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University of Hué

LIA CNRS Formath Vietnam

Abstract

This note is devoted to some questions about the representation theory over the finite field F2 of the general
linear groups GLn(F2) and Poincaré series of unstable modules. The first draft was describing two conjectures.
They were presented during talks made at VIASM in summer 2013. Since then one conjecture has been disproved,
the other one has been proved. These results naturally lead to new questions which are going to be discussed. In
winter 2013, Nguyen Dang Ho Hai proved the second conjecture, he disproved the first one in spring 2014. Up to
now, the proof of the second one depends on a major topological result: the Segal conjecture. This discussion could
be extended to an odd prime, but we will not do it here, just a small number of remarks will be made.

1 Introduction

Over the finite field F2, the general linear group group GLn(F2) has, up to isomorphism, 2n−1 distinct simple repre-
sentations. They are indexed by strictly decreasing partitions λ starting with the integer n [JK81]. These partitions
are said to be 2-regular. As the indexing set for simple representations of the the general linear group depends on the
reference, we will recall the different equivalent choices of indexation in “topological references”.

Let p be a prime number. A partition λ is said to be p-regular if and only if it does not contain p non zero
successive parts which are equal. At the prime 2 these are the strictly decreasing partitions. Let λ be a partition, the
associated partition λ′ is defined by λ′

j = #{i, |λi ≥ j}. The preceding condition on λ translates for λ′ into: for each
i, we have λ′

i − λ′
i+1 ≤ p− 1 (a partition sharing this property is said to be column p-regular). Finally, in [HS92] the

representations are indexed by the differences (λ′
1 − λ′

2, . . . , λ
′
h−1 − λ′

h, λ
′
h).

For example, the trivial representation of GLn(F2) is, in our setting, indexed by (n), the associated partition
is (1, . . . , 1︸ ︷︷ ︸

n times

). The trivial representation is indexed by ( 0, . . . , 0︸ ︷︷ ︸
n − 1 times

, 1) in Harris and Shank’s paper. The Steinberg

representation is indexed by (n, n − 1, . . . , 1) which is equal to its associated partition while in Harris and Shank’s
paper the representation is indexed by (1, . . . , 1︸ ︷︷ ︸

n times

) .

There is in [JK81] a theoretical description, of combinatorial nature, for the simple representations. This is done
using row and column stabilizers of the associated Young diagrams. For a partition λ of the integer n denote by Cλ,
resp. by Rλ, the column, resp. row, stabilizer of the associated Young diagram. Denote by C̄λ, resp. R̄λ, the sum of
their elements in the group algebra over F2 of the symmetric group Sn. Let V = (Z/2)n, the simple representation
Sλ is isomorphic to V ⊗nC̄λR̄λC̄λ (see [JK81] chapter 7 and 8, and [PS98]). At an odd prime the definition of C̄λ is∑

σ sgn(σ)[σ].
1

However, the modular character of these representations, as well as their projective covers and the Cartan matrices,
are unknown. If ̺ is a simple representation, indexed by λ, it will be denoted Sλ; its projective cover will be denoted
by P̺ or Pλ.

Let us give more examples. Let n = 2, V = (Z/2)2, the simple representations are indexed by (2), (2, 1). They
are the trivial representation F2 and the standard one V . The second one is projective; the first one has, as projective
cover, a non-trivial extension by itself. Next, let n = 3 and V ∼= (Z/2)3, the simple representations are indexed

1partially supported by the program ARCUS Vietnam of the french MAE and the Région Ile de France
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by (3), (3, 1), (3, 2) and (3, 2, 1). They are the trivial representation F2, the standard one V , the contragredient of
the standard one Λ2(V ) = (V −1)∗ and the Steinberg representation. The Steinberg representation is the kernel of
Λ2(V )⊗ V −→ Λ3(V ) ∼= F2; it is projective.

The p-regular partitions serve also as indexing set for the simple objects of the category F of functors from the
category of finite dimensional F2-vector spaces to the category of all F2-vector spaces. Note that in [PS98] the simple
objects of F are indexed using the associated partitions. It is often better to use the “functorial” framework which is
done implicitly below.

Let λ = (λ1, . . . , λh), λh > 0, be a strictly decreasing partition starting with λ1 = n; h is the length of the partition
and is denoted by ℓ(λ). Here is a general proposition that can be found in the last chapter of [JK81]:

Proposition 1.1 Let V be the vector space (Z/2)n. The simple representation Sλ associated with λ occurs one time
in Λλ(V ) := Λλ1(V ) ⊗ . . . ⊗ Λλh(V ). All other simple representations occurring in the Jordan-Hölder decomposition
are indexed by partitions lower than λ in the dominance order.

