 23.6% of the cases GT produces shorter edit script than
RTED.

According to our dataset, GumTree systematically produces
shorter edit scripts, which is better to understand the mean-
ing of a commit.

5.3 Analysis of Move Actions
Both GumTree and ChangeDistiller are able detect move node

actions. This section presents an analysis of move actions
found by the GumTree and ChangeDistiller matching algorithms.
The goal of this experiment is to check how these algorithms
detect move actions.
The evaluation metric can not be an absolute number of

move detected operations. The reason is twofold. On the one
hand, one wants to maximize the number of moves (instead
of having additions and deletions). On the other hand, one
wants to minimize the number of spurious detected move
actions that have nothing to do with the conceptual change.
Consequently, we need a more subtle evaluation scenario.

We propose to compare the number of moves by stratify-
ing over the results of both algorithms. For instance, if
ChangeDistiller is able to completely explain a commit with
only move actions, GumTree should also find an edit script
that is uniquely composed of moves. In this case, one can
reasonable think that the edit script with the smallest num-
ber of moves is the best. So we compare the results for a
number of different sub cases.

5.3.1 Procedure

We analyze move actions from the differencing of Java

file pairs of the dataset introduced in Section 5.2. We focus
on move actions from edit scripts produced by ChangeDistiller

(CD) and GumTree (GT). In this experiment we do not con-
sider RTED because this algorithm does not identify move
actions. We select those Java file pairs for which the edit
script from ChangeDistiller or GumTree is only composed of
move actions. From the initial dataset of 12 792 file pairs,
this results in 130 elements.

Then, to compare the edit scripts, we classify each pair of
edit script (ChangeDistiller versus GumTree) in the following
categories.

1. ChangeDistiller and GumTree produce only moves. Both
have the same number of actions, i.e. they are equiva-
lent (top-left).

2. ChangeDistiller and GumTree produce only moves, but in
different numbers (top-left).

(a) GumTree with more moves.

(b) ChangeDistiller with more moves.

3. ChangeDistiller produce only move actions, and GumTree

other actions which can include moves (top-right).

4. GumTree produce only move actions, and ChangeDistiller

other actions (bottom-left).

The analysis of the number of items in each category
enables us to settle the question of the effectiveness of the
detection of move actions.

5.3.2 Experiment Result

The results are presented in Table 3. There are 77 compar-
isons for which both matching algorithms produce only move
actions, 58 out of these 77 cases correspond to the case 1
where both algorithms exactly produce the same edit script
(same number of moves). Then, there are 18 instances where
ChangeDistiller has more move actions (case 2-b). It remains
one case where GumTree produce more moves (case 2-a). This

GT only move op GT other op

CD only move op 77 1
CD other op 52 12662

Table 3: Comparison of the number of move oper-
ations from GumTree and ChangeDistiller for 12 792 file
pairs to be compared.

shows that GumTree edit scripts are more concise to describe
move actions than the ones of ChangeDistiller.

Moreover, there are 52 differencing scenarios where GumTree

produces only move actions while ChangeDistiller produces
other kinds of actions (case 4). In these cases ChangeDistiller

has other actions (e.g. one node addition and one node
deletion) in addition to a move. This means that GumTree

is more precise to represent changes involving move actions.
To sum up, according to our dataset, GumTree is better than
ChangeDistiller at detecting move actions; it is both more
concise and more precise.

5.4 Threats to Validity
We now discuss the threats to the validity of our evaluation

set up. We first discuss those that are specific to a research
question and then the generic ones.

For the manual analysis, the main threat to validity is that
the raters are also authors of this paper. To reassure the
reader, the evaluation dataset is made publicly available8.
For the comparative analysis of the number of mappings

and move operations between different tools, the main threat
is a potential bug in our implementation. In particular,
we have re-implemented ChangeDistiller because the original
implementation needs an Eclipse stack. Our new implemen-
tation may not reflect all specific implementation decisions
of the original implementation or even introduce new bugs.
For sake of future analysis and replication, our implementa-
tion of the competitors is in the same repository as GumTree.
We also note that we have experimented with the original
ChangeDistiller in several experiments (for instance [20]) and
have confidence that our implementation reflects the original
one.
Our experiments only consider edit scripts of Java files.

This is a threat to the external validity. Despite unlikely
(our algorithm is independent of any Java specificity), we
can not conclude on whether GumTree performs so well on
other programming languages.

Finally the three thresholds of GumTree have been fixed to
the following values: minHeight = 2, maxSize = 100 and
minDice = 0.5. These values have been chosen according to
our expertise. However, other values could perform differ-
ently. More experiments are needed to evaluate their impact
on the runtime efficiency and the algorithm results.

6. RELATED WORK
In this section we present the related work on code differ-

encing, from text to graph granularity.

