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1. Introduction

The most general form of the kinetic energy operator for a system endowed with a coordinate dependent mass

was first proposed by O. von Roos [1] as follows:

T̂ =
1

4

(

mα
pmβ

pmγ +mγ
pmβ

pmα
)

(1)

where m = m(x) is the position dependent effective mass (PDEM) and p the momentum operator. The arbitrary

constants α, β and γ are known as the Von Roos ambiguity parameters. They are linked by the following constraint:

α+ β + γ = −1 (2)
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Eq.1 has been extensively applied in the study of variable mass systems [2–6]. Such studies are particularly of

import in the search for electronic properties of semiconductor nano structures [7–10]. Despite the prominence of

eq. (1) in the literature, the recipe of settings of the Von Roos parameters for acceptable kinetic energy operators

is rather limited, at least basing on some validation rules such as by Dutra and Almeida [11], Mustafa and

Mazharimousavi [12] and Gonul et al. [13]

In [14], it was obtained that for admissible continuity conditions at the heterojunction boundaries between two

crystals, the following condition is requisite:

α = γ (3)

implying that the constraint on the ambiguity parameters reduces to:

2α+ β = −1 (4)

This work has a double purpose. First, we wish to re-examine condition eq. (3) with respect to non-vanishing

envelope functions at abrupt heterojunctions and then to propose a new set of orderings for effective mass kinetic

energy operators.

The paper is organized as follows: In section 2, We determine a set of orderings for which the time-independent

Schrödinger equation with eq. (1) as kinetic energy operator is mapped to an isospectral constant mass problem. In

section 3, We determine the envelope function continuity conditions and apply these to an abrupt heterojunction

with step potential and step mass. The results are discussed in section 4 and we end with concluding remarks in

section 5.

2. Settings for the ambiguity parameters

Let’s consider the 1D time-independent Schrödinger equation for a particle with PDEM:

T̂ψ(x) + V (x)ψ(x) = Eψ(x) (5)

By putting the momenta in the kinetic energy operator to the right and working with ~
2 = 2, one obtains:

d2

dx2
ψ(x)− m′

m

d

dx
ψ(x) +

[

η1
m′2

m2
+ η2

m′′

m
+

2m

~2
(E − V (x))

]

ψ(x) = 0 (6)

the primes represent derivation with respect to x, and η1,2 are defined as:

η1 =
1

2

(

α2 + γ2 + αβ + γβ − α− γ
)

(7)

η2 =
1

2
(α+ γ) (8)

We perform the following coordinate transformation as per the Sturm-Liouville approach:
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y(x) =

∫ x√
mdx

φ(y) = 4
√
mψ(x) (9)

As such, eq. (6) takes the form:

d2

dy2
φ(y) +

[

E − V (x) +

(

η1 −
7

16

)

m′2

m3
+

(

η2 +
1

4

)

m′′

m2

]

φ(y) = 0 (10)

To suppress in eq. (10) the dependence on the ambiguity parameters, we impose the following two conditions:

η1 −
7

16
= 0 (11)

and

η2 +
1

4
= 0 (12)

In this way, we obtain eq. (10) as:

d2

dy2
φ(y) + [E − V (x)]φ(y) = 0 (13)

The target system constructed eq. (13) is isospectral and isopotential to the initial one 5. The difference between

the two lies only in the quantum states. This is a unique feature that differentiates this work from the rest in the

literature.

At the heterojunction boundary, it is required that the following quantities be continuous:

φ(y) and
d

dy
φ(y) (14)

Translating into x−space, continuity is imposed on:

1
4

√

m(x)
φ(y(x)) and

1

m(x)1/2
d

dx

1
4

√

m(x)
φ(y(x)) (15)

The equations eq. (11) and eq. (12) are two constraints that should yield the settings for the ambiguity parameters

for which the new constant mass problem eq. (13) has exactly the same potential and energy spectrum as the

original problem. To determine these settings, we start by substituting eq. (2) in eq. (12) and we obtain:

β = −1

2
(16)

With this value of β it is straight forward to obtain from eq. (11) and eq. (12) the following relations:
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Table 1. New sets of orderings

α β γ

Set 1: − 1

4

(

3−
√
2

)

− 1

2

1

4

(

1−
√
2

)

Set 2: − 1

4

(

3 +
√
2

)

− 1

2

1

4

(

1 +
√
2

)

16γ2 − 8γ − 1 = 0, α = −1

2
− γ (17)

These results give rise to new orderings as shown on table 1.

The results on Table 1 conform to the Von Roos constraint eq. (2) and both orderings a admissible according to

[11–13]. Based on the orderings in table 1, the distinctive feature between 1 and other results in the literature is

that the effective potential here is apriori not mass dependent which renders application of results of the model

in actual physical systems possible.

3. Transport properties at abrupt heterojunctions

We model the system with the potential and mass function having a first order discontinuity at x = 0:

V (x) = V0Θ(x) (18)

m(x) = m1 + (m2 −m1)Θ(x) (19)

with

Θ(x) =



































0 if x < 0

1 if x > 0

(20)

Using 1, the continuity conditions at x = 0 are written as follows:

1
4
√
m1

φ−(y−(0)) =
1

2
√
m2

φ+(y+(0))

1

m
3/4
1

d

dx
φ−(y−(0)) =

1

m
3/4
2

d

dx
φ+(y+(0)) (21)

The superscripts −,+ denote solutions in to the left and right of x = 0 respectively. where;
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1
4

√

m(x)
φ(y(x)) = ψ(x) =



































1
4
√
m1

exp (ik1x) + r 1
4
√
m1

exp (−ik1x) if x < 0

t 1
4
√
m2

exp (ik2x) if x > 0

(22)

with k1 =
√
m1E , k2 =

√

m2(E − V0) and r and t are the reflection and transmission amplitudes respectively

The connection rules at x = 0 give:

1
4
√
m1

(1 + r) =
1

4
√
m2

t

1

m
3/4
1

(1− r) =
1

m
3/4
2

k2t (23)

whereof the reflectivity R and transmittivity T are obtained:

R =

∣

∣

∣

∣

√
E − V0 −

√
E√

E − V0 +
√
E

∣

∣

∣

∣

2

(24)

T =
4α

∣

∣

∣

√

E(E − V0)
∣

∣

∣

∣

∣

∣

√
E +

√
E − V0

∣

∣

∣

2
(25)

being α = m2/m1 the mass discontinuity. In the limit E >> V0 The transparency of the barrier remains sensitive

to the mass discontinuity as then we have:

T ≈ m2

m1

(26)

4. Discussion of Results

Formulating the correct Hamiltonian for a particle with spatially dependent mass in an arbitrary potential well

has for a long time drawn much attention. Due to the fact that the effective mass and the momentum operator

no longer commute, ordering these in the kinetic energy operator becomes nontrivial.

By imposing α = γ though, it turns out that β = −1/2 and α = γ = −1/4 which is the ordering that yields the

correspondence between the classical and quantum mechanical PDEM system [15]. The same ordering is derived

in [16] with the assumption:

lim
E→∞

T = 1 (27)

In contrast to this, our result eq. (26) shows that the transmittivity is unlikely to follow the trend of a constant

mass system when the particle is endowed with sufficiently high energy above the barrier height.
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5. Conclusion

We have shown that even for α 6= γ feasible transport properties are obtainable at an abrupt heterojunction for

quantum systems with PDEM.

We have supplemented the recipe of orderings in the literature with two new settings which are verified to be

admissible.
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