The dominance order - on partitions is the following one. Let λ and µ be partitions. If
∑

i λi <
∑

i µi then λ - µ.
Next if λ and µ are partitions of the same integer (

∑
i λi =

∑
i µi), then λ - µ if

∑
i<h λi =

∑
i<h µi for all h. With

this definition the partition (n) is the smallest one (see also [JK81] page 23) among partitions of n.

Corollary 1.2 The representations Λλ1(V ) ⊗ . . . ⊗ Λλh(V ), λ strictly decreasing partition starting with n, form a
basis of the Grothendieck representation ring RF2

(GLn(F2)).

What follows provides a link between modular representation theory of the general linear groups and topology.
The group GLn(F2) acts naturally on B(Z/2)n and thus on the mod 2 singular cohomology H∗B(Z/2)n. S. Mitchell
and S. Priddy [MP83] used this action to prove the following theorem:

Theorem 1.3 The space B(Z/2)n splits up, as a spectrum, as the following wedge:

∨

̺∈IrrF2 (GLn(F2))

M(̺)∨ dim(̺).

The proof depends on the following observation: an element in the group algebra of GLn(F2) induces a map on
the suspension spectrum of B(Z/2)n. As an example of element in the group algebra we can take an idempotent
associated to the projective cover of a simple representation ̺. The spectrum M(̺) is the telescope of the associated
map.

A major issue is to understand the Poincaré series of the cohomology H∗M(̺).

A second link between representation theory and topology is provided by Lannes’v TV -functor. The functor TV

is left adjoint to M 7→ M ⊗H∗V from the category U of unstable modules over the Steenrod algebra to itself. It is
exact and commutes with tensor products [Lan92], also TV

∼= T n. Moreover [LS89] shows that each indecomposable
reduced injective unstable module is a direct summand in some H∗V . Here “reduced” means that the module
does not contain a non-trivial suspension [Sch94]. It is known (Adams-Gunawardena-Miller, Lannes-Zarati) that
T (H∗V ) ∼= F2[V

∗]⊗H∗V .

Definition 1.4 Denote by Kred(U) the Grothendieck group of reduced injective unstable modules which are finite direct
sums of indecomposable ones.

It follows from [LZ86] that this is a ring and from [LS89] that a basis is indexed by simple representations of all
GLn(F2), thus by strictly decreasing partitions.

Finally the above result of [Lan92] shows that T acts as a ring homomorphism. It is of interest to understand this
homomorphism.

2 Linear (in)dependance of the Poincaré series of the indecomposable
summands of B(Z/2)n

Recall from the introduction that there is a stable decomposition:

B(Z/2)n ≃
∨

̺∈IrrF2 (GLn(F2)

M(̺)∨ dim(̺).
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We will denote the spectrum M(̺) by M(λ), using the indexing partition λ of ̺. Given a partition λ = (λ1, . . . , λh)
denote by λ̄ the partition (λ2, . . . , λh). The above decomposition is refined by (see also [HK88]):

Theorem 2.1 The spectrum M(λ) splits up as the wedge of two indecomposable spectra. One spectrum, denoted by
L(λ) occurs as a summand of B(Z/2)n, but not of B(Z/2)h, h < n. We have:

M(λ) ≃ L(λ)
∨

L(λ̄).

We will denote by Lλ (resp. Mλ) the cohomology H∗L(λ) (resp. H∗M(λ)), the modules Lλ are a list of represen-
tatives of reduced injective unstable modules [LS89].

The cohomology H∗BV is isomorphic to S∗(V ∗), the symmetric algebra over V ∗. It follows from the telescope
construction that the Poincaré series, Pλ(q), of M(λ) is given by the following formula:

Pλ(q) =
∑

k≥0

aλ,k · q
k,

where aλ,k = dimF2
HomGLn(F2)(P̺, S

k(V )) is the multiplicity of the representation ̺ = Sλ in Sk(V ).
Mitchell and Priddy showed in [MP83] the following:

Proposition 2.2 We have:

Pλ(q) =
Πλ(q)

(1− q2n−2n−1)(1 − q2n−2n−2) . . . (1 − q2n−1)

for a certain polynomial Πλ with non-negative coefficients. This series has a pole of order n at 1.