Text Differencing.
Computing differences between two versions of a source file

is most commonly performed at the text line granularity [24,
22]. Within this granularity, the edit actions are insertion,

8www.labri.fr/~falleri/dist/articles/GumTree

deletion or update of a text line. The more advanced al-
gorithms are even capable of detecting moved lines [29, 5,
3]. The algorithms using this granularity are usually very
fast and completely language independent, compared to our
approach which requires a parser that slows down the whole
process. The main issue with these algorithms is that they
cannot compute fine-grained differences. Indeed in many
languages (such as JavaScript or even Java) a text line
can contain many programming constructs. Additionally
the output of these algorithms is very difficult to process
automatically since it composed of source code lines that
might not be parsed, since they might be incomplete. It
is therefore difficult to extract automatically the syntactic
modifications using these approaches.

Tree and AST Differencing.
The tree differencing problem has been largely investigated

when considering only the add node, delete node and update
node actions [4]. For this problem, many optimal algorithms
have are described in the literature. The fastest algorithms of
this family [27] run in O(n3), which can result in significantly
long edit script computation time for large source code files.
The other issue faced by these algorithms is their inability
to uncover moved nodes, which is a frequent action in source
code files. It results in unnecessarily big edit scripts which
are hard to understand.

When considering move node actions, the problem of find-
ing the shortest edit script between two trees becomes NP-
hard. However, several algorithms from the document en-
gineering or software engineering research fields that use
practical heuristics exists in the literature. One of the most
famous is the algorithm of Chawathe et al. [6] that computes
edit scripts (containing move actions) on trees representing
LaTeX files. Unfortunately, this algorithm has constraints
(acyclic labels and leaf nodes containing a lot of text) that do
not apply to fine grained ASTs of general purpose program-
ming languages. Several algorithms have also been designed
specifically for XML documents [8, 1]. Unlike the algorithm
of Chawathe et al., they do not have any particular constraint.
However these algorithms put a particular emphasis on the
edit script computation time because they are mostly used
for automatic on-the-fly compression. Regarding our objec-
tive, the most important thing is to compute an edit script
that reflects well the developer intent, computation time
is only secondary. GumTree is inspired from the algorithm
of Cobena et al. [8], because we apply a very similar first
phase. The major difference is that they are not interested
in having fine-grained differences since the differencing is
computed only for compression purpose. Our algorithm is
much more accurate since it also performs a second phase
that increase the number of mappings found, and therefore
produces shortest edit scripts at the expense of the running
time.

The most famous algorithm that works on ASTs is ChangeDis-

tiller [13]. It is largely inspired by the one of Chawathe et al.
but tuned to work better on ASTs. However, this algorithm
is still based on the assumption that leaf nodes contain a
significant amount of text. Therefore, the authors use simpli-
fied ASTs where the leafs are in fact code statements, rather
than raw ASTs. Therefore ChangeDistiller will not compute
fine-grained edit scripts on languages that can have a lot of
elements in statements (such as JavaScript). The Diff/TS

algorithm [15] is able to work on raw ASTs. The automatic

experiment performed in the orginal article shows that it
produces efficiently short edit scripts. However the results
of this algorithm have not been validated by humans. The
VDiff algorithm [10] generates edit scripts from Verilog HDL
files. It is slightly similar to the first phase of GumTree, but
it uses also the lexical similarity of the code. However, the
generated edit scripts are specific to the VHDL language.
Finally the JSync [25] algorithm is also able to compute edit
scripts that include move actions. However it relies on a
classical text differencing algorithm applied on the unparsed
ASTs as first step. It therefore limits its ability to find moved
nodes. Additionally, it is focused on producing information
on clones rather than edit scripts.

Graph Differencing and Origin Analysis.
There are several algorithms that go beyond the AST

structure and compute edit scripts on graphs representing
the source code [28, 31, 2, 11]. Although these algorithms can
uncover semantic differences, they are significantly harder
to use in practice. Mainly because they require much more
semantic information on the source code (such as program
dependency graphs, class models, meta-models or control-
flow graphs) which is very hard if not impossible to obtain
in many languages (such as JavaScript or C), or when
considering only program fragments (e.g., plug-ins).

Finally there are also many algorithms that perform the so-
called origin analysis (e.g., [14, 30]). These algorithms output
the matching program elements between two versions. They
usually use lexical as well as structural similarities between
the elements. However they only consider a few kind of
program elements (usually class, functions and attributes)
and do not output edit scripts.

7. CONCLUSION AND FUTURE WORK
In this article, we present a novel algorithm that computes

fine-grained edit scripts on ASTs, including move node ac-
tions. Our algorithm is implemented in a freely-available
and extensible tool. We have evaluated the running time
and memory consumption of our tool, and shown that it is
reasonable on real data and can be used on a daily basis. We
also have performed an empirical evaluation of the results
of our tool. This evaluation shows that the results of our
algorithm are good, and often more comprehensible than the
result of a classical text diff.
As future work, we plan to extend our tool to extract

modifications that are performed across files. We also plan to
introduce new algorithms that can automatically process an
edit script of GumTree to produce higher-order edit scripts (for
instance to identify refactorings). Finally as the bottleneck
of this approch is the parsing, we consider moving to more
fuzzy parsers, in order to accept not well formed file and
reduce the parsing time.