This is because H∗B(Z/2)n is a free, finitely generated, module over the Dickson algebra (H∗B(Z/2)n)GLn , which
is a polynomial algebra on generators in degrees 2n − 1, 2n − 2, . . . , 2n − 2n−1.

Carlisle and Walker [CW89] established another form with better denominator for the Poincaré series. We have

Pλ(q) =
Γλ(q)

(1− q)(1 − q3) . . . (1− q2n−1)

for a certain polynomial Γλ.
The polynomials Πλ and Γλ are unknown in general. They can be computed in special cases, in particular the

series of the Steinberg summand Ln := L(n,n−1,...,1) of Mitchell and Priddy is given by:

q1+(22−1)+...+(2n−1)

(1− q)(1 − q3) . . . (1− q2n−1)

The connectivity of Lλ is known, [FS90]:

Proposition 2.3 The value of the first non zero coefficient of Πλ is 1 and in degree λ1 + 2λ2 + . . .+ 2h−1λh.

As said above Πλ and Γλ are not known in general. Outside of the Steinberg representation the other known
examples are, in some sense, close to the Steinberg representation [CW89]. For an odd prime p the situation is worse,
the analogous result of Proposition 2.3 is not even known outside of particular cases [MW02].

It is natural to ask whether or not the Poincaré series of Lλ determines λ. The first observation is that the order
of the pole at 1 of the series is λ1. Next up to n = 4 the first non zero term of the series allows to distinguish
representations. This is no longer true if n > 4, because the Poincaré series of the representations associated to (5, 4)
and (5, 2, 1) have the same connectivity. But the preceding results suggest the following:

Conjecture 2.4 The Poincaré series Pλ are linearly independent.

From a topological point of view this looks reasonable. However, based on work of D. Carlisle [Car85] and of S.
Mitchell [Mit85], the second author has given a counterexample. Indeed, the following virtual module (with some
classical notation):

X = [M(3)]− [M(3,2,1)]− [M(4)]− [M(4,1)]− [M(4,3)] + [M(4,2,1)] + [M(4,3,2)] + [M(4,3,1)] + 2 [M(4,3,2,1)]

has trivial Poincaré series. There is also an important observation here: the Poincaré series of T (X) is non trivial
(this is proved by direct computation). This is, from a topological point of view, a curious phenomenon and suggests
that an intricate phenomenon occurs. The only hint is the existence of the following non-split short exact sequence
[JP94]:

{0} −→ K −→ L⊗4
(1) −→ L(2,1) −→ {0}.
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3 Eigenvalues and eigenspaces of Lannes’ T functor

Let us consider now the Grothendieck ring, Kred(U), of injective, reduced unstable modules which are finite direct
sums of indecomposable ones. This ring is filtered by subgroups Kred

n (U) generated by the classes of the Lλ such that
λ1 ≤ n. Recall that Lannes’ T -functor, [Lan92], is left adjoint to M 7→ H∗Z/2 ⊗M ; it is exact and preserves tensor
products. Thus it acts as a ring homomorphism on Kred(U). Because of the Adams-Gunawardena-Miller theorem it
preserves the filtration. Suppose given a basis of Kred(U) which is the union of basis of the Kred

n . Harris and Shank
[HS92] have proved that:

Proposition 3.1 The (2n, 2n) matrix tn of the restriction of T to Kred
n writes as

(
tn−1 δn−1

0 τn

)

with τn = tn−1 + δn−1.

The 2n−1 first columns of the above matrix correspond to the action of T on Kred
n−1.

Conjecture 3.2

1. The eigenvalues of T on Kred
n are all powers of 2, more precisely they are (1)2

n−1

, (2)2
n−2

, . . . , (2n−1)1, (2n)1

(multiplicity is shown as exponent);

2. T is diagonalisable on Kred
n .

The analogous conjecture can be made at any prime p. The conjecture has been checked up to n = 9 by the first
author for p = 2, and finally proved by the second one using the Segal conjecture [Hai13].

4 The Poincaré series and the image of the homomorphism M 7→ PM (q)

This section discusses questions about the image of the map which sends an unstable module to its Poincaré series: to
which extent it determines the original object. First we assume this can be defined and that any module we consider
are of finite dimension in any degree. There is a first necessary restriction, to restrict to unstable modules which have
as injective hull a finite direct sum of indecomposable injective unstable modules. Otherwise we could consider infinite
direct sums

⊕
N ΣnF

⊕αn

2 to represent any formal power series.

The first thing to discuss is what should be the source of this map, it is reasonable to conjecture the following:

Conjecture 4.1 The full subcategory of U whose objects are unstable modules whose injective hull is a finite direct sum
of indecomposable injective unstable modules is thick. In particular quotients of such objects have the same property.

This is supported by Steven Sam’s proof of the artinian conjecture and by [CS14]. If this is true we could form
the associated Grothendieck ring which we denote by Gfih(U). The map M 7→ PM (q) induces a ring homomorphism

π : Gfih(U) −→ Z[[q]].

It has been said above that this homomorphism is not injective by restriction to the subring Kred(U). However it is
injective by restriction to the Grothendieck subring, G(U), of finitely generated unstable modules [Sch06].

Two other Grothendieck rings are useful. The first one is the ring K(U) which has the same definition as Gfih(U),
but the finiteness condition on the injective hull is removed. Next it is natural to introduce a topology on this ring
and to consider its completion K̂(U).

There are no obvious conjectures about the kernel of π, on the other hand the image looks to be easier to understand.
Below is a list of questions.

Question 4.2 The first question is to describe Im(π)⊗Q ⊂ Q[[q]]. It looks reasonable to conjecture it is a polynomial

algebra: Q[q]⊗Q[χ2k+1, k≥0]⊗Q[Pλ, λ regular]/(relations), where χ2k+1 =
∑

h≥0 q
(2k+1)2h and Pλ is as above.

This question contains in fact two. The first one, may be the most interesting and new, is that whether or not the
image is generated by q the χ2k+1s and the Pλs. The second one is to understand the last factor, that is to explicit
the relations, information about this can be found in Carlisle-Kuhn [CK89] and Harris-Shank [HS92].

The last question will be formulated as a conjecture. It concerns the explicit form of the Poincaré series Pλ, more
precisely it concerns the form of the Poincaré series of the virtual modules in Kred(U) who are eigenvectors for T
associated to the eigenvalue 1. Numerical evidences support:
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Conjecture 4.3 The Poincaré series of each eigenvector for T associated to the eigenvalue 1 has no pole at 1.

If true, using work of Carlisle and Walker [CW89], the Poincaré series of an eigenvector associated to 1 in Kred
n

could be chosen in such a way that the Poincaré series is of the form:

P (q)∏
1≤i≤n(1 + q + q2 + q3 + . . .+ q2i−2)

,

where P (q) is a polynomial.

5 How to write algorithms and numerical results

The first point is that we will work in RF2
(GLn(F2)) with the basis given by Λλ(Fn

2 ), λ strictly decreasing partitions
starting with n (see Proposition 1.1). We will also work with RF2

(Mn(F2)), in this case a basis is given by the Λλ(Fn
2 ),

λ 2-regular and λ1 ≤ n.
Conjectures 2.4 and 3.2 can be tested using computer. For the first one as the answer turns out to be negative

we will not make long comments. Let us just say that it is enough to understand the span of the symmetric powers
Sk(Fn

2 ) in the Grothendieck ring RF2
(Mn(F2)). To do this write the decomposition of the symmetric powers on the

basis, and use Gauss’ method to compute the rank. However as the system is infinite it only yields an answer if the
answer is positive. In order to write the decomposition there are two possible ways. The first one is to use Koszul
complex. It expresses Sk (in the representation ring) as an alternating sum of tensor products Sh ⊗Λk−h, h < k, and
do an iterative process. The other possibility is to use the Taylor series of Sk [Tro05]. It gives a decomposition of the
symmetric powers in terms of tensor products of exterior powers in the Grothendieck group.

Concerning the Conjecture 3.2, in order to write down an algorithm, we need the following ([HS92] Theorem 3.8):

Theorem 5.1 The transpose of the matrix of T on Kred
n (U) ⊂ Kred(U) is equivalent to the matrix of the following

map RF2
(Mn(F2)) −→ RF2

(Mn(F2)):

[̺] 7→
∑

0≤i≤n

[̺⊗ Λi].

We have a similar result for the matrix of T on the quotient Kred
n /Kred

n−1 by replacing the Grothendieck ring
RF2

(Mn(F2)) by RF2
(GLn(F2)).