8. REFERENCES

[1] R. Al-Ekram, A. Adma, and O. Baysal. diffX: an
algorithm to detect changes in multi version XML
documents. In CASCON, page 1–11, 2005.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. A
differencing algorithm for object-oriented programs. In
Proceedings of the 19th International Conference on
Automated Software Engineering, ASE ’04, page 2–13,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and
M. D. Penta. LHDiff: a language-independent hybrid
approach for tracking source code lines. In
International Conference on Software Maintenance,
Eindhoven, pages 230–239, 2013.

[4] P. Bille. A survey on tree edit distance and related
problems. Theor. Comput. Sci., 337(1-3):217–239, 2005.

[5] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your
changes: A language-independent approach. Software,
IEEE, 26(1):50–57, Jan. 2009.

[6] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In Proceedings of the 1996
International Conference on Management of Data,
pages 493–504. ACM Press, 1996.

[7] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree
fingerprinting for source code similarity detection. In
The 17th International Conference on Program
Comprehension, pages 243–247. IEEE Computer
Society, 2009.

[8] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in XML documents. In R. Agrawal and K. R.
Dittrich, editors, Proceedings of the 18th International
Conference on Data Engineering, pages 41–52. IEEE
Computer Society, 2002.

[9] J. Cohen et al. A coefficient of agreement for nominal
scales. Educational and psychological measurement,
20(1):37–46, 1960.

[10] A. Duley, C. Spandikow, and M. Kim. Vdiff: a program
differencing algorithm for verilog hardware description
language. Automated Software Engineering,
19(4):459–490, 2012.

[11] J.-R. Falleri, M. Huchard, M. Lafourcade, and
C. Nebut. Metamodel matching for automatic model
transformation generation. In Proceedings of the 11th
International MoDELS Conference, pages 326–340.
Springer, 2008.

[12] J.-R. Falleri, C. Teyton, M. Foucault, M. Palyart,
F. Morandat, and X. Blanc. The harmony platform.
CoRR, abs/1309.0456, 2013.

[13] B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng.,
33(11):725–743, 2007.

[14] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE
Transactions on Software Engineering, 31(2):166–181,
2005.

[15] M. Hashimoto and A. Mori. Diff/TS: a tool for
fine-grained structural change analysis. In A. E.
Hassan, A. Zaidman, and M. D. Penta, editors,
Proceedings of the 15th Working Conference on Reverse
Engineering, pages 279–288. IEEE, 2008.

[16] F. L. Joseph. Measuring nominal scale agreement
among many raters. Psychological bulletin,
76(5):378–382, 1971.

[17] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A fast
abstract syntax tree interpreter for R. In VEE, pages
89–102. ACM Press, 2014.

[18] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174, Mar. 1977.

[19] M. M. Lehman. On understanding laws, evolution, and
conservation in the large-program life cycle. J. Syst.
Softw., 1:213–221, Sept. 1984.

[20] M. Martinez and M. Monperrus. Mining Software
Repair Models for Reasoning on the Search Space of
Automated Program Fixing. Empirical Software
Engineering, Online First, Sept. 2013. Accepted for
publication on Sep. 11, 2013.

[21] T. Mens and S. Demeyer. Software Evolution. Springer,
1 edition, 2008.

[22] W. Miller, Eugene, and W. Myers. A file comparison
program. Software: Practice and Experience, page 1040,
1985.

[23] M. Monperrus and M. Martinez. CVS-Vintage: A
Dataset of 14 CVS Repositories of Java Software.

[24] E. W. Myers. An o(ND) difference algorithm and its
variations. In Algorithmica, pages 251–266, 1986.

[25] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M.
Al-Kofahi, and T. N. Nguyen. Clone management for
evolving software. IEEE Trans. Software Eng.,
38(5):1008–1026, 2012.

[26] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in linux: ten years later. In
Sixteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2011), page 305. ACM Press, 2011.

[27] M. Pawlik and N. Augsten. RTED: a robust algorithm
for the tree edit distance. PVLDB, 5(4):334–345, 2011.

[28] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and
V. Augustine. Dex: A semantic-graph differencing tool
for studying changes in large code bases. In 20th
International Conference on Software Maintenance,
pages 188–197. IEEE Computer Society, 2004.

[29] S. Reiss. Tracking source locations. In Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, pages 11–20, May 2008.

[30] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim.
AURA: a hybrid approach to identify framework
evolution. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ICSE ’10, page 325–334, New York, NY,
USA, 2010. ACM.

[31] Z. Xing and E. Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. In Proceedings of
the 20th IEEE/ACM international Conference on
Automated software engineering, ASE ’05, page 54–65,

New York, NY, USA, 2005. ACM.