In both cases we need another ingredient. In the obvious iterative process we have to decompose tensor products
(Λλ1 ⊗ . . . ⊗ Λλh) ⊗ Λk in the basis. Either k is different from all λi and there is nothing to do, but to reorder. If
k = λi for some i the tensor product is not a basis element. We have to write its decomposition in the basis. For this
we use the following formula:

[Λk ⊗ Λk] = [Λk] + 2[Λk+1 ⊗ Λk−1]− 2[Λk+2 ⊗ Λk−2] + . . .+ (−1)i−12[Λk+i ⊗ Λk−i] + . . .

This comes from the complex

{0} −→ Λ2k −→ Λ2k−1 ⊗ Λ1 −→ . . . −→ Λk ⊗ Λk −→ . . . −→ Λ1 ⊗ Λ2k−1 −→ Λ2k −→ {0}

which is exact except at the middle, where the homology is Λk.
We iterate this process, a moment of reflexion shows that it has to stop sometimes.
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5.1 Some relations in RF2
(M4(F2))

Without mod 2 reduction, we have the following relations in RF2
(M4(F2)), with obvious notations:

s0 = 1(0)

s1 = (1)

s2 = (1) + (2)

s3 = (1) + 2(2) + (3)

s4 = (1) + (2) + (2, 1) + (4)

s5 = (1) + 2(2) + (2, 1) + (3, 1)

s6 = (1) + 3(2) + (2, 1) + (3) + 2(3, 1) − 2(4) + (4, 1)

s7 = (1) + 2(2) + 2(2, 1) + 2(3, 1) + (2, 3)

s8 = (1) + 3(2) + 2(2, 1) + 4(3, 1) + (2, 3) − 3(4) + (4, 1) + (4, 2)

s9 = (1) + 4(2) + 2(2, 1) + (3) + 5(3, 1) + 2(3, 2) − 4(4) + (4, 1) + 2(4, 2)

s10 = (1) + 3(2) + 3(2, 1) + 5(3, 1) + 4(3, 2) − 2(4) − 1(4, 1) + 3(4, 2) + (4, 3)

s11 = (1) + 4(2) + 3(2, 1) + 6(3, 1) + 3(3, 2) + (3, 2, 1) − 4(4) + (4, 3)

s12 = (1) + 5(2) + 3(2, 1) + (3) + 8(3, 1) + 4(3, 2) + (3, 2, 1) − 5(4) + (4, 2) + (4, 2, 1)

s13 = (1) + 4(2) + 4(2, 1) + 9(3, 1) + 6(3, 2) + (3, 2, 1) − 4(4) − 1(4, 1) + 2(4, 2) + 2(4, 2, 1)

s14 = (1) + 5(2) + 4(2, 1) + 10(3, 1) + 6(3, 2) + 2(3, 2, 1) − 6(4) − 1(4, 1) + 2(4, 2, 1) + (4, 3, 1)

s15 = (1) + 6(2) + 4(2, 1) + (3) + 13(3, 1) + 7(3, 2) + 2(3, 2, 1) − 8(4) + 2(4, 2) + 4(4, 2, 1) − 2(4, 3) + (4, 3, 1)

s16 = (1) + 5(2) + 5(2, 1) + 14(3, 1) + 10(3, 2) + 2(3, 2, 1) − 9(4) − 1(4, 1) + 4(4, 2) + 5(4, 2, 1) − 1(4, 3) + 2(4, 3, 1)

s17 = (1) + 6(2) + 5(2, 1) + 15(3, 1) + 11(3, 2) + 3(3, 2, 1) − 12(4) − 2(4, 1) + 4(4, 2) + 5(4, 2, 1) + 4(4, 3, 1)

s18 = (1) + 7(2) + 5(2, 1) + (3) + 17(3, 1) + 11(3, 2) + 4(3, 2, 1) − 12(4) − 2(4, 1) + 2(4, 2) + 7(4, 2, 1) − 2(4, 3) + 4(4, 3, 1) + (4, 3, 2)

s19 = (1) + 6(2) + 6(2, 1) + 19(3, 1) + 14(3, 2) + 4(3, 2, 1) − 12(4) − 3(4, 1) + 4(4, 2) + 10(4, 2, 1) − 3(4, 3) + 5(4, 3, 1) + (4, 3, 2)

s20 = (1) + 7(2) + 6(2, 1) + 21(3, 1) + 15(3, 2) + 5(3, 2, 1) − 17(4) − 3(4, 1) + 5(4, 2) + 11(4, 2, 1) − 3(4, 3) + 8(4, 3, 1) + (4, 3, 2)

s21 = (1) + 8(2) + 6(2, 1) + (3) + 23(3, 1) + 16(3, 2) + 6(3, 2, 1) − 20(4) − 3(4, 1) + 4(4, 2) + 13(4, 2, 1) − 4(4, 3) + 10(4, 3, 1) + 2(4, 3, 2)

s22 = (1) + 7(2) + 7(2, 1) + 26(3, 1) + 19(3, 2) + 6(3, 2, 1) − 20(4) − 4(4, 1) + 7(4, 2) + 17(4, 2, 1) − 6(4, 3) + 11(4, 3, 1) + 3(4, 3, 2)

s23 = (1) + 8(2) + 7(2, 1) + 28(3, 1) + 21(3, 2) + 7(3, 2, 1) − 28(4) − 4(4, 1) + 10(4, 2) + 18(4, 2, 1) − 5(4, 3) + 16(4, 3, 1) + 3(4, 3, 2)

s24 = (1) + 9(2) + 7(2, 1) + (3) + 30(3, 1) + 23(3, 2) + 8(3, 2, 1) − 31(4) − 6(4, 1) + 11(4, 2) + 20(4, 2, 1) − 5(4, 3) + 19(4, 3, 1) + 5(4, 3, 2)

s25 = (1) + 8(2) + 8(2, 1) + 32(3, 1) + 25(3, 2) + 9(3, 2, 1) − 28(4) − 9(4, 1) + 10(4, 2) + 24(4, 2, 1) − 7(4, 3) + 20(4, 3, 1) + 8(4, 3, 2)

s26 = (1) + 9(2) + 8(2, 1) + 35(3, 1) + 27(3, 2) + 10(3, 2, 1) − 36(4) − 8(4, 1) + 10(4, 2) + 26(4, 2, 1) − 7(4, 3) + 24(4, 3, 1) + 7(4, 3, 2) + (4, 3, 2, 1)

With mod 2 reduction (the vectors are denoted by sqi):

sq0 = 1(0)

sq1 = (1)

sq2 = (1) + (2)

sq3 = (1) + (3)

sq4 = (1) + (2) + (2, 1) + (4)

sq5 = (1) + (2, 1) + (3, 1)

sq6 = (1) + (2) + (2, 1) + (3) + (4, 1)

sq7 = (1) + (3, 2)

sq8 = (1) + (2) + (3, 2) + (4) + (4, 1) + (4, 2)

sq9 = (1) + (3) + (3, 1) + (4, 1)

sq10 = (1) + (2) + (2, 1) + (3, 1) + (4, 1) + (4, 2) + (4, 3)

sq11 = (1) + (2, 1) + (3, 2) + (3, 2, 1) + (4, 3)

sq12 = (1) + (2) + (2, 1) + (3) + (3, 2, 1) + (4) + (4, 2) + (4, 2, 1)

sq13 = (1) + (3, 1) + (3, 2, 1) + (4, 1)

sq14 = (1) + (2) + (4, 1) + (4, 3, 1)

sq15 = (1) + (3) + (3, 1) + (3, 2) + (4, 3, 1)

sq16 = (1) + (2) + (2, 1) + (4) + (4, 1) + (4, 2, 1) + (4, 3)

sq17 = (1) + (2, 1) + (3, 1) + (3, 2) + (3, 2, 1) + (4, 2, 1)

sq18 = (1) + (2) + (2, 1) + (3) + (3, 1) + (3, 2) + (4, 2, 1) + (4, 3, 2)

sq19 = (1) + (3, 1) + (4, 1) + (4, 3) + (4, 3, 1) + (4, 3, 2)

sq20 = (1) + (2) + (3, 1) + (3, 2) + (3, 2, 1) + (4) + (4, 1) + (4, 2) + (4, 2, 1) + (4, 3) + (4, 3, 2)

sq21 = (1) + (3) + (3, 1) + (4, 1) + (4, 2, 1)

sq22 = (1) + (2) + (2, 1) + (3, 2) + (4, 2) + (4, 2, 1) + (4, 3, 1) + (4, 3, 2)

sq23 = (1) + (2, 1) + (3, 2) + (3, 2, 1) + (4, 3) + (4, 3, 2)

sq24 = (1) + (2) + (2, 1) + (3) + (3, 2) + (4) + (4, 2) + (4, 3) + (4, 3, 1) + (4, 3, 2)

sq25 = (1) + (3, 2) + (3, 2, 1) + (4, 1) + (4, 3)

sq26 = (1) + (2) + (3, 1) + (3, 2) + (4, 3) + (4, 3, 2) + (4, 3, 2, 1)
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5.2 Transposed matrices of the endomorphism [̺] 7→
∑

0≤i≤n
[̺⊗ Λi] of RF2

(GLn(F2))

For n = 0, the basis being {(0)},

τ0 =
(
1
)

For n = 1, the basis being {(1)},

τ1 =
(
2
)

For n = 2, the basis being {(2), (2, 1)},

τ2 =

(
2 2

1 3

)

For n = 3, the basis being {(3), (3, 1), (3, 2), (3, 2, 1)},

τ3 =




2 0 0 0

1 3 2 6

1 2 3 6

0 1 1 4




For n = 4, the basis being {(4), (4, 1), (4, 2), (4, 2, 1), (4, 3), (4, 3, 1), (4, 3, 2), (4, 3, 2, 1)},

τ4 =




2 0 −2 −4 0 0 −4 −16

1 3 0 −2 0 0 0 −4

1 2 3 2 2 0 2 8

0 1 1 4 0 2 4 14

1 0 0 0 3 0 −2 −4

0 1 2 6 1 4 6 24

0 0 1 4 1 2 4 14

0 0 0 1 0 1 1 5




For n = 5, the basis being {(5), (5, 1), (5, 2), (5, 2, 1), (5, 3), (5, 3, 1), (5, 3, 2), (5, 3, 2, 1), (5, 4), (5, 4, 1), (5, 4, 2),
(5, 4, 2, 1),(5, 4, 3), (5, 4, 3, 1), (5, 4, 3, 2),(5, 4, 3, 2, 1)},

τ5 =




2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 3 0 0 −2 −2 −4 −12 0 0 0 0 −4 −4 −8 −56

1 2 3 2 0 −4 −8 −28 0 0 0 0 0 −8 −32 −152

0 1 1 4 0 0 −2 −10 0 0 0 0 0 0 −4 −36

1 0 0 0 3 0 −8 −32 2 0 −4 −8 2 0 −28 −152

0 1 2 6 1 4 2 −10 0 2 0 −4 0 2 8 −4

0 0 1 4 1 2 4 6 0 0 2 0 4 0 6 32

0 0 0 1 0 1 1 5 0 0 0 2 0 4 8 30

1 0 −2 −4 0 0 −4 −8 3 0 −2 −4 0 0 −12 −56

0 1 0 −2 0 0 0 −4 1 4 0 −2 −2 −2 −4 −24

0 0 1 0 2 0 2 8 1 2 4 2 6 −4 −10 −4

0 0 0 1 0 2 4 14 0 1 1 5 0 6 18 80

0 0 0 0 1 0 −2 −4 1 0 0 0 4 0 −10 −36

0 0 0 0 0 1 4 18 0 1 2 6 1 5 14 80

0 0 0 0 0 0 1 8 0 0 1 4 1 2 5 30

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 6
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For n = 6, the basis being generated in the same way:

τ6 =




2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 3 0 0 0 2 4 12 0 0 0 0 0 0 −8 −72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −16 −272

1 2 3 2 0 0 10 40 −2 0 2 8 −4 0 4 −128 0 0 0 0 0 0 0 −32 −4 0 −4 0 −16 16 80 −80

0 1 1 4 0 0 0 10 0 −2 0 2 0 −4 −8 −20 0 0 0 0 0 0 0 0 0 −4 0 −4 8 −8 −40 −184

1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 6 1 4 2 6 0 0 −4 −4 −8 −8 −28 −124 0 0 0 0 0 0 0 0 0 0 −8 −8 −32 0 −24 −568

0 0 1 4 1 2 4 6 0 0 0 −8 −2 −16 −30 −128 0 0 0 0 0 0 0 0 0 0 0 −16 −4 −64 −196 −1008

0 0 0 1 0 1 1 5 0 0 0 0 0 −2 −8 −38 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 −32 −228

1 0 −2 −4 0 0 −4 −16 3 0 2 −4 10 0 4 80 2 0 0 0 0 0 0 16 2 0 8 0 40 −32 −128 −80

0 1 0 −2 0 0 0 −4 1 4 0 2 −8 2 4 −48 0 2 0 0 −4 −4 −8 −24 0 2 0 8 −28 12 136 280

0 0 1 0 2 0 2 8 1 2 4 2 2 −16 −52 −272 0 0 2 0 0 −8 −16 −56 0 0 2 0 8 −56 −272 −1608

0 0 0 1 0 2 4 14 0 1 1 5 0 2 −12 −120 0 0 0 2 0 0 −4 −20 0 0 0 2 0 8 −12 −412

0 0 0 0 1 0 −2 −4 1 0 0 0 4 0 −30 −196 0 0 0 0 2 0 −16 −64 4 0 −8 −16 6 0 −128 −1008

0 0 0 0 0 1 4 18 0 1 2 6 1 5 6 −68 0 0 0 0 0 2 0 −32 0 4 0 −8 0 6 32 −80

0 0 0 0 0 0 1 8 0 0 1 4 1 2 5 14 0 0 0 0 0 0 2 0 0 0 4 0 8 0 14 96

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 6 0 0 0 0 0 0 0 2 0 0 0 4 0 8 16 62

1 0 0 0 0 0 0 0 0 0 0 0 4 0 −8 −16 3 0 0 0 2 0 0 0 0 0 0 0 12 0 −72 −272

0 1 0 0 −2 −2 −4 −12 0 0 0 0 −4 0 16 88 1 4 0 0 −2 0 0 0 0 0 0 0 −12 0 88 544

0 0 1 0 0 −4 −8 −28 0 0 0 0 0 −8 4 136 1 2 4 2 0 −4 2 12 −2 0 2 8 −4 −24 −48 280

0 0 0 1 0 0 −2 −10 0 0 0 0 0 0 −4 0 0 1 1 5 0 0 −2 0 0 −2 0 2 0 −4 −20 −84

0 0 0 0 1 0 −8 −32 2 0 −4 −8 2 0 −28 −24 1 0 0 0 4 0 −8 0 6 0 −4 −8 6 0 −124 −568

0 0 0 0 0 1 0 −16 0 2 0 −4 0 2 8 −4 0 1 2 6 1 5 2 −10 0 6 −4 −8 −16 −10 −4 −48

0 0 0 0 0 0 1 0 0 0 2 0 4 0 6 32 0 0 1 4 1 2 5 6 0 0 6 −8 18 −32 −68 −80

0 0 0 0 0 0 0 1 0 0 0 2 0 4 8 30 0 0 0 1 0 1 1 6 0 0 0 6 0 18 56 260

0 0 0 0 0 0 0 8 1 0 0 0 0 0 −8 −40 1 0 −2 −4 0 0 −4 −8 4 0 2 −4 10 0 −20 −184

0 0 0 0 0 0 0 0 0 1 0 0 −2 −2 −4 −20 0 1 0 −2 0 0 0 −4 1 5 0 2 −10 0 0 −84

0 0 0 0 0 0 0 0 0 0 1 0 4 −4 −12 −12 0 0 1 0 2 0 2 8 1 2 5 2 14 −20 −120 −412

0 0 0 0 0 0 0 0 0 0 0 1 0 4 14 66 0 0 0 1 0 2 4 14 0 1 1 6 0 14 66 402

0 0 0 0 0 0 0 0 0 0 0 0 1 0 −8 −32 0 0 0 0 1 0 −2 −4 1 0 0 0 5 0 −38 −228

0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 56 0 0 0 0 0 1 4 18 0 1 2 6 1 6 30 260

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 0 0 0 0 0 0 1 8 0 0 1 4 1 2 6 62

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 7
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[CW89] David P. Carlisle and Grant Walker. Poincaré series for the occurrence of certain modular representations of
GL(n, p) in the symmetric algebra. Proc. Roy. Soc. Edinburgh Sect. A, 113(1-2):27–41, 1989.

[FS90] V. Franjou and L. Schwartz. Reduced unstable A-modules and the modular representation theory of the
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[Mit85] Stephen A. Mitchell. Splitting B(Z/p)n and BT n via modular representation theory. Math. Z., 189(1):1–9,
1985.

[MP83] Stephen A. Mitchell and Stewart B. Priddy. Stable splittings derived from the Steinberg module. Topology,
22(3):285–298, 1983.

[MW02] Pham Anh Minh and Grant Walker. Linking first occurrence polynomials over Fp by Steenrod operations.
Algebr. Geom. Topol., 2:563–590, 2002.

[PS98] Laurent Piriou and Lionel Schwartz. Extensions de foncteurs simples. K-Theory, 15(3):269–291, 1998.

[Sch94] Lionel Schwartz. Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture. Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1994.

[Sch06] Lionel Schwartz. Sur l’anneau de Grothendieck de la catégorie des modules instables. Comm. Algebra,
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